Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Bacterial Cellulose: A Versatile Material for Fabrication of Conducting Nanomaterials

Author(s): Mazhar Ul-Islam*, Sumaiya Yasir, Laiqahmed Mombasawala, Sehrish Manan and Muhammad Wajid Ullah*

Volume 17, Issue 3, 2021

Published on: 05 October, 2020

Page: [393 - 405] Pages: 13

DOI: 10.2174/1573413716999201005214832

Price: $65

Abstract

Nanomaterials such as nanoparticles, nanorods, nanofibers, and nanocomposites have received immense consideration and are widely used for different applications in various fields. The exploration of new synthesis routes, simple processing techniques, and specialized applications are growing to different fields and bringing extra interest to stakeholders. Bacterial cellulose (BC), a biopolymer produced by microbial and cell-free systems, is receiving growing applications in various fields, including medical, energy, environment, food, textile, and optoelectronics. As pristine BC lacks antimicrobial activity, conducting and magnetic properties, and possesses limited biocompatibility and optical transparency, its composites with other materials are developed to bless it with such features as well as improve its existing properties. Herein, we have reviewed the role of BC as a matrix to impregnate conducting nanomaterials (e.g., carbon nanotubes, graphene, and metals and metal oxides) and polymers (polyaniline, polypyrrole, and poly (3,4-ethylenedioxythiophene)–poly (styrene sulfonate)) for the development of composite materials. These BC-based composite materials find applications in the development of energy storage devices, wearable electronics, biosensors, and controlled drug delivery systems. We have also highlighted the major hurdles to the industrialization of BC-based composites and provided future projections of such conducting nanomaterials.

Keywords: Bacterial cellulose, nanomaterials, polymers, conducting nanocomposites, applications, carbon nanotubes.

Graphical Abstract

[1]
Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev., 2010, 110(6), 3479-3500.
[http://dx.doi.org/10.1021/cr900339w] [PMID: 20201500]
[2]
Czaja, W.; Krystynowicz, A.; Bielecki, S.; Brown, R.M. Jr Microbial cellulose--the natural power to heal wounds. Biomaterials, 2006, 27(2), 145-151.
[http://dx.doi.org/10.1016/j.biomaterials.2005.07.035] [PMID: 16099034]
[3]
Ullah, M.W.; Ul-Islam, M.; Khan, S.; Kim, Y.; Park, J.K. Innovative production of bio-cellulose using a cell-free system derived from a single cell line. Carbohydr. Polym., 2015, 132, 286-294.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.037] [PMID: 26256351]
[4]
Kim, Y.; Ullah, M.W.; Ul-Islam, M.; Khan, S.; Jang, J.H.; Park, J.K. Self-assembly of bio-cellulose nanofibrils through intermediate phase in a cell-free enzyme system. Biochem. Eng. J., 2019, 142, 135-144.
[http://dx.doi.org/10.1016/j.bej.2018.11.017]
[5]
Ullah, M.W.; Ul-Islam, M.; Khan, S.; Shah, N.; Park, J.K. Recent advancements in bioreactions of cellular and cell-free systems: A study of bacterial cellulose as a model. Korean J. Chem. Eng., 2017, 34(6), 1591-1599.
[http://dx.doi.org/10.1007/s11814-017-0121-2]
[6]
Fu, L.; Zhang, J.; Yang, G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr. Polym., 2013, 92(2), 1432-1442.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.071] [PMID: 23399174]
[7]
Ul-Islam, M.; Subhan, F.; Islam, S.U.; Khan, S.; Shah, N.; Manan, S.; Ullah, M.W.; Yang, G. Development of three-dimensional bacterial cellulose/chitosan scaffolds: Analysis of cell-scaffold interaction for potential application in the diagnosis of ovarian cancer. Int. J. Biol. Macromol., 2019, 137, 1050-1059.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.050] [PMID: 31295500]
[8]
Khan, S.; Ul-Islam, M.; Ikram, M.; Ullah, M.W.; Israr, M.; Subhan, F.; Kim, Y.; Jang, J.H.; Yoon, S.; Park, J.K. Three-dimensionally microporous and highly biocompatible bacterial cellulose-gelatin composite scaffolds for tissue engineering applications. RSC Advances, 2016, 6(112), 110840-111849.
[http://dx.doi.org/10.1039/C6RA18847H]
[9]
Li, S.; Huang, D.; Zhang, B.; Xu, X.; Wang, M.; Yang, G.; Shen, Y. Flexible supercapacitors based on bacterial cellulose paper electrodes. Adv. Energy Mater., 2014, 4(10), 1301655.
[http://dx.doi.org/10.1002/aenm.201301655]
[10]
Badshah, M.; Ullah, H.; Khan, A.R.; Khan, S.; Park, J.K.; Khan, T. Surface modification and evaluation of bacterial cellulose for drug delivery. Int. J. Biol. Macromol., 2018, 113, 526-533.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.135] [PMID: 29477541]
[11]
Nasir, M.; Hashim, R.; Sulaiman, O.; Asim, M. Nanocellulose: Preparation Methods and Applications. Cellulose-Reinforced Nanofibre Composites: Production, Properties and Applications; Jawaid, M.; Boufi, S; Khalil, A., Ed.; Woodhead Publishing, 2017, pp. 261-276.
[http://dx.doi.org/10.1016/B978-0-08-100957-4.00011-5]
[12]
Aljohani, W.; Ullah, M.W.; Zhang, X.; Yang, G. Bioprinting and its applications in tissue engineering and regenerative medicine., Int. J. Biol. Macromol., 2018, 107(Pt A), 261-275..
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.171 ] [PMID: 28870749]
[13]
McCarthy, R.R.; Ullah, M.W.; Pei, E.; Yang, G. Antimicrobial inks: The anti-infective applications of bioprinted bacterial polysaccharides. Trends Biotechnol., 2019, 37(11), 1153-1155.
[http://dx.doi.org/10.1016/j.tibtech.2019.05.004]]
[14]
McCarthy, R.R.; Ullah, M.W.; Booth, P.; Pei, E.; Yang, G. The use of bacterial polysaccharides in bioprinting. Biotechnol. Adv., 2019, 37(8), 107448.
[http://dx.doi.org/10.1016/j.biotechadv.2019.107448] [PMID: 31513840]
[15]
George, J.; Sabapathi, S.N. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol. Sci. Appl., 2015, 8, 45-54.
[http://dx.doi.org/10.2147/NSA.S64386] [PMID: 26604715]
[16]
Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 2011, 40(7), 3941-3994.
[http://dx.doi.org/10.1039/c0cs00108b] [PMID: 21566801]
[17]
Shoukat, A.; Wahid, F.; Khan, T.; Siddique, M.; Nasreen, S.; Yang, G.; Ullah, M.W.; Khan, R. Titanium oxide-bacterial cellulose bioadsorbent for the removal of lead ions from aqueous solution. Int. J. Biol. Macromol., 2019, 129, 965-971.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.032] [PMID: 30738165]
[18]
Shi, Z.; Zhang, Y.; Phillips, G.O.; Yang, G. Utilization of bacterial cellulose in food. Food Hydrocoll., 2014, 35, 539-545.
[http://dx.doi.org/10.1016/j.foodhyd.2013.07.012]
[19]
Ul-Islam, M.; Khan, S.; Ullah, M.W.; Park, J.K. Comparative study of plant and bacterial cellulose pellicles regenerated from dissolved states. Int. J. Biol. Macromol., 2019, 137, 247-252.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.232] [PMID: 31260774]
[20]
Mazhar Ul-Islam. Comparative synthesis and characterization of bio-cellulose from local waste and cheap resources. Curr. Pharm. Des., 2019, 25(34), 3664-3671.
[http://dx.doi.org/10.2174/1381612825999191011104722] [PMID: 31604408]
[21]
Ul-Islam, M.; Ullah, M.W.; Khan, S.; Park, J.K. Production of bacterial cellulose from alternative cheap and waste resources: A step for cost reduction with positive environmental aspects. Korean J. Chem. Eng., 2020, 37, 925-937.
[http://dx.doi.org/10.1007/s11814-020-0524-3]
[22]
Khattak, W.A.; Khan, T.; Ul-Islam, M.; Ullah, M.W.; Khan, S.; Wahid, F.; Park, J.K. Production, characterization and biological features of bacterial cellulose from scum obtained during preparation of sugarcane jaggery (gur). J. Food Sci. Technol., 2015, 52(12), 8343-8349.
[http://dx.doi.org/10.1007/s13197-015-1936-7] [PMID: 26604413]
[23]
Islam, M.U.; Ullah, M.W.; Khan, S.; Shah, N.; Park, J.K. Strategies for cost-effective and enhanced production of bacterial cellulose. Int. J. Biol. Macromol., 2017, 102, 1166-1173.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.110] [PMID: 28487196]
[24]
Ul-Islam, M.; Wajid Ullah, M.; Khan, S.; Kamal, T.; Ul-Islam, S.; Shah, N.; Park, J.K. Recent advancement in cellulose based nanocomposite for addressing environmental challenges. Recent Pat. Nanotechnol., 2016, 10(3), 169-180.
[http://dx.doi.org/10.2174/1872210510666160429144916] [PMID: 27136931]
[25]
Ali, F.; Khan, S.B.; Kamal, T.; Anwar, Y.; Alamry, K.A.; Asiri, A.M. Bactericidal and catalytic performance of green nanocomposite based-on chitosan/carbon black fiber supported monometallic and bimetallic nanoparticles. Chemosphere, 2017, 188, 588-598.
[http://dx.doi.org/10.1016/j.chemosphere.2017.08.118] [PMID: 28917211]
[26]
Ul-Islam, M.; Shehzad, A.; Khan, S.; Khattak, W.A.; Ullah, M.W.; Park, J.K. Antimicrobial and biocompatible properties of nanomaterials. J. Nanosci. Nanotechnol., 2014, 14(1), 780-791.
[http://dx.doi.org/10.1166/jnn.2014.8761] [PMID: 24730297]
[27]
Rohullah; Azam, A.; Qiao, S.; Ul-Islam, M.; Ali, J.; Wahab, A.; Khan, M.A.; Farhan; Hameed, A. Facile synthesis of hair-extract-capped gold and silver nanoparticles and their biological applications. RSC Advances, 2016, 6(114), 113452-113456.
[http://dx.doi.org/10.1039/C6RA21455J]
[28]
Shah, N.; Claessyns, F.; Rimmer, S.; Arain, M.B.; Rehan, T.; Wazwaz, A.; Ahmad, M.W.; Ul-Islam, M. Effective role of magnetic core-shell nanocomposites in removing organic and inorganic wastes from water. Recent Pat. Nanotechnol., 2016, 10(3), 202-212.
[http://dx.doi.org/10.2174/1872210510666160429145524] [PMID: 27784257]
[29]
Khan, S.; Ul-Islam, M.; Ullah, M.W.; Israr, M.; Jang, J.H.; Park, J.K. Nano-gold assisted highly conducting and biocompatible bacterial cellulose-PEDOT:PSS films for biology-device interface applications. Int. J. Biol. Macromol., 2018, 107(Pt A), 865-873..
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.064] [PMID: 28935538]
[30]
Haider, A.; Haider, S.; Kang, I-K.; Kumar, A.; Kummara, M.R.; Kamal, T.; Han, S.S. A novel use of cellulose based filter paper containing silver nanoparticles for its potential application as wound dressing agent. Int. J. Biol. Macromol., 2018, 108, 455-461.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.022] [PMID: 29222019]
[31]
Ul-Islam, M.; Khattak, W.A.; Ullah, M.W.; Khan, S.; Park, J.K. Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose, 2014, 21(1), 433-447.
[http://dx.doi.org/10.1007/s10570-013-0109-y]
[32]
Wahid, F.; Duan, Y.X.; Hu, X.H.; Chu, L.Q.; Jia, S.R.; Cui, J.D.; Zhong, C. A facile construction of bacterial cellulose/ZnO nanocomposite films and their photocatalytic and antibacterial properties. Int. J. Biol. Macromol., 2019, 132, 692-700.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.240] [PMID: 30946911]
[33]
Kamal, T.; Khan, S.B.; Asiri, A.M. Nickel nanoparticles-chitosan composite coated cellulose filter paper: An efficient and easily recoverable dip-catalyst for pollutants degradation. Environ. Pollut., 2016, 218, 625-633.
[http://dx.doi.org/10.1016/j.envpol.2016.07.046] [PMID: 27481647]
[34]
Ullah, M.W.; Ul-Islam, M.; Khan, S.; Kim, Y.; Jang, J.H.; Park, J.K. In situ synthesis of a bio-cellulose/titanium dioxide nanocomposite by using a cell-free system. RSC Advances, 2016, 6(27), 22424-22435.
[http://dx.doi.org/10.1039/C5RA26704H]
[35]
Ul-Islam, M.; Khan, S.; Khattak, W.A.; Park, J.K. Synthesis, chemistry, and medical application of bacterial cellulose nanocomposite. Eco-friendly Polymer Nanocomposites; Ray, S.S., Ed.; Woodhead Publishing, 2015, pp. 399-337.
[http://dx.doi.org/10.1007/978-81-322-2473-0_13]
[36]
Jasim, A.; Ullah, M.W.; Shi, Z.; Lin, X.; Yang, G. Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor. Carbohydr. Polym., 2017, 163, 62-69.
[http://dx.doi.org/10.1016/j.carbpol.2017.01.056] [PMID: 28267519]
[37]
Sheng, N.; Chen, S.; Yao, J.; Guan, F.; Zhang, M.; Wang, B.; Wu, Z.; Ji, P.; Wang, H. Polypyrrole@TEMPO-oxidized bacterial cellulose/reduced graphene oxide macrofibers for flexible all-solid-state supercapacitors. Chem. Eng. J., 2019, 368, 1022-1032.
[http://dx.doi.org/10.1016/j.cej.2019.02.173]
[38]
Khan, S.; Ul-Islam, M.; Khattak, W.A.; Ullah, M.W.; Park, J.K. Bacterial cellulose-poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composites for optoelectronic applications. Carbohydr. Polym., 2015, 127, 86-93.
[http://dx.doi.org/10.1016/j.carbpol.2015.03.055] [PMID: 25965460]
[39]
Khan, S.; Ul-Islam, M.; Ullah, M.W.; Kim, Y.; Park, J.K. Synthesis and characterization of a novel bacterial cellulose–poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonate) composite for use in biomedical applications. Cellulose, 2015, 22(4), 2141-2148.
[http://dx.doi.org/10.1007/s10570-015-0683-2]
[40]
Li, S.; Jasim, A.; Zhao, W.; Fu, L.; Ullah, M.W.; Shi, Z.; Yang, G. Fabrication of PH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system. ES Mater. Manuf., 2018, 1, 41-49.
[http://dx.doi.org/10.30919/esmm5f120]
[41]
Müller, D.; Rambo, C.R.; Recouvreux, D.O.S.; Porto, L.M.; Barra, G.M.O. Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth. Met., 2011, 161(1-2), 106-111.
[http://dx.doi.org/10.1016/j.synthmet.2010.11.005]
[42]
Shah, N.; Ul-Islam, M.; Khattak, W.A.; Park, J.K. Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr. Polym., 2013, 98(2), 1585-1598.
[http://dx.doi.org/10.1016/j.carbpol.2013.08.018] [PMID: 24053844]
[43]
Turkyilmazoglu, M. Free and circular jets cooled by single phase nanofluids. Eur. J. Mech. BFluids, 2019, 76, 1-6.
[http://dx.doi.org/10.1016/j.euromechflu.2019.01.009]
[44]
Turkyilmazoglu, M. A note on the correspondence between certain nanofluid flows and standard fluid flows. J. Heat Transfer, 2015, 137(2), 024501.
[http://dx.doi.org/10.1115/1.4028807]
[45]
Naffakh, M.; Díez-Pascual, A.M. Thermoplastic polymer nanocomposites based on inorganic fullerene-like nanoparticles and inorganic nanotubes. Inorganics, 2014, 2(2), 291-312.
[http://dx.doi.org/10.3390/inorganics2020291]
[46]
Siddiqui, A.A.; Turkyilmazoglu, M. A new theoretical approach of wall transpiration in the cavity flow of the ferrofluids. Micromachines (Basel), 2019, 10(6), 373-388.
[http://dx.doi.org/10.3390/mi10060373] [PMID: 31167483]
[47]
Andrade, F.K.; Morais, J.P.S.; Muniz, C.R.; Nascimento, J.H.O.; Vieira, R.S.; Gama, F.M.P.; Rosa, M.F. Stable microfluidized bacterial cellulose suspension. Cellulose, 2019, 26(10), 5851-5864.
[http://dx.doi.org/10.1007/s10570-019-02512-y]
[48]
Kamal, T.; Khan, S.B.; Asiri, A.M. Synthesis of zero-valent cu nanoparticles in the chitosan coating layer on cellulose microfibers: Evaluation of azo dyes catalytic reduction. Cellulose, 2016, 23(3), 1911-1923.
[http://dx.doi.org/10.1007/s10570-016-0919-9]
[49]
Seo, C.; Lee, H.W.; Suresh, A.; Yang, J.W.; Jung, J.K.; Kim, Y.C. Improvement of fermentative production of exopolysaccharides from aureobasidium pullulans under various conditions. Korean J. Chem. Eng., 2014, 31(8), 1433-1437.
[http://dx.doi.org/10.1007/s11814-014-0064-9]
[50]
Sutherland, I.W. Microbial polysaccharides from gram-negative bacteria. Int. Dairy J., 2001, 11, 663-674.
[http://dx.doi.org/10.1016/S0958-6946(01)00112-1]
[51]
Ullah, M.W.; Manan, S.; Kiprono, S.J.; Ul-Islam, M.; Yang, G. Synthesis, Structural, and Properties of Bacterial Cellulose. Nanocelluose: From Fundamentals to Advanced Materials; Huang, J.; Dufresne, A.; Lin, N., (Eds.); Wiley-VCH Verlag GmbH & Co. KGaA., 2019, pp. 81-113..
[52]
Ullah, M.W.; Ul-Islam, M.; Khan, S.; Kim, Y.; Park, J.K. Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system. Carbohydr. Polym., 2016, 136, 908-916.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.010] [PMID: 26572428]
[53]
Pigaleva, M.A.; Bulat, M.V.; Gromovykh, T.I.; Gavryushina, I.A.; Lutsenko, S.V.; Gallyamov, M.O.; Novikov, I.V.; Buyanovskaya, A.G.; Kiselyova, O.I. A new approach to purification of bacterial cellulose membranes: What happens to bacteria in supercritical media? J. Supercrit. Fluids, 2019, 147, 59-69.
[http://dx.doi.org/10.1016/j.supflu.2019.02.009]
[54]
Khattak, W.A.; Khan, T.; Ul-Islam, M.; Wahid, F.; Park, J.K. Production, characterization and physico-mechanical properties of bacterial cellulose from industrial wastes. J. Polym. Environ., 2015, 23(1), 45-53.
[http://dx.doi.org/10.1007/s10924-014-0663-x]
[55]
Ul-Islam, M.; Khattak, W.A.; Kang, M.; Kim, S.M.; Khan, T.; Park, J.K. Effect of post-synthetic processing conditions on structural variations and applications of bacterial cellulose. Cellulose, 2013, 20(1), 253-263.
[http://dx.doi.org/10.1007/s10570-012-9799-9]
[56]
Ul-Islam, M.; Ha, J.H.; Khan, T.; Park, J.K. Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose. Carbohydr. Polym., 2013, 92(1), 360-366.
[http://dx.doi.org/10.1016/j.carbpol.2012.09.060] [PMID: 23218306]
[57]
Mohite, B.V.; Patil, S.V. A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol. Appl. Biochem., 2014, 61(2), 101-110.
[http://dx.doi.org/10.1002/bab.1148] [PMID: 24033726]
[58]
Tsang, S.C.; Harris, P.J.F.; Green, M.L.H. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature, 1993, 362(6420), 520-522.
[http://dx.doi.org/10.1038/362520a0]
[59]
Sajid, M.I.; Jamshaid, U.; Jamshaid, T.; Zafar, N.; Fessi, H.; Elaissari, A. Carbon nanotubes from synthesis to in vivo biomedical applications. Int. J. Pharm., 2016, 501(1-2), 278-299.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.064] [PMID: 26827920]
[60]
Korneva, G.; Ye, H.; Gogotsi, Y.; Halverson, D.; Friedman, G.; Bradley, J.C.; Kornev, K.G. Carbon nanotubes loaded with magnetic particles. Nano Lett., 2005, 5(5), 879-884.
[http://dx.doi.org/10.1021/nl0502928] [PMID: 15884887]
[61]
Merum, S.; Veluru, J.B.; Seeram, R. Functionalized carbon nanotubes in bio-world: Applications, limitations and future directions. Mater. Sci. Eng. B, 2017, 223, 43-63.
[http://dx.doi.org/10.1016/j.mseb.2017.06.002]
[62]
De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: present and future commercial applications. Science, 2013, 339(6119), 535-539.
[http://dx.doi.org/10.1126/science.1222453] [PMID: 23372006]
[63]
Peng, B.; Locascio, M.; Zapol, P.; Li, S.; Mielke, S.L.; Schatz, G.C.; Espinosa, H.D. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol., 2008, 3(10), 626-631.
[http://dx.doi.org/10.1038/nnano.2008.211] [PMID: 18839003]
[64]
Treacy, M.M.J.; Ebbesen, T.W.; Gibson, J.M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 1996, 381(6584), 678-680.
[http://dx.doi.org/10.1038/381678a0]
[65]
Kim, P.; Shi, L.; Majumdar, A.; McEuen, P.L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett., 2001, 87(21), 215502.
[http://dx.doi.org/10.1103/PhysRevLett.87.215502] [PMID: 11736348]
[66]
Wei, B.Q.; Vajtai, R.; Ajayan, P.M. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett., 2001, 79(8), 1172-1174.
[http://dx.doi.org/10.1063/1.1396632]
[67]
Qin, L.C.; Ichihashi, T.; Iijima, S. On the measurement of helicity of carbon nanotubes. Ultramicroscopy, 1997, 67(1-4), 181-189.
[http://dx.doi.org/10.1016/S0304-3991(96)00095-2]
[68]
Poudel, Y.R.; Li, W. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: A review. Mater. Today Phys., 2018, 7, 7-34.
[http://dx.doi.org/10.1016/j.mtphys.2018.10.002]
[69]
Farooq, U.; Ullah, M.W.; Yang, Q.; Aziz, A.; Xu, J.; Zhou, L.; Wang, S. High-density phage particles immobilization in surface-modified bacterial cellulose for ultra-sensitive and selective electrochemical detection of Staphylococcus aureus. Biosens. Bioelectron., 2020, 157, 112163.
[http://dx.doi.org/10.1016/j.bios.2020.112163] [PMID: 32250935]
[70]
Yoon, S.H.; Jin, H.J.; Kook, M.C.; Pyun, Y.R. Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules, 2006, 7(4), 1280-1284.
[http://dx.doi.org/10.1021/bm050597g] [PMID: 16602750]
[71]
Huang, J.; Virji, S.; Weiller, B.H.; Kaner, R.B. Polyaniline nanofibers: facile synthesis and chemical sensors. J. Am. Chem. Soc., 2003, 125(2), 314-315.
[http://dx.doi.org/10.1021/ja028371y] [PMID: 12517126]
[72]
Yan, Z.; Chen, S.; Wang, H.; Wang, B.; Jiang, J. Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr. Polym., 2008, 74(3), 659-665.
[http://dx.doi.org/10.1016/j.carbpol.2008.04.028]
[73]
Chen, K.; Shi, L.; Zhang, Y.; Liu, Z. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chem. Soc. Rev., 2018, 47(9), 3018-3036.
[http://dx.doi.org/10.1039/C7CS00852J] [PMID: 29484331]
[74]
Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887), 385-388.
[http://dx.doi.org/10.1126/science.1157996] [PMID: 18635798]
[75]
Shi, Z.; Gao, X.; Ullah, M.W.; Li, S.; Wang, Q.; Yang, G. Electroconductive natural polymer-based hydrogels. Biomaterials, 2016, 111, 40-54.
[http://dx.doi.org/10.1016/j.biomaterials.2016.09.020] [PMID: 27721086]
[76]
Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3), 902-907.
[http://dx.doi.org/10.1021/nl0731872] [PMID: 18284217]
[77]
Zhang, L.; Zhang, F.; Yang, X.; Long, G.; Wu, Y.; Zhang, T.; Leng, K.; Huang, Y.; Ma, Y.; Yu, A.; Chen, Y. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci. Rep., 2013, 3(1), 1408.
[http://dx.doi.org/10.1038/srep01408] [PMID: 23474952]
[78]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065), 197-200.
[http://dx.doi.org/10.1038/nature04233] [PMID: 16281030]
[79]
Xu, Y.; Liu, Z.; Zhang, X.; Wang, Y.; Tian, J.; Huang, Y.; Ma, Y.; Zhang, X.; Chen, Y. A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater., 2009, 21(12), 1275-1279.
[http://dx.doi.org/10.1002/adma.200801617]
[80]
Gadipelli, S.; Guo, Z.X. Graphene-based materials: Synthesis and gas sorption, storage and separation. Prog. Mater. Sci., 2015, 69, 1-60.
[http://dx.doi.org/10.1016/j.pmatsci.2014.10.004]
[81]
Mohan, V.B.; Lau, K. tak; Hui, D.; Bhattacharyya, D. Graphene-based materials and their composites: A review on production, applications and product limitations. Compos. B Eng., 2018, 142, 200-220.
[http://dx.doi.org/10.1016/j.compositesb.2018.01.013]
[82]
Pei, S.; Cheng, H.M. The reduction of graphene oxide. Carbon, 2012, 50(9), 3210-3228.
[http://dx.doi.org/10.1016/j.carbon.2011.11.010]
[83]
Kapitanova, O.O.; Panin, G.N.; Baranov, A.N.; Kang, T.W. Synthesis and properties of graphene oxide/graphene nanostructures. J. Korean Phys. Soc., 2012, 60(10), 1789-1793.
[http://dx.doi.org/10.3938/jkps.60.1789]
[84]
Chung, C.; Kim, Y.K.; Shin, D.; Ryoo, S.R.; Hong, B.H.; Min, D.H. Biomedical applications of graphene and graphene oxide. Acc. Chem. Res., 2013, 46(10), 2211-2224.
[http://dx.doi.org/10.1021/ar300159f] [PMID: 23480658]
[85]
Wu, Y.; Zhu, J.; Huang, L. A review of three-dimensional graphene-based materials: Synthesis and applications to energy conversion/storage and environment. Carbon, 2019, 143, 610-640.
[http://dx.doi.org/10.1016/j.carbon.2018.11.053]
[86]
Hung, P.Y.; Lau, K.T.; Fox, B.; Hameed, N.; Lee, J.H.; Hui, D. Surface modification of carbon fibre using graphene–related materials for multifunctional composites. Compos. B Eng., 2018, 133, 240-257.
[http://dx.doi.org/10.1016/j.compositesb.2017.09.010]
[87]
Shahzad, A.; Jawad, A.; Ifthikar, J.; Chen, Z.; Chen, Z. The hetero-assembly of reduced graphene oxide and hydroxide nanosheets as superlattice materials in PMS activation. Carbon N.Y., 2019, 155, 740-755.
[http://dx.doi.org/10.1016/j.carbon.2019.09.033]
[88]
Dorri Moghadam, A.; Omrani, E.; Menezes, P.L.; Rohatgi, P.K. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene - A review. Compos. B Eng., 2015, 77, 402-420.
[http://dx.doi.org/10.1016/j.compositesb.2015.03.014]
[89]
Basnayaka, P.A.; Ram, M.K.; Stefanakos, L.; Kumar, A. Graphene/polypyrrole nanocomposite as electrochemical supercapacitor electrode: Electrochemical impedance studies. Graphene, 2013, 2(2), 81-87.
[http://dx.doi.org/10.4236/graphene.2013.22012]
[90]
Feng, Y.; Zhang, X.; Shen, Y.; Yoshino, K.; Feng, W. A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr. Polym., 2012, 87(1), 644-649.
[http://dx.doi.org/10.1016/j.carbpol.2011.08.039] [PMID: 24751088]
[91]
Dhar, P.; Pratto, B.; Gonçalves Cruz, A.J.; Bankar, S. Valorization of sugarcane straw to produce highly conductive bacterial cellulose/graphene nanocomposite films through in situ fermentation: Kinetic analysis and property evaluation. J. Clean. Prod., 2019, 238, 117859.
[http://dx.doi.org/10.1016/j.jclepro.2019.117859]
[92]
Di, Z.; Shi, Z.; Ullah, M.W.; Li, S.; Yang, G. A transparent wound dressing based on bacterial cellulose whisker and poly(2-hydroxyethyl methacrylate). Int. J. Biol. Macromol., 2017, 105(Pt 1), 638-644.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.075] [PMID: 28716748]
[93]
Berry, V.; Gole, A.; Kundu, S.; Murphy, C.J.; Saraf, R.F. Deposition of CTAB-terminated nanorods on bacteria to form highly conducting hybrid systems. J. Am. Chem. Soc., 2005, 127(50), 17600-17601.
[http://dx.doi.org/10.1021/ja056428l] [PMID: 16351078]
[94]
Ullah, M.W.; Shi, Z.; Shi, X.; Zeng, D.; Li, S.; Yang, G. Microbes as structural templates in biofabrication: Study of surface chemistry and applications. ACS Sustain. Chem.& Eng., 2017, 5(12), 11163-11175.
[http://dx.doi.org/10.1021/acssuschemeng.7b02765]
[95]
Zhang, T.; Wang, W.; Zhang, D.; Zhang, X.; Yurong, M.; Zhou, Y.; Qi, L. Biotemplated synthesis of cold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv. Funct. Mater., 2010, 20(7), 1152-1160.
[http://dx.doi.org/10.1002/adfm.200902104]
[96]
Sari, F.; Sarikaya, A.M.; Suren, D.; Eren, M.; Yilmaz, B. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc., 2015, 19(2), 176-178.
[http://dx.doi.org/10.1021/ja057254a]
[97]
Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev., 2009, 38(6), 1759-1782.
[http://dx.doi.org/10.1039/b806051g] [PMID: 19587967]
[98]
Faria-Tischer, P.C.S.; Costa, C.A.R.; Tozetti, I.; Dall’Antonia, L.H.; Vidotti, M. Structure and effects of gold nanoparticles in bacterial cellulose-polyaniline conductive membranes. RSC Advances, 2016, 6(12), 9571-9580.
[http://dx.doi.org/10.1039/C5RA25332B]
[99]
Evans, B.R.; O’Neill, H.M.; Malyvanh, V.P.; Lee, I.; Woodward, J. Palladium-bacterial cellulose membranes for fuel cells. Biosens. Bioelectron., 2003, 18(7), 917-923.
[http://dx.doi.org/10.1016/S0956-5663(02)00212-9] [PMID: 12713915]
[100]
Yang, J.; Sun, D.; Li, J.; Yang, X.; Yu, J.; Hao, Q.; Liu, W.; Liu, J.; Zou, Z.; Gu, J. In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance. Electrochim. Acta, 2009, 54(26), 6300-6305.
[http://dx.doi.org/10.1016/j.electacta.2009.05.073]
[101]
Gutierrez, J.; Tercjak, A.; Algar, I.; Retegi, A.; Mondragon, I. Conductive properties of TiO2/bacterial cellulose hybrid fibres. J. Colloid Interface Sci., 2012, 377(1), 88-93.
[http://dx.doi.org/10.1016/j.jcis.2012.03.075] [PMID: 22533997]
[102]
Narh, C.; Charles, F.; Mensah, A.; Qufu, W. Synthesis of highly stable bacterial cellulosic pocket for drug storage. Carbohydr. Polym., 2019, 206, 625-632.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.046] [PMID: 30553366]
[103]
Weyell, P.; Beekmann, U.; Küpper, C.; Dederichs, M.; Thamm, J.; Fischer, D.; Kralisch, D. Tailor-made material characteristics of bacterial cellulose for drug delivery applications in dentistry. Carbohydr. Polym., 2019, 207, 1-10.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.061] [PMID: 30599988]
[104]
Umoren, S.A.; Solomon, M.M. Protective polymeric films for industrial substrates: A critical review on past and recent applications with conducting polymers and polymer composites/nanocomposites. Prog. Mater. Sci., 2019, 104, 380-450.
[http://dx.doi.org/10.1016/j.pmatsci.2019.04.002]
[105]
Naveen, M.H.; Gurudatt, N.G.; Shim, Y.B. Applications of conducting polymer composites to electrochemical sensors: A review. Appl. Mater. Today, 2017, 9, 419-433.
[http://dx.doi.org/10.1016/j.apmt.2017.09.001]
[106]
Megha, R.; Ali, F.A.; Ravikiran, Y.T.; Ramana, C.H.V.V.; Kiran Kumar, A.B.V.; Mishra, D.K.; Vijayakumari, S.C.; Kim, D. Conducting polymer nanocomposite based temperature sensors: A review. Inorg. Chem. Commun., 2018, 98, 11-28.
[http://dx.doi.org/10.1016/j.inoche.2018.09.040]
[107]
Shi, Z.; Zang, S.; Jiang, F.; Huang, L.; Lu, D.; Ma, Y.; Yang, G. In situ nano-assembly of bacterial cellulose-polyaniline composites. RSC Advances, 2012, 2(3), 1040-1046.
[http://dx.doi.org/10.1039/C1RA00719J]
[108]
Lee, S.H.; Hong, J. Chemical synthesis and characterization of polypyrrole coated on porous membranes and its electrochemical stability. Synth. Met., 2000, 113(1-2), 115-119.
[http://dx.doi.org/10.1016/S0379-6779(00)00193-4]
[109]
Marins, J.A.; Soares, B.G.; Dahmouche, K.; Ribeiro, S.J.L.; Barud, H.; Bonemer, D. Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites. Cellulose, 2011, 18(5), 1285-1294.
[http://dx.doi.org/10.1007/s10570-011-9565-4]
[110]
Hu, W.; Chen, S.; Yang, Z.; Liu, L.; Wang, H. Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J. Phys. Chem. B, 2011, 115(26), 8453-8457.
[http://dx.doi.org/10.1021/jp204422v] [PMID: 21671578]
[111]
Lee, H.J.; Chung, T.J.; Kwon, H.J.; Kim, H.J.; Tze, W.T.Y. Fabrication and evaluation of bacterial cellulose-polyaniline composites by interfacial polymerization. Cellulose, 2012, 19(4), 1251-1258.
[http://dx.doi.org/10.1007/s10570-012-9705-5]
[112]
Song, X.; Mei, J.; Ye, G.; Wang, L.; Ananth, A.; Yu, L.; Qiu, X. In situ PPy-modification of chitosan porous membrane from mussel shell as a cardiac patch to repair myocardial infarction. Appl. Mater. Today, 2019, 15, 87-99.
[http://dx.doi.org/10.1016/j.apmt.2019.01.003]
[113]
Liu, X.; Gilmore, K.J.; Moulton, S.E.; Wallace, G.G. Electrical stimulation promotes nerve cell differentiation on polypyrrole/poly (2-methoxy-5 aniline sulfonic acid) composites. J. Neural Eng., 2009, 6(6), 065002.
[http://dx.doi.org/10.1088/1741-2560/6/6/065002] [PMID: 19850977]
[114]
Tsui, J.H.; Ostrovsky-Snider, N.A.; Yama, D.M.P.; Donohue, J.D.; Choi, J.S.; Chavanachat, R.; Larson, J.D.; Murphy, A.R.; Kim, D.H. Conductive silk-polypyrrole composite scaffolds with bioinspired nanotopographic cues for cardiac tissue engineering. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(44), 7185-7196.
[http://dx.doi.org/10.1039/C8TB01116H] [PMID: 31448124]
[115]
Hu, W.W.; Hsu, Y.T.; Cheng, Y.C.; Li, C.; Ruaan, R.C.; Chien, C.C.; Chung, C.A.; Tsao, C.W. Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Mater. Sci. Eng. C, 2014, 37, 28-36.
[http://dx.doi.org/10.1016/j.msec.2013.12.019] [PMID: 24582219]
[116]
Xu, H.; Holzwarth, J.M.; Yan, Y.; Xu, P.; Zheng, H.; Yin, Y.; Li, S.; Ma, P.X. Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials, 2014, 35(1), 225-235.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.002] [PMID: 24138830]
[117]
Zhang, Z.; Zhang, J.; Zhao, X.; Yang, F. Core-sheath structured porous carbon nanofiber composite anode material derived from bacterial cellulose/polypyrrole as an anode for sodium-ion batteries. Carbon, 2015, 95, 552-559.
[http://dx.doi.org/10.1016/j.carbon.2015.08.069]
[118]
Wang, F.; Kim, H.J.; Park, S.; Kee, C.D.; Kim, S.J.; Oh, I.K. Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network. Compos. Sci. Technol., 2016, 128, 33-40.
[http://dx.doi.org/10.1016/j.compscitech.2016.03.012]
[119]
Peng, S.; Xu, Q.; Fan, L.; Wei, C.; Bao, H.; Xu, W.; Xu, J. Flexible polypyrrole/cobalt sulfide/bacterial cellulose composite membranes for supercapacitor application. Synth. Met., 2016, 222, 285-292.
[http://dx.doi.org/10.1016/j.synthmet.2016.11.002]
[120]
Peng, S.; Fan, L.; Wei, C.; Liu, X.; Zhang, H.; Xu, W.; Xu, J. Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes. Carbohydr. Polym., 2017, 157, 344-352.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.004] [PMID: 27987937]
[121]
Li, Y.; Du, Y.; Dou, Y.; Cai, K.; Xu, J. PEDOT-based thermoelectric nanocomposites - A mini-review. Synth. Met., 2017, 226, 119-128.
[http://dx.doi.org/10.1016/j.synthmet.2017.02.007]
[122]
Sun, K.; Zhang, S.; Li, P.; Xia, Y.; Zhang, X.; Du, D.; Isikgor, F.H.; Ouyang, J. Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. J. Mater. Sci. Mater. Electron., 2015, 26(7), 4438-4462.
[http://dx.doi.org/10.1007/s10854-015-2895-5]
[123]
Kim, J.Y.; Jung, J.H.; Lee, D.E.; Joo, J. Enhancement of electrical conductivity of poly(3, 4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth. Met., 2002, 126(2-3), 311-316.
[http://dx.doi.org/10.1016/S0379-6779(01)00576-8]
[124]
Tsukada, S.; Nakashima, H.; Torimitsu, K. Conductive polymer combined silk fiber bundle for bioelectrical signal recording. PLoS One, 2012, 7(4), e33689.
[http://dx.doi.org/10.1371/journal.pone.0033689] [PMID: 22493670]
[125]
Suárez-Vargas, J.; Calderón, M.; Brämer-Escamilla, W.; Briceño, S.; Sánchez, I.; Bolaño, P.; Caputo, C. Electrical characterization and electrogenic cell stimulation using a conductive polymer composite based on PEDOT:PSS/PVA/EG. Rev. Latinoam. Metal. Mater., 2014, 35(1), 70-77.
[126]
Andrianov, A.V.; Aleshin, A.N.; Khripunov, A.K.; Trukhin, V.N. Terahertz properties of bacterial cellulose films and its composite with conducting polymer PEDOT/PSS. Synth. Met., 2015, 205, 201-205.
[http://dx.doi.org/10.1016/j.synthmet.2015.04.016]
[127]
Aleshin, A.N.; Berestennikov, A.S.; Krylov, P.S.; Shcherbakov, I.P.; Petrov, V.N.; Trapeznikova, I.N.; Mamalimov, R.I.; Khripunov, A.K.; Tkachenko, A.A. Electrical and optical properties of bacterial cellulose films modified with conductive polymer PEDOT/PSS. Synth. Met., 2015, 199, 147-151.
[http://dx.doi.org/10.1016/j.synthmet.2014.11.022]
[128]
Deetuam, C.; Samthong, C.; Thongyai, S.; Praserthdam, P.; Somwangthanaroj, A. Synthesis of well dispersed graphene in conjugated poly(3,4-ethylenedioxythiophene): polystyrene sulfonate via click chemistry. Compos. Sci. Technol., 2014, 93, 1-8.
[http://dx.doi.org/10.1016/j.compscitech.2013.12.024]
[129]
Wei, H.; Rodriguez, K.; Renneckar, S.; Vikesland, P.J. Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ. Sci. Nano, 2014, 1(4), 302-316.
[http://dx.doi.org/10.1039/C4EN00059E]
[130]
Hamedi, M.; Karabulut, E.; Marais, A.; Herland, A.; Nyström, G.; Wågberg, L. Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew. Chem. Int. Ed. Engl., 2013, 52(46), 12038-12042.
[http://dx.doi.org/10.1002/anie.201305137] [PMID: 24573788]
[131]
Khan, S.; Ul-Islam, M.; Khattak, W.A.; Ullah, M.W.; Park, J.K. Bacterial cellulose-titanium dioxide nanocomposites: Nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose, 2015, 22(1), 565-579.
[http://dx.doi.org/10.1007/s10570-014-0528-4]
[132]
Kang, Y.J.; Chun, S.J.; Lee, S.S.; Kim, B.Y.; Kim, J.H.; Chung, H.; Lee, S.Y.; Kim, W. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano, 2012, 6(7), 6400-6406.
[http://dx.doi.org/10.1021/nn301971r] [PMID: 22717174]
[133]
Bu, Y.; Cao, M.; Jiang, Y.; Gao, L.; Shi, Z.; Xiao, X.; Wang, M.; Yang, G.; Zhou, Y.; Shen, Y. Ultra-thin bacterial cellulose/poly(ethylenedioxythiophene) nanofibers paper electrodes for all-solid-state flexible supercapacitors. Electrochim. Acta, 2018, 271, 624-631.
[http://dx.doi.org/10.1016/j.electacta.2018.03.155]
[134]
Ye, J.; Guo, L.; Zheng, S.; Feng, Y.; Zhang, T.; Yang, Z.; Yuan, Q.; Shen, G.; Zhang, Z. Synthesis of bacterial cellulose based SnO2-Pyy nanocomposites as potential flexible, highly conductive material. Mater. Lett., 2019, 253, 372-376.
[http://dx.doi.org/10.1016/j.matlet.2019.06.096]
[135]
Lukowicz, P.; Kirstein, T.; Tröster, G. Wearable systems for health care applications. Methods Inf. Med., 2004, 43(3), 232-238.
[http://dx.doi.org/10.1055/s-0038-1633863] [PMID: 15227552]
[136]
Tyagi, A.; Tripathi, K.M.; Gupta, R.K. Recent progress in micro-scale energy storage devices and future aspects. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(45), 22507-22541.
[http://dx.doi.org/10.1039/C5TA05666G]
[137]
Wang, F.; Jin, Z.; Zheng, S.; Li, H.; Cho, S.; Kim, H.J.; Kim, S.J.; Choi, E.; Park, J.O.; Park, S. High-fidelity bioelectronic muscular actuator based on porous carboxylate bacterial cellulose membrane. Sens. Actuators B Chem., 2017, 250, 402-411.
[http://dx.doi.org/10.1016/j.snb.2017.04.124]
[138]
Kim, H.J.; Yim, E.C.; Kim, J.H.; Kim, S.J.; Park, J.Y.; Oh, I.K. Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy, 2017, 33, 130-137.
[http://dx.doi.org/10.1016/j.nanoen.2017.01.035]
[139]
Zhang, G.; Liao, Q.; Ma, M.; Gao, F.; Zhang, Z.; Kang, Z.; Zhang, Y. Uniformly assembled vanadium doped ZnO microflowers/bacterial cellulose hybrid paper for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy, 2018, 52, 501-509.
[http://dx.doi.org/10.1016/j.nanoen.2018.08.020]
[140]
Khan, S.; Ul-Islam, M.; Ikram, M.; Islam, S.U.; Ullah, M.W.; Israr, M.; Jang, J.H.; Yoon, S.; Park, J.K. Preparation and structural characterization of surface modified microporous bacterial cellulose scaffolds: A potential material for skin regeneration applications in vitro and in vivo. Int. J. Biol. Macromol., 2018, 117, 1200-1210.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.044] [PMID: 29894790]
[141]
Yu, B.; Cheng, H.; Zhuang, W.; Zhu, C.J.; Wu, J.; Niu, H.; Liu, D.; Chen, Y.; Ying, H. Stability and repeatability improvement of horseradish peroxidase by immobilization on amino-functionalized bacterial cellulose. Process Biochem., 2019, 79, 40-48.
[http://dx.doi.org/10.1016/j.procbio.2018.12.024]
[142]
Farooq, U.; Yang, Q.; Ullah, M.W.; Wang, S. Bacterial biosensing: Recent advances in phage-based bioassays and biosensors. Biosens. Bioelectron., 2018, 118, 204-216.
[http://dx.doi.org/10.1016/j.bios.2018.07.058] [PMID: 30081260]
[143]
Hu, W.; Chen, S.; Zhou, B.; Wang, H. Facile synthesis of ZnO nanoparticles based on bacterial cellulose. Mater. Sci. Eng., 2010, 170(1-3), 88-92.
[http://dx.doi.org/10.1016/j.mseb.2010.02.034]
[144]
Hu, W.; Chen, S.; Liu, L.; Ding, B.; Wang, H. Formaldehyde sensors based on nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance. Sens. Actuators B Chem., 2011, 157(2), 554-559.
[http://dx.doi.org/10.1016/j.snb.2011.05.021]
[145]
Rebelo, A.; Liu, Y.; Liu, C.; Schäfer, K.H.; Saumer, M.; Yang, G. Poly(4-vinylaniline)/polyaniline bilayer functionalized bacterial cellulose membranes as bioelectronics interfaces. Carbohydr. Polym., 2019, 204, 190-201.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.017] [PMID: 30366531]
[146]
Hoshi, T.; Yamazaki, K.; Sato, Y.; Shida, T.; Aoyagi, T. Production of hollow-type spherical bacterial cellulose as a controlled release device by newly designed floating cultivation. Heliyon, 2018, 4(10), e00873.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00873] [PMID: 30456320]
[147]
Abidian, M.R.; Kim, D.H.; Martin, D.C. Conducting-polymer nanotubes for controlled drug release. Adv. Mater., 2006, 18(4), 405-409.
[http://dx.doi.org/10.1002/adma.200501726] [PMID: 21552389]
[148]
Ifuku, S.; Nogi, M.; Abe, K.; Handa, K.; Nakatsubo, F.; Yano, H. Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules, 2007, 8(6), 1973-1978.
[http://dx.doi.org/10.1021/bm070113b] [PMID: 17458936]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy