Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Catechin Derivatives as Inhibitor of COVID-19 Main Protease (Mpro): Molecular Docking Studies Unveil an Opportunity Against CORONA

Author(s): Muhammad Nouman Arif*

Volume 25, Issue 1, 2022

Published on: 22 November, 2020

Page: [197 - 203] Pages: 7

DOI: 10.2174/1871520620666201123101002

Price: $65

Abstract

Background: A newly emergent strain of coronavirus (COVID-19) has affected almost the whole of the world’s population. Currently, there is no specific vaccine or drug against COVID-19. Xu et al. (2020) built a homolog model of SARS-CoV-2 Mpro based on SARS-CoV Mpro, which is considered as a target to inhibit the replication of CoV.

Objective: The aim of the current study was to find potential inhibitors of COVID-19 Mpro using docking analysis.

Methods: Autodockvina was used to carry out Protein-Ligand docking. COVID-19 main protease Mpro was docked with catechin and its different synthetic derivatives. Nelfinavir, an antiretroviral drug belonging to protease inhibitors, was taken as the standard.

Results: According to the result obtained, it was found that Compound (4) and Compound (1) have more affinity than nelfinavir.

Conclusion: Compounds were found to have a great potential to become COVID-19 main protease Mpro inhibitor. Nevertheless, for their medicinal use, further investigation is necessary.

Keywords: COVID-19, cetachin derivatives, docking analysis, Mpro, infection, therapy.

Graphical Abstract

[1]
Malik, Y.S.; Sircar, S.; Bhat, S.; Sharun, K.; Dhama, K.; Dadar, M.; Tiwari, R.; Chaicumpa, W. Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments. Vet. Q., 2020, 40(1), 68-76.
[http://dx.doi.org/10.1080/01652176.2020.1727993] [PMID: 32036774]
[2]
Lee, P-I.; Hsueh, P-R. Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019-nCoV. J. Microbiol. Immunol. Infect., 2020, 53(3), 365-367.
[http://dx.doi.org/10.1016/j.jmii.2020.02.001] [PMID: 32035811]
[3]
Rodríguez-Morales, A.J.; MacGregor, K.; Kanagarajah, S.; Patel, D.; Schlagenhauf, P. Going global - Travel and the 2019 novel coronavirus. Travel Med. Infect. Dis., 2020, 33.
[http://dx.doi.org/10.1016/j.tmaid.2020.101578] [PMID: 32044389]
[4]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. China novel coronavirus investigating and research team. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[5]
Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends, 2020, 14(1), 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[6]
Wang, Z.; Chen, X.; Lu, Y.; Chen, F.; Zhang, W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci. Trends, 2020, 14(1), 64-68.
[http://dx.doi.org/10.5582/bst.2020.01030] [PMID: 32037389]
[7]
Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; Diaz, G.; Cohn, A.; Fox, L.; Patel, A.; Gerber, S.I.; Kim, L.; Tong, S.; Lu, X.; Lindstrom, S.; Pallansch, M.A.; Weldon, W.C.; Biggs, H.M.; Uyeki, T.M.; Pillai, S.K. Washington State 2019-nCoV Case Investigation Team. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med., 2020, 382(10), 929-936.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[8]
Xu, Z.; Peng, C.; Shi, Y.; Zhu, Z.; Mu, K.; Wang, X.; Zhu, W. Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. bioRxiv, 2020.
[9]
Song, J-M.; Lee, K-H.; Seong, B-L. Antiviral effect of catechins in green tea on influenza virus. Antiviral Res., 2005, 68(2), 66-74.
[http://dx.doi.org/10.1016/j.antiviral.2005.06.010] [PMID: 16137775]
[10]
Balde, A.; Pieters, L.; Gergely, A.; Kolodziej, H.; Claeys, M.; Vlietinck, A. A-type proanthocyanidins from stem-bark of Pavetta owariensis. Phytochemistry, 1991, 30(1), 337-342.
[http://dx.doi.org/10.1016/0031-9422(91)84150-Q]
[11]
Lou, H.; Yamazaki, Y.; Sasaki, T.; Uchida, M.; Tanaka, H.; Oka, S. A-type proanthocyanidins from peanut skins. Phytochemistry, 1999, 51(2), 297-308.
[http://dx.doi.org/10.1016/S0031-9422(98)00736-5]
[12]
Fukuhara, K.; Nakanishi, I.; Kansui, H.; Sugiyama, E.; Kimura, M.; Shimada, T.; Urano, S.; Yamaguchi, K.; Miyata, N. Enhanced radical-scavenging activity of a planar catechin analogue. J. Am. Chem. Soc., 2002, 124(21), 5952-5953.
[http://dx.doi.org/10.1021/ja0178259] [PMID: 12022823]
[13]
Steenkamp, J.A.; Ferreira, D. An unusual reaction of flavan-3-ols with acetone of relevance to the formation of the tetracyclic ring system in peltogynoids. Tetrahedron, 1990, 46(23), 7849-7854.
[http://dx.doi.org/10.1016/S0040-4020(01)90082-1]
[14]
Ngnokam, D.; Massiot, G.; Nuzillard, J-M.; Tsamo, E. (+)-7′, 7′-Dimethyl-5-hydroxy-2R, 3S-trans-pubeschin from Entandrophragma cylindricum. Phytochemistry, 1994, 37(2), 529-531.
[http://dx.doi.org/10.1016/0031-9422(94)85093-3]
[15]
Liu, X.; Zhang, B.; Jin, Z.; Yang, H.; Rao, Z. The Crytal Structure of 2019-NCoV Main Protease in Complex with an Inhibitor N3; RCSB Protein Data Bank, 2020.
[16]
Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; Fagan, P.; Marvin, J.; Padilla, D.; Ravichandran, V.; Schneider, B.; Thanki, N.; Weissig, H.; Westbrook, J.D.; Zardecki, C. The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr., 2002, 58(Pt No 1), 899-907.
[http://dx.doi.org/10.1107/S0907444902003451] [PMID: 12037327]
[17]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[18]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[19]
Xu, J.; Zhao, S.; Teng, T.; Abdalla, A.E.; Zhu, W.; Xie, L.; Wang, Y.; Guo, X. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses, 2020, 12(2), 244.
[http://dx.doi.org/10.3390/v12020244] [PMID: 32098422]
[20]
Chang, K-O.; Kim, Y.; Lovell, S.; Rathnayake, A.D.; Groutas, W.C. Antiviral drug discovery: norovirus proteases and development of inhibitors. Viruses, 2019, 11(2), 197.
[http://dx.doi.org/10.3390/v11020197] [PMID: 30823509]
[21]
Li, J-Y.; You, Z.; Wang, Q.; Zhou, Z-J.; Qiu, Y.; Luo, R.; Ge, X-Y. The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future. Microbes Infect., 2020, 22(2), 80-85.
[http://dx.doi.org/10.1016/j.micinf.2020.02.002] [PMID: 32087334]
[22]
Yamamoto, N.; Yang, R.; Yoshinaka, Y.; Amari, S.; Nakano, T.; Cinatl, J.; Rabenau, H.; Doerr, H.W.; Hunsmann, G.; Otaka, A.; Tamamura, H.; Fujii, N.; Yamamoto, N. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem. Biophys. Res. Commun., 2004, 318(3), 719-725.
[http://dx.doi.org/10.1016/j.bbrc.2004.04.083] [PMID: 15144898]
[23]
Wiberg, K.B. Bent bonds in organic compounds. Acc. Chem. Res., 1996, 29(5), 229-234.
[http://dx.doi.org/10.1021/ar950207a]
[24]
Wang, H.; Wang, W.; Jin, W.J. σ-Hole bond vs π-hole bond: a comparison based on halogen bond. Chem. Rev., 2016, 116(9), 5072-5104.
[http://dx.doi.org/10.1021/acs.chemrev.5b00527] [PMID: 26886515]
[25]
Custelcean, R.; Jackson, J.E. Dihydrogen bonding: structures, energetics, and dynamics. Chem. Rev., 2001, 101(7), 1963-1980.
[http://dx.doi.org/10.1021/cr000021b] [PMID: 11710237]
[26]
Kaplan, I.G. Intermolecular interactions: physical picture, computational methods and model potentials; John Wiley & Sons, 2006.
[http://dx.doi.org/10.1002/047086334X]
[27]
Schottel, B.L.; Chifotides, H.T.; Dunbar, K.R. Anion-π interactions. Chem. Soc. Rev., 2008, 37(1), 68-83.
[http://dx.doi.org/10.1039/B614208G] [PMID: 18197334]
[28]
Alcock, N-W. Secondary bonding to nonmetallic elements.Advances in Inorganic Chemistry and Radiochemistry; Elsevier, 1972, Vol. 15, pp. 1-58.
[29]
Israelachvili, J. Intermolecular and Surface Forces, 2nd ed.; Academic press: London, 1991.
[30]
Lee, L-H. Fundamentals of adhesion; Springer Science & Business Media, 2013.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy