Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

TargetMM: Accurate Missense Mutation Prediction by Utilizing Local and Global Sequence Information with Classifier Ensemble

Author(s): Fang Ge, Jun Hu, Yi-Heng Zhu, Muhammad Arif and Dong-Jun Yu*

Volume 25, Issue 1, 2022

Published on: 04 December, 2020

Page: [38 - 52] Pages: 15

DOI: 10.2174/1386207323666201204140438

Price: $65

Abstract

Aim and Objective: Missense mutation (MM) may lead to various human diseases by disabling proteins. Accurate prediction of MM is important and challenging for both protein function annotation and drug design. Although several computational methods yielded acceptable success rates, there is still room for further enhancing the prediction performance of MM.

Materials and Methods: In the present study, we designed a new feature extracting method, which considers the impact degree of residues in the microenvironment range to the mutation site. Stringent cross-validation and independent test on benchmark datasets were performed to evaluate the efficacy of the proposed feature extracting method. Furthermore, three heterogeneous prediction models were trained and then ensembled for the final prediction. By combining the feature representation method and classifier ensemble technique, we reported a novel MM predictor called TargetMM for identifying the pathogenic mutations from the neutral ones.

Results: Comparison outcomes based on statistical evaluation demonstrate that TargetMM outperforms the prior advanced methods on the independent test data. The source codes and benchmark datasets of TargetMM are freely available at https://github.com/sera616/TargetMM.git for academic use.

Keywords: Human disease, missense mutation, mutation prediction, feature extracting, classifier ensemble, proteins.

Graphical Abstract

[1]
Zhou, H.; Gao, M.; Skolnick, J. ENTPRISE: An algorithm for predicting human disease-associated amino acid substitutions from sequence entropy and predicted protein structures. PLoS One, 2016, 11(3)e0150965
[http://dx.doi.org/10.1371/journal.pone.0150965] [PMID: 26982818]
[2]
Sabarinathan, R.; Wenzel, A.; Novotny, P.; Tang, X.; Kalari, K.R.; Gorodkin, J. Transcriptome-wide analysis of UTRs in non-small cell lung cancer reveals cancer-related genes with SNV-induced changes on RNA secondary structure and miRNA target sites. PLoS One, 2014, 9(1)e82699
[http://dx.doi.org/10.1371/journal.pone.0082699] [PMID: 24416147]
[3]
Kulshreshtha, S.; Chaudhary, V.; Goswami, G.K.; Mathur, N. Computational approaches for predicting mutant protein stability. J. Comput. Aided Mol. Des., 2016, 30(5), 401-412.
[http://dx.doi.org/10.1007/s10822-016-9914-3] [PMID: 27160393]
[4]
Quan, L.; Wu, H.; Lyu, Q.; Zhang, Y. DAMpred: Recognizing Disease-Associated nsSNPs through bayes-guided neural-network model built on low-resolution structure prediction of proteins and protein-protein interactions. J. Mol. Biol., 2019, 431(13), 2449-2459.
[http://dx.doi.org/10.1016/j.jmb.2019.02.017] [PMID: 30796987]
[5]
Córdoba, E.E.; Lacunza, E.; Abba, M.C.; Fernández, E.; Güerci, A.M. Single nucleotide polymorphisms in ATM, TNF-α and IL6 genes and risk of radiotoxicity in breast cancer patients. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2018, 836(Pt B), 84-89.
[http://dx.doi.org/10.1016/j.mrgentox.2018.06.005] [PMID: 30442350]
[6]
Fisher, C.E.; Hohl, T.M.; Fan, W.; Storer, B.E.; Levine, D.M.; Zhao, L.P.; Martin, P.J.; Warren, E.H.; Boeckh, M.; Hansen, J.A. Validation of single nucleotide polymorphisms in invasive aspergillosis following hematopoietic cell transplantation. Blood, 2017, 129(19), 2693-2701.
[http://dx.doi.org/10.1182/blood-2016-10-743294] [PMID: 28270451]
[7]
Numakura, K.; Tsuchiya, N.; Kagaya, H.; Takahashi, M.; Tsuruta, H.; Inoue, T.; Narita, S.; Huang, M.; Satoh, S.; Niioka, T.; Miura, M.; Habuchi, T. Clinical effects of single nucleotide polymorphisms on drug-related genes in Japanese metastatic renal cell carcinoma patients treated with sunitinib. Anticancer Drugs, 2017, 28(1), 97-103.
[http://dx.doi.org/10.1097/CAD.0000000000000425] [PMID: 27564227]
[8]
Zeng, S.; Yang, J.; Chung, B.H-Y.; Lau, Y.L.; Yang, W. EFIN: predicting the functional impact of nonsynonymous single nucleotide polymorphisms in human genome. BMC Genomics, 2014, 15(1), 455-455.
[http://dx.doi.org/10.1186/1471-2164-15-455] [PMID: 24916671]
[9]
Hassan, M.S.; Shaalan, A.A.; Dessouky, M.I.; Abdelnaiem, A.E.; ElHefnawi, M. A review study: Computational techniques for expecting the impact of non-synonymous single nucleotide variants in human diseases. Gene, 2019, 680, 20-33.
[http://dx.doi.org/10.1016/j.gene.2018.09.028] [PMID: 30240882]
[10]
Capriotti, E.; Nehrt, N.L.; Kann, M.G.; Bromberg, Y. Bioinformatics for personal genome interpretation. Brief. Bioinform., 2012, 13(4), 495-512.
[http://dx.doi.org/10.1093/bib/bbr070] [PMID: 22247263]
[11]
Worth, C.L.; Preissner, R.; Blundell, T.L. DM—a server for predicting effects of mutations on protein stability and malfunction Nucleic Acids Res., 2011, 39(suppl_2), W215-W222.
[12]
Castellana, S.; Fusilli, C.; Mazzoccoli, G.; Biagini, T.; Capocefalo, D.; Carella, M.; Vescovi, A.L.; Mazza, T. High-confidence assessment of functional impact of human mitochondrial non-synonymous genome variations by APOGEE. PLOS Comput. Biol., 2017, 13(6)
[http://dx.doi.org/10.1371/journal.pcbi.1005628] [PMID: 28640805]
[13]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[14]
Burley, S.K.; Berman, H.M.; Bhikadiya, C.; Bi, C.; Chen, L.; Di Costanzo, L.; Christie, C.; Dalenberg, K.; Duarte, J.M.; Dutta, S.; Feng, Z.; Ghosh, S.; Goodsell, D.S.; Green, R.K.; Guranovic, V.; Guzenko, D.; Hudson, B.P.; Kalro, T.; Liang, Y.; Lowe, R.; Namkoong, H.; Peisach, E.; Periskova, I.; Prlic, A.; Randle, C.; Rose, A.; Rose, P.; Sala, R.; Sekharan, M.; Shao, C.; Tan, L.; Tao, Y.P.; Valasatava, Y.; Voigt, M.; Westbrook, J.; Woo, J.; Yang, H.; Young, J.; Zhuravleva, M.; Zardecki, C. RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res., 2019, 47(D1), D464-D474.
[http://dx.doi.org/10.1093/nar/gky1004] [PMID: 30357411]
[15]
Kumar, P.; Henikoff, S.; Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc., 2009, 4(7), 1073-1081.
[http://dx.doi.org/10.1038/nprot.2009.86] [PMID: 19561590]
[16]
Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res., 2003, 31(13), 3812-3814.
[http://dx.doi.org/10.1093/nar/gkg509] [PMID: 12824425]
[17]
Choi, Y.; Sims, G.E.; Murphy, S.; Miller, J.R.; Chan, A.P. Predicting the functional effect of amino acid substitutions and indels. PLoS One, 2012, 7(10)
[http://dx.doi.org/10.1371/journal.pone.0046688] [PMID: 23056405]
[18]
Reva, B.; Antipin, Y.; Sander, C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res., 2011, 39(17), e118-e118.
[http://dx.doi.org/10.1093/nar/gkr407] [PMID: 21727090]
[19]
Hepp, D.; Gonçalves, G.L.; de Freitas, T.R.O. Prediction of the damage-associated non-synonymous single nucleotide polymorphisms in the human MC1R gene. PLoS One, 2015, 10(3)
[http://dx.doi.org/10.1371/journal.pone.0121812] [PMID: 25794181]
[20]
Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods, 2010, 7(4), 248-249.
[http://dx.doi.org/10.1038/nmeth0410-248] [PMID: 20354512]
[21]
Ye, Z-Q.; Zhao, S-Q.; Gao, G.; Liu, X-Q.; Langlois, R.E.; Lu, H.; Wei, L. Finding new structural and sequence attributes to predict possible disease association of single amino acid polymorphism (SAP). Bioinformatics, 2007, 23(12), 1444-1450.
[http://dx.doi.org/10.1093/bioinformatics/btm119] [PMID: 17384424]
[22]
Burrell, R.A.; McGranahan, N.; Bartek, J.; Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature, 2013, 501(7467), 338-345.
[http://dx.doi.org/10.1038/nature12625] [PMID: 24048066]
[23]
Chou, K-C. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics, 2005, 21(1), 10-19.
[http://dx.doi.org/10.1093/bioinformatics/bth466] [PMID: 15308540]
[24]
Chou, K.C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins, 2001, 43(3), 246-255.
[http://dx.doi.org/10.1002/prot.1035] [PMID: 11288174]
[25]
He, P.A.; Tao, H.; Ma, T.; Dai, Q.; Yao, Y. A novel protein characterization based on pseudo amino acids composition and star-like graph topological indices. Comb. Chem. High Throughput Screen., 2017, 20(4), 328-337.
[http://dx.doi.org/10.2174/1386207320666170217152811] [PMID: 28215145]
[26]
Wang, J.; Yang, B.; An, Y.; Marquez-Lago, T.; Leier, A.; Wilksch, J.; Hong, Q.; Zhang, Y.; Hayashida, M.; Akutsu, T.; Webb, G.I.; Strugnell, R.A.; Song, J.; Lithgow, T. Systematic analysis and prediction of type IV secreted effector proteins by machine learning approaches. Brief. Bioinform., 2019, 20(3), 931-951.
[http://dx.doi.org/10.1093/bib/bbx164] [PMID: 29186295]
[27]
Hu, J.; Zhou, X.; Zhu, Y.H.; Yu, D.J.; Zhang, G. TargetDBP: Accurate DNA-binding protein prediction via sequence-based multi-view feature learning IEEE/ACM Trans; Comput. Biol. Bioinform, 2019.
[28]
Rao, H.B.; Zhu, F.; Yang, G.B.; Li, Z.R.; Chen, Y.Z. Update of PROFEAT: A web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence Nucleic Acids Res 2011, 39(Web Server issue), W385-W390.
[http://dx.doi.org/10.1093/nar/gkr284]
[29]
Hu, J.; Li, Y.; Zhang, Y.; Yu, D-J. ATPbind: Accurate protein–ATP binding site prediction by combining sequence-profiling and structure-based comparisons. J. Chem. Inf. Model., 2018, 58(2), 501-510.
[http://dx.doi.org/10.1021/acs.jcim.7b00397] [PMID: 29361215]
[30]
Bromberg, Y.; Rost, B. SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res., 2007, 35(11), 3823-3835.
[http://dx.doi.org/10.1093/nar/gkm238] [PMID: 17526529]
[31]
Carter, H.; Chen, S.; Isik, L.; Tyekucheva, S.; Velculescu, V.E.; Kinzler, K.W.; Vogelstein, B.; Karchin, R. Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer Res., 2009, 69(16), 6660-6667.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1133] [PMID: 19654296]
[32]
Yu, D.; Hu, J.; Tang, Z.; Shen, H.; Yang, J.; Yang, J. Improving protein-ATP binding residues prediction by boosting SVMs with random under-sampling. Neurocomputing, 2013, 104, 180-190.
[http://dx.doi.org/10.1016/j.neucom.2012.10.012]
[33]
Huang, S.; Cai, N.; Pacheco, P.P.; Narrandes, S.; Wang, Y.; Xu, W. NARRANDES, S.; Wang, Y.; Xu, W. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics, 2018, 15(1), 41-51.
[PMID: 29275361]
[34]
Xu, Y.; Wen, Y.; Han, G. Antioxidant proteins’ identification based on support vector machine. Comb. Chem. High Throughput Screen., 2020, 23(4), 319-325.
[http://dx.doi.org/10.2174/1386207323666200306125538] [PMID: 32141416]
[35]
Gregorutti, B.; Michel, B.; Saint-Pierre, P. Correlation and variable importance in random forests. StCom, 2017, 27(3), 659-678.
[http://dx.doi.org/10.1007/s11222-016-9646-1]
[36]
Zhang, Q.; Sun, X.; Feng, K.; Wang, S.; Zhang, Y-H.; Wang, S.; Lu, L.; Cai, Y-D. Predicting citrullination sites in protein sequences using mRMR method and random forest algorithm. Comb. Chem. High Throughput Screen., 2017, 20(2), 164-173.
[http://dx.doi.org/10.2174/1386207319666161227124350] [PMID: 28029071]
[37]
Oyama, H.; Yamakita, M.; Sata, K.; Ohata, A. Identification of static boundary model based on gaussian process classification. IFAC-PapersOnLine, 2016, 49(11), 787-792.
[http://dx.doi.org/10.1016/j.ifacol.2016.08.115]
[38]
Li, J.; Su, Z.; Ma, Z-Q.; Slebos, R.J.; Halvey, P.; Tabb, D.L.; Liebler, D.C.; Pao, W.; Zhang, B. A bioinformatics workflow for variant peptide detection in shotgun proteomics. Mol. Cell. Proteomics, 2011, 10(5)
[http://dx.doi.org/10.1074/mcp.M110.006536]
[39]
Wei, L.; Tang, J.; Zou, Q. Local-DPP: An improved DNA-binding protein prediction method by exploring local evolutionary information. Inf. Sci., 2017, 384, 135-144.
[http://dx.doi.org/10.1016/j.ins.2016.06.026]
[40]
An, J-Y.; You, Z-H.; Chen, X.; Huang, D-S.; Yan, G.; Wang, D-F. Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information. Mol. Biosyst., 2016, 12(12), 3702-3710.
[http://dx.doi.org/10.1039/C6MB00599C] [PMID: 27759121]
[41]
Yi, H-C.; You, Z-H.; Huang, D-S.; Li, X.; Jiang, T-H.; Li, L-P. A deep learning framework for robust and accurate prediction of ncRNA-protein interactions using evolutionary information. Mol. Ther. Nucleic Acids, 2018, 11, 337-344.
[http://dx.doi.org/10.1016/j.omtn.2018.03.001] [PMID: 29858068]
[42]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, D.; Chou, K.C. iPhos‐PseEvo: identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory. Mol. Inform., 2017, 36(5-6)
[http://dx.doi.org/10.1002/minf.201600010] [PMID: 28488814]
[43]
Schäffer, A.A.; Aravind, L.; Madden, T.L.; Shavirin, S.; Spouge, J.L.; Wolf, Y.I.; Koonin, E.V.; Altschul, S.F. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res., 2001, 29(14), 2994-3005.
[http://dx.doi.org/10.1093/nar/29.14.2994] [PMID: 11452024]
[44]
Bairoch, A.; Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res., 2000, 28(1), 45-48.
[http://dx.doi.org/10.1093/nar/28.1.45] [PMID: 10592178]
[45]
Schmidt, T.; Haas, J.; Gallo Cassarino, T.; Schwede, T. Assessment of ligand-binding residue predictions in CASP9. Proteins, 2011, 79(S10)(Suppl. 10), 126-136.
[http://dx.doi.org/10.1002/prot.23174] [PMID: 21987472]
[46]
Zhang, Y. Protein structure prediction: when is it useful? Curr. Opin. Struct. Biol., 2009, 19(2), 145-155.
[http://dx.doi.org/10.1016/j.sbi.2009.02.005] [PMID: 19327982]
[47]
Roy, A.; Yang, J.; Zhang, Y. COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res., 2012, 40(Web Server issue), W471-W477.
[http://dx.doi.org/10.1093/nar/gks372] [PMID: 22570420]
[48]
Wei, Z-S.; Han, K.; Yang, J-Y.; Shen, H-B.; Yu, D-J. Protein–protein interaction sites prediction by ensembling SVM and sample-weighted random forests. Neurocomputing, 2016, 193, 201-212.
[http://dx.doi.org/10.1016/j.neucom.2016.02.022]
[49]
Zahiri, J.; Yaghoubi, O.; Mohammad-Noori, M.; Ebrahimpour, R.; Masoudi-Nejad, A. PPIevo: protein-protein interaction prediction from PSSM based evolutionary information. Genomics, 2013, 102(4), 237-242.
[http://dx.doi.org/10.1016/j.ygeno.2013.05.006] [PMID: 23747746]
[50]
Yu, D-J.; Hu, J.; Yan, H.; Yang, X-B.; Yang, J-Y.; Shen, H-B. Enhancing protein-vitamin binding residues prediction by multiple heterogeneous subspace SVMs ensemble. BMC Bioinformatics, 2014, 15(1), 297.
[http://dx.doi.org/10.1186/1471-2105-15-297] [PMID: 25189131]
[51]
Zhu, Y.H.; Hu, J.; Qi, Y.; Song, X.N.; Yu, D.J. Boosting granular support vector machines for the accurate prediction of protein-nucleotide binding sites. Comb. Chem. High Throughput Screen., 2019, 22(7), 455-469.
[http://dx.doi.org/10.2174/1386207322666190925125524] [PMID: 31553288]
[52]
Yu, D-J.; Shen, H-B.; Yang, J-Y. SOMPNN: an efficient non-parametric model for predicting transmembrane helices. Amino Acids, 2012, 42(6), 2195-2205.
[http://dx.doi.org/10.1007/s00726-011-0959-2] [PMID: 21695537]
[53]
Hayat, M.; Khan, A. MemHyb: predicting membrane protein types by hybridizing SAAC and PSSM. J. Theor. Biol., 2012, 292, 93-102.
[http://dx.doi.org/10.1016/j.jtbi.2011.09.026] [PMID: 22001079]
[54]
McGuffin, L.J.; Bryson, K.; Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics, 2000, 16(4), 404-405.
[http://dx.doi.org/10.1093/bioinformatics/16.4.404] [PMID: 10869041]
[55]
Jones, D.T.; Ward, J.J. Prediction of disordered regions in proteins from position specific score matrices. Proteins, 2003, 53(S6)(Suppl. 6), 573-578.
[http://dx.doi.org/10.1002/prot.10528] [PMID: 14579348]
[56]
Dunker, A.K.; Lawson, J.D.; Brown, C.J.; Williams, R.M.; Romero, P.; Oh, J.S.; Oldfield, C.J.; Campen, A.M.; Ratliff, C.M.; Hipps, K.W.; Ausio, J.; Nissen, M.S.; Reeves, R.; Kang, C.; Kissinger, C.R.; Bailey, R.W.; Griswold, M.D.; Chiu, W.; Garner, E.C.; Obradovic, Z. Intrinsically disordered protein. J. Mol. Graph. Model., 2001, 19(1), 26-59.
[http://dx.doi.org/10.1016/S1093-3263(00)00138-8] [PMID: 11381529]
[57]
Ward, J.J.; McGuffin, L.J.; Bryson, K.; Buxton, B.F.; Jones, D.T. The DISOPRED server for the prediction of protein disorder. Bioinformatics, 2004, 20(13), 2138-2139.
[http://dx.doi.org/10.1093/bioinformatics/bth195] [PMID: 15044227]
[58]
Kong, Y.; Wang, Z.; Jia, Y.; Li, P.; Hao, S.; Wang, Y. Effects of mutants in bHLH region on structure stability and protein-DNA binding energy in DECs. J. Biomol. Struct. Dyn., 2017, 35(9), 1849-1862.
[http://dx.doi.org/10.1080/07391102.2016.1196463] [PMID: 27499354]
[59]
Chen, Z.; Zhao, P.; Li, F.; Marquez-Lago, T.T.; Leier, A.; Revote, J.; Zhu, Y.; Powell, D.R.; Akutsu, T.; Webb, G.I. iLearn: an integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA, RNA and protein sequence data. Brief. Bioinform., 2019.
[PMID: 31067315]
[60]
Chen, X-X.; Tang, H.; Li, W-C.; Wu, H.; Chen, W.; Ding, H.; Lin, H. Identification of bacterial cell wall lyases via pseudo amino acid composition. BioMed Res. Int., 2016. Article ID 1654623
[http://dx.doi.org/10.1155/2016/1654623]
[61]
Yang, H.; Tang, H.; Chen, X-X.; Zhang, C-J.; Zhu, P-P.; Ding, H.; Chen, W.; Lin, H. Identification of secretory proteins in mycobacterium tuberculosis using pseudo amino acid composition. BioMed Res. Int., 2016.
[62]
Deng, X.; Liu, Q.; Deng, Y.; Mahadevan, S. An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Inf. Sci., 2016, 340, 250-261.
[http://dx.doi.org/10.1016/j.ins.2016.01.033]
[63]
Luque, A.; Carrasco, A.; Martín, A.; de las Heras, A. The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognit., 2019, 91, 216-231.
[http://dx.doi.org/10.1016/j.patcog.2019.02.023]
[64]
Boughorbel, S.; Jarray, F.; El-Anbari, M. Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PLoS One, 2017, 12(6)e0177678
[http://dx.doi.org/10.1371/journal.pone.0177678] [PMID: 28574989]
[65]
Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 2020, 21(1), 6.
[http://dx.doi.org/10.1186/s12864-019-6413-7] [PMID: 31898477]
[66]
Roberts, D.R.; Bahn, V.; Ciuti, S.; Boyce, M.S.; Elith, J.; Guillera‐Arroita, G.; Hauenstein, S.; Lahoz‐Monfort, J.J.; Schröder, B.; Thuiller, W. Cross‐validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 2017, 40(8), 913-929.
[http://dx.doi.org/10.1111/ecog.02881]
[67]
Shihab, H.A.; Gough, J.; Mort, M.; Cooper, D.N.; Day, I.N.; Gaunt, T.R. Ranking non-synonymous single nucleotide polymorphisms based on disease concepts. Hum. Genomics, 2014, 8(1), 11.
[http://dx.doi.org/10.1186/1479-7364-8-11] [PMID: 24980617]
[68]
Yu, D.J.; Hu, J.; Huang, Y.; Shen, H.B.; Qi, Y.; Tang, Z.M.; Yang, J.Y. TargetATPsite: a template-free method for ATP-binding sites prediction with residue evolution image sparse representation and classifier ensemble. J. Comput. Chem., 2013, 34(11), 974-985.
[http://dx.doi.org/10.1002/jcc.23219] [PMID: 23288787]
[69]
Zhang, J.; Chen, W.; Sun, P.; Zhao, X.; Ma, Z. Prediction of protein solvent accessibility using PSO-SVR with multiple sequence-derived features and weighted sliding window scheme. BioData Min., 2015, 8(1), 3.
[http://dx.doi.org/10.1186/s13040-014-0031-3] [PMID: 26478747]
[70]
Chen, Z.; Zhao, P.; Li, F.; Leier, A.; Marquez-Lago, T.T.; Wang, Y.; Webb, G.I.; Smith, A.I.; Daly, R.J.; Chou, K.C.; Song, J. iFeature: a Python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics, 2018, 34(14), 2499-2502.
[http://dx.doi.org/10.1093/bioinformatics/bty140] [PMID: 29528364]
[71]
Micsonai, A.; Wien, F.; Bulyáki, É.; Kun, J.; Moussong, É.; Lee, Y.H.; Goto, Y.; Réfrégiers, M.; Kardos, J. BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res., 2018, 46(W1), W315-W322.
[http://dx.doi.org/10.1093/nar/gky497] [PMID: 29893907]
[72]
Smigielski, E.M.; Sirotkin, K.; Ward, M.; Sherry, S.T. dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res., 2000, 28(1), 352-355.
[http://dx.doi.org/10.1093/nar/28.1.352] [PMID: 10592272]
[73]
Wu, C.H.; Apweiler, R.; Bairoch, A.; Natale, D.A.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R. The Universal Protein Resource (UniProt): An expanding universe of protein information Nucleic Acids Res., 2006, 34(suppl_1), D187-D191.
[74]
Capriotti, E.; Calabrese, R.; Casadio, R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics, 2006, 22(22), 2729-2734.
[http://dx.doi.org/10.1093/bioinformatics/btl423] [PMID: 16895930]
[75]
Boeckmann, B.; Bairoch, A.; Apweiler, R.; Blatter, M-C.; Estreicher, A.; Gasteiger, E.; Martin, M.J.; Michoud, K.; O’Donovan, C.; Phan, I.; Pilbout, S.; Schneider, M. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res., 2003, 31(1), 365-370.
[http://dx.doi.org/10.1093/nar/gkg095] [PMID: 12520024]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy