Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Vitamin D/VDR in Acute Kidney Injury: A Potential Therapeutic Target

Author(s): Siqing Jiang, Lihua Huang, Wei Zhang* and Hao Zhang*

Volume 28, Issue 19, 2021

Published on: 18 November, 2020

Page: [3865 - 3876] Pages: 12

DOI: 10.2174/0929867327666201118155625

Price: $65

Abstract

Despite many strategies and parameters used in clinical practice, the incidence and mortality of acute kidney injury (AKI) are still high with poor prognosis. With the development of molecular biology, the role of vitamin D and vitamin D receptor (VDR) in AKI is drawing increasing attention. Accumulated researches have suggested that Vitamin D deficiency is a risk factor of both clinical and experimental AKI, and vitamin D/VDR could be a promising therapeutic target against AKI. However, more qualitative clinical researches are needed to provide stronger evidence for the clinical application of vitamin D and VDR agonists in the future. Issues like the route and dosage of administration also await more attention. The present review aims to summarize the current works on the role of vitamin D/VDR in AKI and provides some new insight on its therapeutic potential.

Keywords: Vitamin D, Vitamin D receptor, acute kidney injury, deficiency, therapeutic target, dosage.

[1]
Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract., 2012, 120(4), c179-c184.
[http://dx.doi.org/10.1159/000339789] [PMID: 22890468]
[2]
Waikar, S.S.; Liu, K.D.; Chertow, G.M. Diagnosis, epidemiology and outcomes of acute kidney injury. Clin. J. Am. Soc. Nephrol., 2008, 3(3), 844-861.
[http://dx.doi.org/10.2215/CJN.05191107] [PMID: 18337550]
[3]
Lameire, N.; Van Biesen, W.; Vanholder, R. The changing epidemiology of acute renal failure. 2006, 2(7), 364-377.
[http://dx.doi.org/10.1038/ncpneph0218] [PMID: 16932465]
[4]
Coca, S.; Yusuf, B.; Shlipak, M.; Garg, A.X; Parikh, C.R. Long-term risk of mortality and other adverse outcomes after acute kidney injury: A systematic review and meta-analysis. 2009, 53(6), 961-973.
[http://dx.doi.org/10.1053/j.ajkd.2008.11.034]
[5]
Gao, G.; Zhang, B.; Ramesh, G.; Betterly, D.; Tadagavadi, R.K.; Wang, W.; Reeves, W.B. TNF-α mediates increased susceptibility to ischemic AKI in diabetes. Am. J. Physiol. Renal Physiol., 2013, 304(5), F515-F521.
[http://dx.doi.org/10.1152/ajprenal.00533.2012] [PMID: 23283990]
[6]
Kelly, K.J.; Burford, J.L.; Dominguez, J.H. Postischemic inflammatory syndrome: a critical mechanism of progression in diabetic nephropathy. Am. J. Physiol. Renal Physiol., 2009, 297(4), F923-F931.
[http://dx.doi.org/10.1152/ajprenal.00205.2009] [PMID: 19656916]
[7]
Peng, J.; Li, X.; Zhang, D.; Chen, J.K.; Su, Y.; Smith, S.B.; Dong, Z. Hyperglycemia, p53, and mitochondrial pathway of apoptosis are involved in the susceptibility of diabetic models to ischemic acute kidney injury. Kidney Int., 2015, 87(1), 137-150.
[http://dx.doi.org/10.1038/ki.2014.226] [PMID: 24963915]
[8]
Rosner, M.H. Acute kidney injury in the elderly. Clin. Geriatr. Med., 2013, 29(3), 565-578.
[http://dx.doi.org/10.1016/j.cger.2013.05.001] [PMID: 23849008]
[9]
Wang, X.; Bonventre, J.V.; Parrish, A.R. The aging kidney: increased susceptibility to nephrotoxicity. Int. J. Mol. Sci., 2014, 15(9), 15358-15376.
[http://dx.doi.org/10.3390/ijms150915358] [PMID: 25257519]
[10]
Braun, A.B.; Christopher, K.B. Vitamin D in acute kidney injury. Inflamm. Allergy Drug Targets, 2013, 12(4), 262-272.
[http://dx.doi.org/10.2174/18715281113129990044] [PMID: 23782211]
[11]
Querfeld, U.; Mak, R.H. Vitamin D deficiency and toxicity in chronic kidney disease: in search of the therapeutic window. Pediatr. Nephrol., 2010, 25(12), 2413-2430.
[http://dx.doi.org/10.1007/s00467-010-1574-2] [PMID: 20567854]
[12]
Yang, S.; Li, A.; Wang, J.; Liu, J.; Han, Y.; Zhang, W.; Li, Y.C.; Zhang, H. Vitamin D receptor: a novel therapeutic target for kidney diseases. Curr. Med. Chem., 2018, 25(27), 3256-3271.
[http://dx.doi.org/10.2174/0929867325666180214122352] [PMID: 29446731]
[13]
Leaf, D.E.; Waikar, S.S.; Wolf, M.; Cremers, S.; Bhan, I.; Stern, L. Dysregulated mineral metabolism in patients with acute kidney injury and risk of adverse outcomes. Clin. Endocrinol. (Oxf.), 2013, 79(4), 491-498.
[http://dx.doi.org/10.1111/cen.12172] [PMID: 23414198]
[14]
Leaf, D.E.; Wolf, M.; Waikar, S.S.; Chase, H.; Christov, M.; Cremers, S.; Stern, L. FGF-23 levels in patients with AKI and risk of adverse outcomes. Clin. J. Am. Soc. Nephrol., 2012, 7(8), 1217-1223.
[http://dx.doi.org/10.2215/CJN.00550112] [PMID: 22700885]
[15]
Leaf, D.E.; Siew, E.D.; Eisenga, M.F.; Singh, K.; Mc Causland, F.R.; Srivastava, A.; Ikizler, T.A.; Ware, L.B.; Ginde, A.A.; Kellum, J.A.; Palevsky, P.M.; Wolf, M.; Waikar, S.S. Fibroblast growth factor 23 associates with death in critically Ill patients. Clin. J. Am. Soc. Nephrol., 2018, 13(4), 531-541.
[http://dx.doi.org/10.2215/CJN.10810917] [PMID: 29519954]
[16]
Volovelsky, O.; Gist, K.M.; Terrell, T.C.; Bennett, M.R.; Cooper, D.S.; Alten, J.A.; Goldstein, S.L. Early postoperative measurement of fibroblast growth factor 23 predicts severe acute kidney injury in infants after cardiac surgery . Clin. Nephrol., 2018, 90(3), 165-171.
[http://dx.doi.org/10.5414/CN109359] [PMID: 29633705]
[17]
Lavi-Moshayoff, V.; Wasserman, G.; Meir, T.; Silver, J.; Naveh-Many, T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am. J. Physiol. Renal Physiol., 2010, 299(4), F882-F889.
[http://dx.doi.org/10.1152/ajprenal.00360.2010] [PMID: 20685823]
[18]
Knab, V.M.; Corbin, B.; Andrukhova, O.; Hum, J.M.; Ni, P.; Rabadi, S.; Maeda, A.; White, K.E.; Erben, R.G.; Jüppner, H.; Christov, M. Acute parathyroid hormone injection increases C-terminal but not intact fibroblast growth factor 23 levels. Endocrinology, 2017, 158(5), 1130-1139.
[http://dx.doi.org/10.1210/en.2016-1451] [PMID: 28324013]
[19]
Shimada, T.; Hasegawa, H.; Yamazaki, Y.; Muto, T.; Hino, R.; Takeuchi, Y.; Fujita, T.; Nakahara, K.; Fukumoto, S.; Yamashita, T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res., 2004, 19(3), 429-435.
[http://dx.doi.org/10.1359/JBMR.0301264] [PMID: 15040831]
[20]
Smith, R.C.; O’Bryan, L.M.; Farrow, E.G.; Summers, L.J.; Clinkenbeard, E.L.; Roberts, J.L.; Cass, T.A.; Saha, J.; Broderick, C.; Ma, Y.L.; Zeng, Q.Q.; Kharitonenkov, A.; Wilson, J.M.; Guo, Q.; Sun, H.; Allen, M.R.; Burr, D.B.; Breyer, M.D.; White, K.E. Circulating αKlotho influences phosphate handling by controlling FGF23 production. J. Clin. Invest., 2012, 122(12), 4710-4715.
[http://dx.doi.org/10.1172/JCI64986] [PMID: 23187128]
[21]
Andrukhova, O.; Smorodchenko, A.; Egerbacher, M.; Streicher, C.; Zeitz, U.; Goetz, R.; Shalhoub, V.; Mohammadi, M.; Pohl, E.E.; Lanske, B.; Erben, R.G. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J., 2014, 33(3), 229-246.
[http://dx.doi.org/10.1002/embj.201284188] [PMID: 24434184]
[22]
de Bragança, A.C.; Volpini, R.A.; Canale, D.; Gonçalves, J.G.; Shimizu, M.H.; Sanches, T.R.; Seguro, A.C.; Andrade, L. Vitamin D deficiency aggravates ischemic acute kidney injury in rats. Physiol. Rep., 2015, 3(3), e12331.
[http://dx.doi.org/10.14814/phy2.12331] [PMID: 25780095]
[23]
de Bragança, A.C.; Volpini, R.A.; Mehrotra, P.; Andrade, L.; Basile, D.P. Vitamin D deficiency contributes to vascular damage in sustained ischemic acute kidney injury. Physiol. Rep., 2016, 4(13), e12829.
[http://dx.doi.org/10.14814/phy2.12829] [PMID: 27369932]
[24]
Gonçalves, J.G.; de Bragança, A.C.; Canale, D.; Shimizu, M.H.; Sanches, T.R.; Moysés, R.M.; Andrade, L.; Seguro, A.C.; Volpini, R.A. Vitamin D deficiency aggravates chronic kidney disease progression after ischemic acute kidney injury. PLoS One, 2014, 9(9), e107228.
[http://dx.doi.org/10.1371/journal.pone.0107228] [PMID: 25222475]
[25]
Canale, D.; de Bragança, A.C.; Gonçalves, J.G.; Shimizu, M.H.; Sanches, T.R.; Andrade, L.; Volpini, R.A.; Seguro, A.C. Vitamin D deficiency aggravates nephrotoxicity, hypertension and dyslipidemia caused by tenofovir: role of oxidative stress and renin-angiotensin system. PLoS One, 2014, 9(7), e103055.
[http://dx.doi.org/10.1371/journal.pone.0103055] [PMID: 25048368]
[26]
Pike, J.W. Vitamin D3 receptors: structure and function in transcription. Annu. Rev. Nutr., 1991, 11, 189-216.
[http://dx.doi.org/10.1146/annurev.nu.11.070191.001201] [PMID: 1654066]
[27]
Haussler, M.R. Vitamin D receptors: nature and function. Annu. Rev. Nutr., 1986, 6, 527-562.
[http://dx.doi.org/10.1146/annurev.nu.06.070186.002523] [PMID: 3015172]
[28]
Wu, B.; Li, S.; Dong, D. 3D structures and ligand specificities of nuclear xenobiotic receptors CAR, PXR and VDR. Drug Discov. Today, 2013, 18(11-12), 574-581.
[http://dx.doi.org/10.1016/j.drudis.2013.01.001] [PMID: 23299080]
[29]
Khedkar, S.A.; Samad, M.A.; Choudhury, S.; Lee, J.Y.; Zhang, D.; Thadhani, R.I.; Karumanchi, S.A.; Rigby, A.C.; Kang, P.M. Identification of novel non-secosteroidal vitamin D receptor agonists with potent cardioprotective effects and devoid of hypercalcemia. Sci. Rep., 2017, 7(1), 8427.
[http://dx.doi.org/10.1038/s41598-017-08670-y] [PMID: 28814738]
[30]
Kumar, R.; Schaefer, J.; Grande, J.P.; Roche, P.C. Immunolocalization of calcitriol receptor, 24-hydroxylase cytochrome P-450, and calbindin D28k in human kidney. Am. J. Physiol., 1994, 266(3 Pt 2), F477-F485.
[http://dx.doi.org/10.1152/ajprenal.1994.266.3.f477] [PMID: 8160797]
[31]
Kugita, M.; Nishii, K.; Morita, M.; Yoshihara, D.; Kowa-Sugiyama, H.; Yamada, K.; Yamaguchi, T.; Wallace, D.P.; Calvet, J.P.; Kurahashi, H.; Nagao, S. Global gene expression profiling in early-stage polycystic kidney disease in the Han:SPRD Cy rat identifies a role for RXR signaling. Am. J. Physiol. Renal Physiol., 2011, 300(1), F177-F188.
[http://dx.doi.org/10.1152/ajprenal.00470.2010] [PMID: 20926632]
[32]
Blomberg Jensen, M.; Andersen, C.B.; Nielsen, J.E.; Bagi, P.; Jørgensen, A.; Juul, A.; Leffers, H. Expression of the vitamin D receptor, 25-hydroxylases, 1alpha-hydroxylase and 24-hydroxylase in the human kidney and renal clear cell cancer. J. Steroid Biochem. Mol. Biol., 2010, 121(1-2), 376-382.
[http://dx.doi.org/10.1016/j.jsbmb.2010.03.069] [PMID: 20362668]
[33]
Yi, B.; Huang, J.; Zhang, W.; Li, A.M.; Yang, S.K.; Sun, J.; Wang, J.W.; Li, Y.C.; Zhang, H. vitamin d receptor down-regulation is associated with severity of albuminuria in type 2 diabetes patients. J. Clin. Endocrinol. Metab., 2016, 101(11), 4395-4404.
[http://dx.doi.org/10.1210/jc.2016-1516] [PMID: 27552538]
[34]
Sun, J.; Zhang, S.; Liu, J.S.; Gui, M.; Zhang, H. Expression of vitamin D receptor in renal tissue of lupus nephritis and its association with renal injury activity. Lupus, 2019, 28(3), 290-294.
[http://dx.doi.org/10.1177/0961203319826704] [PMID: 30691345]
[35]
Grenet, O.; Bobadilla, M.; Chibout, S.D.; Steiner, S. Evidence for the impairment of the vitamin D activation pathway by cyclosporine A. Biochem. Pharmacol., 2000, 59(3), 267-272.
[http://dx.doi.org/10.1016/S0006-2952(99)00321-4] [PMID: 10609555]
[36]
Tissandié, E.; Guéguen, Y.; Lobaccaro, J.M.; Grandcolas, L.; Aigueperse, J.; Gourmelon, P.; Souidi, M. Enriched uranium affects the expression of vitamin D receptor and retinoid X receptor in rat kidney. J. Steroid Biochem. Mol. Biol., 2008, 110(3-5), 263-268.
[http://dx.doi.org/10.1016/j.jsbmb.2007.11.002] [PMID: 18502116]
[37]
Zhang, Z.; Yuan, W.; Sun, L.; Szeto, F.L.; Wong, K.E.; Li, X.; Kong, J.; Li, Y.C. 1,25-Dihydroxyvitamin D3 targeting of NF-kappaB suppresses high glucose-induced MCP-1 expression in mesangial cells. Kidney Int., 2007, 72(2), 193-201.
[http://dx.doi.org/10.1038/sj.ki.5002296] [PMID: 17507908]
[38]
Liu, Y.; Li, L.; Yi, B.; Hu, Z.X.; Li, A.M.; Yang, C.; Zheng, L.; Zhang, H. Activation of vitamin D receptor attenuates high glucose-induced cellular injury partially dependent on CYP2J5 in murine renal tubule epithelial cell. Life Sci., 2019, 234, 116755.
[http://dx.doi.org/10.1016/j.lfs.2019.116755] [PMID: 31415769]
[39]
Prado, N.J.; Casarotto, M.; Calvo, J.P.; Mazzei, L.; Ponce Zumino, A.Z.; García, I.M.; Cuello-Carrión, F.D.; Fornés, M.W.; Ferder, L.; Diez, E.R.; Manucha, W. Antiarrhythmic effect linked to melatonin cardiorenal protection involves AT1 reduction and Hsp70-VDR increase. J. Pineal Res., 2018, 65(4), e12513.
[http://dx.doi.org/10.1111/jpi.12513] [PMID: 29851143]
[40]
Xiong, M.; Gong, J.; Liu, Y.; Xiang, R.; Tan, X. Loss of vitamin D receptor in chronic kidney disease: a potential mechanism linking inflammation to epithelial-to-mesenchymal transition. Am. J. Physiol. Renal Physiol., 2012, 303(7), F1107-F1115.
[http://dx.doi.org/10.1152/ajprenal.00151.2012] [PMID: 22791341]
[41]
Berzal, S.; González-Guerrero, C.; Rayego-Mateos, S.; Ucero, Á.; Ocaña-Salceda, C.; Egido, J.; Ortiz, A.; Ruiz-Ortega, M.; Ramos, A.M. TNF-related weak inducer of apoptosis (TWEAK) regulates junctional proteins in tubular epithelial cells via canonical NF-κB pathway and ERK activation. J. Cell. Physiol., 2015, 230(7), 1580-1593.
[http://dx.doi.org/10.1002/jcp.24905] [PMID: 25536182]
[42]
Zhang, Y.; Kong, J.; Deb, D.K.; Chang, A.; Li, Y.C. Vitamin D receptor attenuates renal fibrosis by suppressing the renin-angiotensin system. J. Am. Soc. Nephrol., 2010, 21(6), 966-973.
[http://dx.doi.org/10.1681/ASN.2009080872] [PMID: 20378820]
[43]
Chandel, N.; Sharma, B.; Husain, M.; Salhan, D.; Singh, T.; Rai, P.; Mathieson, P.W.; Saleem, M.A.; Malhotra, A.; Singhal, P.C. HIV compromises integrity of the podocyte actin cytoskeleton through downregulation of the vitamin D receptor. Am. J. Physiol. Renal Physiol., 2013, 304(11), F1347-F1357.
[http://dx.doi.org/10.1152/ajprenal.00717.2012] [PMID: 23467424]
[44]
Chandel, N.; Ayasolla, K.S.; Lan, X.; Sultana-Syed, M.; Chawla, A.; Lederman, R.; Vethantham, V.; Saleem, M.A.; Chander, P.N.; Malhotra, A.; Singhal, P.C. Epigenetic modulation of human podocyte vitamin D receptor in HIV milieu. J. Mol. Biol., 2015, 427(20), 3201-3215.
[http://dx.doi.org/10.1016/j.jmb.2015.07.011] [PMID: 26210663]
[45]
Rai, P.; Singh, T.; Lederman, R.; Chawla, A.; Kumar, D.; Cheng, K.; Valecha, G.; Mathieson, P.W.; Saleem, M.A.; Malhotra, A.; Singhal, P.C. Hyperglycemia enhances kidney cell injury in HIVAN through down-regulation of vitamin D receptors. Cell. Signal., 2015, 27(3), 460-469.
[http://dx.doi.org/10.1016/j.cellsig.2014.12.011] [PMID: 25542307]
[46]
Du, J.; Jiang, S.; Hu, Z.; Tang, S.; Sun, Y.; He, J.; Li, Z.; Yi, B.; Wang, J.; Zhang, H.; Li, Y.C. Vitamin D receptor activation protects against lipopolysaccharide-induced acute kidney injury through suppression of tubular cell apoptosis. Am. J. Physiol. Renal Physiol., 2019, 316(5), F1068-F1077.
[http://dx.doi.org/10.1152/ajprenal.00332.2018] [PMID: 30864841]
[47]
Hu, Z.; Zhang, H.; Yi, B.; Yang, S.; Liu, J.; Hu, J.; Wang, J.; Cao, K.; Zhang, W. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis. Cell Death Dis., 2020, 11(1), 73.
[http://dx.doi.org/10.1038/s41419-020-2256-z] [PMID: 31996668]
[48]
Liu, L.J.; Lv, J.C.; Shi, S.F.; Chen, Y.Q.; Zhang, H.; Wang, H.Y. Oral calcitriol for reduction of proteinuria in patients with IgA nephropathy: a randomized controlled trial. Am. J. Kidney Dis., 2012, 59(1), 67-74.
[http://dx.doi.org/10.1053/j.ajkd.2011.09.014] [PMID: 22019331]
[49]
Deng, J.; Zheng, X.; Xie, H.; Chen, L. Calcitriol in the treatment of IgA nephropathy with non-nephrotic range proteinuria: a meta-analysis of randomized controlled trials . Clin. Nephrol., 2017, 87(1), 21-27.
[http://dx.doi.org/10.5414/CN108915] [PMID: 27900938]
[50]
Rangan, G.K.; Harris, D.C. Rationale and design of an observational study to determine the effects of cholecalciferol on hypertension, proteinuria and urinary MCP-1 in ADPKD. Curr. Hypertens. Rev., 2013, 9(2), 115-120.
[http://dx.doi.org/10.2174/15734021113099990006] [PMID: 23971693]
[51]
Li, Y.C.; Qiao, G.; Uskokovic, M.; Xiang, W.; Zheng, W.; Kong, J. Vitamin D: a negative endocrine regulator of the renin-angiotensin system and blood pressure. J. Steroid Biochem. Mol. Biol., 2004, 89-90(1-5), 387-392.
[http://dx.doi.org/10.1016/j.jsbmb.2004.03.004] [PMID: 15225806]
[52]
Ma, D.; Zhang, R.N.; Wen, Y.; Yin, W.N.; Bai, D.; Zheng, G.Y.; Li, J.S.; Zheng, B.; Wen, J.K. 1, 25(OH)2D3-induced interaction of vitamin D receptor with p50 subunit of NF-κB suppresses the interaction between KLF5 and p50, contributing to inhibition of LPS-induced macrophage proliferation. Biochem. Biophys. Res. Commun., 2017, 482(2), 366-374.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.069] [PMID: 27856242]
[53]
Kim, C.S.; Joo, S.Y.; Lee, K.E.; Choi, J.S.; Bae, E.H.; Ma, S.K.; Kim, S.H.; Lee, J.; Kim, S.W. Paricalcitol attenuates 4-hydroxy-2-hexenal-induced inflammation and epithelial-mesenchymal transition in human renal proximal tubular epithelial cells. PLoS One, 2013, 8(5), e63186.
[http://dx.doi.org/10.1371/journal.pone.0063186] [PMID: 23690997]
[54]
Zhang, X.; Zhou, M.; Guo, Y.; Song, Z.; Liu, B. 1,25-Dihydroxyvitamin D3 promotes high glucose-induced M1 macrophage switching to M2 via the VDR-PPARγ signaling pathway. BioMed Res. Int., 2015, 2015, 157834.
[http://dx.doi.org/10.1155/2015/157834] [PMID: 25961000]
[55]
Xu, L.; Zhang, P.; Guan, H.; Huang, Z.; He, X.; Wan, X.; Xiao, H.; Li, Y. Vitamin D and its receptor regulate lipopolysaccharide-induced transforming growth factor-β, angiotensinogen expression and podocytes apoptosis through the nuclear factor-κB pathway. J. Diabetes Investig., 2016, 7(5), 680-688.
[http://dx.doi.org/10.1111/jdi.12505] [PMID: 27180929]
[56]
Wei, H.; Qu, H.; Wang, H.; Ji, B.; Ding, Y.; Liu, D.; Duan, Y.; Liang, H.; Peng, C.; Xiao, X.; Deng, H. 1,25-Dihydroxyvitamin-D3 prevents the development of diabetic cardiomyopathy in type 1 diabetic rats by enhancing autophagy via inhibiting the β-catenin/TCF4/GSK-3β/mTOR pathway. J. Steroid Biochem. Mol. Biol., 2017, 168, 71-90.
[http://dx.doi.org/10.1016/j.jsbmb.2017.02.007] [PMID: 28216152]
[57]
Ricciardi, C.J.; Bae, J.; Esposito, D.; Komarnytsky, S.; Hu, P.; Chen, J.; Zhao, L. 1,25-Dihydroxyvitamin D3/vitamin D receptor suppresses brown adipocyte differentiation and mitochondrial respiration. Eur. J. Nutr., 2015, 54(6), 1001-1012.
[http://dx.doi.org/10.1007/s00394-014-0778-9] [PMID: 25296887]
[58]
Li, J.; Xu, S.; Zhu, J.B.; Song, J.; Luo, B.; Song, Y.P.; Zhang, Z.H.; Chen, Y.H.; Zhang, Z.Q.; Xie, D.D.; Yu, D.X.; Xu, D.X. Pretreatment with cholecalciferol alleviates renal cellular stress response during ischemia/reperfusion-induced acute kidney injury. Oxid. Med. Cell. Longev., 2019, 2019, 1897316.
[http://dx.doi.org/10.1155/2019/1897316] [PMID: 31019650]
[59]
Kapil, A.; Singh, J.P.; Kaur, T.; Singh, B.; Singh, A.P. Involvement of peroxisome proliferator-activated receptor gamma in vitamin D-mediated protection against acute kidney injury in rats. J. Surg. Res., 2013, 185(2), 774-783.
[http://dx.doi.org/10.1016/j.jss.2013.07.017] [PMID: 24011919]
[60]
Hamzawy, M.; Gouda, S.A.A.; Rashed, L.; Morcos, M.A.; Shoukry, H.; Sharawy, N. 22-oxacalcitriol prevents acute kidney injury via inhibition of apoptosis and enhancement of autophagy. Clin. Exp. Nephrol., 2019, 23(1), 43-55.
[http://dx.doi.org/10.1007/s10157-018-1614-y] [PMID: 29968126]
[61]
Lee, J.W.; Kim, S.C.; Ko, Y.S.; Lee, H.Y.; Cho, E.; Kim, M.G.; Jo, S.K.; Cho, W.Y.; Kim, H.K. Renoprotective effect of paricalcitol via a modulation of the TLR4-NF-κB pathway in ischemia/reperfusion-induced acute kidney injury. Biochem. Biophys. Res. Commun., 2014, 444(2), 121-127.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.005] [PMID: 24434153]
[62]
Ersan, S.; Celik, A.; Tanrisev, M.; Kose, I.; Cavdar, Z.; Unlu, M.; Kocak, A.; Ural, C.; Yilmaz, B.; Kose, T. Pretreatment with paricalcitol attenuates level and expression of matrix metalloproteinases in a rat model of renal ischemia-reperfusion injury. Clin. Nephrol., 2017, 88(11), 231-238.
[http://dx.doi.org/10.5414/CN109121] [PMID: 28737133]
[63]
Park, J.W.; Cho, J.W.; Joo, S.Y.; Kim, C.S.; Choi, J.S.; Bae, E.H.; Ma, S.K.; Kim, S.H.; Lee, J.; Kim, S.W. Paricalcitol prevents cisplatin-induced renal injury by suppressing apoptosis and proliferation. Eur. J. Pharmacol., 2012, 683(1-3), 301-309.
[http://dx.doi.org/10.1016/j.ejphar.2012.03.019] [PMID: 22449373]
[64]
Khames, A.; Khalaf, M.M.; Gad, A.M.; Abd El-Raouf, O.M.; Kandeil, M.A. Nicorandil combats doxorubicin-induced nephrotoxicity via amendment of TLR4/P38 MAPK/NFκ-B signaling pathway. Chem. Biol. Interact., 2019, 311, 108777.
[http://dx.doi.org/10.1016/j.cbi.2019.108777] [PMID: 31376360]
[65]
He, W.; Kang, Y.S.; Dai, C.; Liu, Y. Blockade of Wnt/β-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury. J. Am. Soc. Nephrol., 2011, 22(1), 90-103.
[http://dx.doi.org/10.1681/ASN.2009121236] [PMID: 21030600]
[66]
Garsen, M.; Sonneveld, R.; Rops, A.L.; Huntink, S.; van Kuppevelt, T.H.; Rabelink, T.J.; Hoenderop, J.G.; Berden, J.H.; Nijenhuis, T.; van der Vlag, J. Vitamin D attenuates proteinuria by inhibition of heparanase expression in the podocyte. J. Pathol., 2015, 237(4), 472-481.
[http://dx.doi.org/10.1002/path.4593] [PMID: 26202309]
[67]
Jeong, K.H.; Asanuma, K.; Lydia, A.; Takagi, M.; Asao, R.; Kodama, F.; Asanuma, E.; Tomino, Y. Combination therapy with telmisartan and oxacalcitriol suppresses the progression of murine adriamycin nephropathy. Nephron, 2015, 129(2), 143-154.
[http://dx.doi.org/10.1159/000369346] [PMID: 25661164]
[68]
Xu, S.; Chen, Y.H.; Tan, Z.X.; Xie, D.D.; Zhang, C.; Xia, M.Z.; Wang, H.; Zhao, H.; Xu, D.X.; Yu, D.X. Vitamin D3 pretreatment alleviates renal oxidative stress in lipopolysaccharide-induced acute kidney injury. J. Steroid Biochem. Mol. Biol., 2015, 152, 133-141.
[http://dx.doi.org/10.1016/j.jsbmb.2015.05.009] [PMID: 26013770]
[69]
Xu, S.; Chen, Y.H.; Tan, Z.X.; Xie, D.D.; Zhang, C.; Zhang, Z.H.; Wang, H.; Zhao, H.; Yu, D.X.; Xu, D.X. Vitamin D3 pretreatment regulates renal inflammatory responses during lipopolysaccharide-induced acute kidney injury. Sci. Rep., 2015, 5, 18687.
[http://dx.doi.org/10.1038/srep18687] [PMID: 26691774]
[70]
Bascands, J.L.; Schanstra, J.P. Obstructive nephropathy: insights from genetically engineered animals. Kidney Int., 2005, 68(3), 925-937.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00486.x] [PMID: 16105023]
[71]
You, Y.K.; Luo, Q.; Wu, W.F.; Zhang, J.J.; Zhu, H.J.; Lao, L.; Lan, H.Y.; Chen, H.Y.; Cheng, Y.X. Petchiether A attenuates obstructive nephropathy by suppressing TGF-β/Smad3 and NF-κB signalling. J. Cell. Mol. Med., 2019, 23(8), 5576-5587.
[http://dx.doi.org/10.1111/jcmm.14454] [PMID: 31211499]
[72]
Inoue, K.; Matsui, I.; Hamano, T.; Fujii, N.; Shimomura, A.; Nakano, C.; Kusunoki, Y.; Takabatake, Y.; Hirata, M.; Nishiyama, A.; Tsubakihara, Y.; Isaka, Y.; Rakugi, H. Maxacalcitol ameliorates tubulointerstitial fibrosis in obstructed kidneys by recruiting PPM1A/VDR complex to pSmad3. Lab. Invest., 2012, 92(12), 1686-1697.
[http://dx.doi.org/10.1038/labinvest.2012.107] [PMID: 22926646]
[73]
García, I.M.; Altamirano, L.; Mazzei, L.; Fornés, M.; Molina, M.N.; Ferder, L.; Manucha, W. Role of mitochondria in paricalcitol-mediated cytoprotection during obstructive nephropathy. Am. J. Physiol. Renal Physiol., 2012, 302(12), F1595-F1605.
[http://dx.doi.org/10.1152/ajprenal.00617.2011] [PMID: 22492946]
[74]
Duffy, M.M.; McNicholas, B.A.; Monaghan, D.A.; Hanley, S.A.; McMahon, J.M.; Pindjakova, J.; Alagesan, S.; Fearnhead, H.O.; Griffin, M.D. Mesenchymal stem cells and a vitamin D receptor agonist additively suppress T helper 17 cells and the related inflammatory response in the kidney. Am. J. Physiol. Renal Physiol., 2014, 307(12), F1412-F1426.
[http://dx.doi.org/10.1152/ajprenal.00024.2014] [PMID: 25339699]
[75]
Reis, N.G.; Francescato, H.D.C.; de Almeida, L.F.; Silva, C.G.A.D.; Costa, R.S.; Coimbra, T.M. Protective effect of calcitriol on rhabdomyolysis-induced acute kidney injury in rats. Sci. Rep., 2019, 9(1), 7090.
[http://dx.doi.org/10.1038/s41598-019-43564-1] [PMID: 31068635]
[76]
Hur, E.; Garip, A.; Camyar, A.; Ilgun, S.; Ozisik, M.; Tuna, S.; Olukman, M.; Narli Ozdemir, Z.; Yildirim Sozmen, E.; Sen, S.; Akcicek, F.; Duman, S. The effects of vitamin d on gentamicin-induced acute kidney injury in experimental rat model. Int. J. Endocrinol., 2013, 2013, 313528.
[http://dx.doi.org/10.1155/2013/313528] [PMID: 23843788]
[77]
Abo El-Magd, N.F.; Eraky, S.M. The molecular mechanism underlining the preventive effect of vitamin D against hepatic and renal acute toxicity through the NrF2/ BACH1/ HO-1 pathway. Life Sci., 2020, 244, 117331.
[http://dx.doi.org/10.1016/j.lfs.2020.117331] [PMID: 31972209]
[78]
Al Drees, A.; Salah Khalil, M.; Soliman, M. Histological and immunohistochemical basis of the effect of aminoguanidine on renal changes associated with hemorrhagic shock in a rat model. Acta Histochem. Cytochem., 2017, 50(1), 11-19.
[http://dx.doi.org/10.1267/ahc.16025] [PMID: 28386146]
[79]
Kusunoki, Y.; Matsui, I.; Hamano, T.; Shimomura, A.; Mori, D.; Yonemoto, S.; Takabatake, Y.; Tsubakihara, Y.; St-Arnaud, R.; Isaka, Y.; Rakugi, H. Excess 25-hydroxyvitamin D3 exacerbates tubulointerstitial injury in mice by modulating macrophage phenotype. Kidney Int., 2015, 88(5), 1013-1029.
[http://dx.doi.org/10.1038/ki.2015.210] [PMID: 26176830]
[80]
Schwalfenberg, G. Not enough vitamin D: health consequences for Canadians. Can. Fam. Physician, 2007, 53(5), 841-854.
[PMID: 17872747]
[81]
Chowdry, A.M.; Azad, H.; Najar, M.S.; Mir, I. Acute kidney injury due to overcorrection of hypovitaminosis D: A tertiary center experience in the Kashmir Valley of India. Saudi J. Kidney Dis. Transpl., 2017, 28(6), 1321-1329.
[http://dx.doi.org/10.4103/1319-2442.220873] [PMID: 29265043]
[82]
Cakici, C.; Yigitbasi, T.; Ayla, S.; Karimkhani, H.; Bayramoglu, F.; Yigit, P.; Kilic, E.; Emekli, N. Dose-dependent effects of vitamin 1,25(OH)2D3 on oxidative stress and apoptosis. J. Basic Clin. Physiol. Pharmacol., 2018, 29(3), 271-279.
[http://dx.doi.org/10.1515/jbcpp-2017-0121] [PMID: 29420306]
[83]
Lechner, D.; Cross, H.S. Phytoestrogens and 17beta-estradiol influence vitamin D metabolism and receptor expression-relevance for colon cancer prevention. Recent Results Cancer Res., 2003, 164, 379-391.
[http://dx.doi.org/10.1007/978-3-642-55580-0_28] [PMID: 12899537]
[84]
Wan, J.; Li, P.; Liu, D.W.; Chen, Y.; Mo, H.Z.; Liu, B.G.; Chen, W.J.; Lu, X.Q.; Guo, J.; Zhang, Q.; Qiao, Y.J.; Liu, Z.S.; Wan, G.R. GSK-3β inhibitor attenuates urinary albumin excretion in type 2 diabetic db/db mice, and delays epithelial-to-mesenchymal transition in mouse kidneys and podocytes. Mol. Med. Rep., 2016, 14(2), 1771-1784.
[http://dx.doi.org/10.3892/mmr.2016.5441] [PMID: 27357417]
[85]
Jurutka, P.W.; Hsieh, J.C.; Nakajima, S.; Haussler, C.A.; Whitfield, G.K.; Haussler, M.R. Human vitamin D receptor phosphorylation by casein kinase II at Ser-208 potentiates transcriptional activation. Proc. Natl. Acad. Sci. USA, 1996, 93(8), 3519-3524.
[http://dx.doi.org/10.1073/pnas.93.8.3519] [PMID: 8622969]
[86]
Ignat, M.; Teletin, M.; Tisserand, J.; Khetchoumian, K.; Dennefeld, C.; Chambon, P.; Losson, R.; Mark, M. Arterial calcifications and increased expression of vitamin D receptor targets in mice lacking TIF1alpha. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2598-2603.
[http://dx.doi.org/10.1073/pnas.0712030105] [PMID: 18287084]
[87]
Dampf Stone, A.; Batie, S.F.; Sabir, M.S.; Jacobs, E.T.; Lee, J.H.; Whitfield, G.K.; Haussler, M.R.; Jurutka, P.W. Resveratrol potentiates vitamin D and nuclear receptor signaling. J. Cell. Biochem., 2015, 116(6), 1130-1143.
[http://dx.doi.org/10.1002/jcb.25070] [PMID: 25536521]
[88]
Cameron, L.K.; Lei, K.; Smith, S.; Doyle, N.L.; Doyle, J.F.; Flynn, K.; Purchase, N.; Smith, J.; Chan, K.; Kamara, F.; Kidane, N.G.; Forni, L.G.; Harrington, D.; Hampson, G.; Ostermann, M. Vitamin D levels in critically ill patients with acute kidney injury: a protocol for a prospective cohort study (VID-AKI). BMJ Open, 2017, 7(7), e016486.
[http://dx.doi.org/10.1136/bmjopen-2017-016486] [PMID: 28706103]
[89]
Leaf, D.E.; Raed, A.; Donnino, M.W.; Ginde, A.A.; Waikar, S.S. Randomized controlled trial of calcitriol in severe sepsis. Am. J. Respir. Crit. Care Med., 2014, 190(5), 533-541.
[http://dx.doi.org/10.1164/rccm.201405-0988OC] [PMID: 25029202]
[90]
Pietrek, J.; Kokot, F.; Kuska, J. Serum 25-hydroxyvitamin D and parathyroid hormone in patients with acute renal failure. Kidney Int., 1978, 13(2), 178-185.
[http://dx.doi.org/10.1038/ki.1978.25] [PMID: 713278]
[91]
Saha, H.; Mustonen, J.; Pietilä, K.; Pasternack, A. Metabolism of calcium and vitamin D3 in patients with acute tubulointerstitial nephritis: a study of 41 patients with nephropathia epidemica. Nephron, 1993, 63(2), 159-163.
[http://dx.doi.org/10.1159/000187175] [PMID: 8095698]
[92]
Llach, F.; Felsenfeld, A.J.; Haussler, M.R. The pathophysiology of altered calcium metabolism in rhabdomyolysis-induced acute renal failure. Interactions of parathyroid hormone, 25-hydroxycholecalciferol, and 1,25-dihydroxycholecalciferol. N. Engl. J. Med., 1981, 305(3), 117-123.
[http://dx.doi.org/10.1056/NEJM198107163050301] [PMID: 6894630]
[93]
Shieh, S.D.; Lin, Y.F.; Lin, S.H.; Lu, K.C. A prospective study of calcium metabolism in exertional heat stroke with rhabdomyolysis and acute renal failure. Nephron, 1995, 71(4), 428-432.
[http://dx.doi.org/10.1159/000188763] [PMID: 8587623]
[94]
Druml, W.; Schwarzenhofer, M.; Apsner, R.; Hörl, W.H. Fat-soluble vitamins in patients with acute renal failure. Miner. Electrolyte Metab., 1998, 24(4), 220-226.
[http://dx.doi.org/10.1159/000057374] [PMID: 9554560]
[95]
Ostermann, M.; Summers, J.; Lei, K.; Card, D.; Harrington, D.J.; Sherwood, R.; Turner, C.; Dalton, N.; Peacock, J.; Bear, D.E. Micronutrients in critically ill patients with severe acute kidney injury - a prospective study. Sci. Rep., 2020, 10(1), 1505.
[http://dx.doi.org/10.1038/s41598-020-58115-2] [PMID: 32001725]
[96]
Lai, L.; Qian, J.; Yang, Y.; Xie, Q.; You, H.; Zhou, Y.; Ma, S.; Hao, C.; Gu, Y.; Ding, F. Is the serum vitamin D level at the time of hospital-acquired acute kidney injury diagnosis associated with prognosis? PLoS One, 2013, 8(5), e64964.
[http://dx.doi.org/10.1371/journal.pone.0064964] [PMID: 23717679]
[97]
Vijayan, A.; Li, T.; Dusso, A.; Jain, S.; Coyne, D.W. Relationship of 1,25 dihydroxy vitamin D levels to clinical outcomes in critically Ill patients with acute kidney injury. J. Nephrol. Ther., 2015, 5(1), 190.
[http://dx.doi.org/10.4172/2161-0959.1000190] [PMID: 26295008]
[98]
Gunay, M.; Mertoglu, C. Increase of endocan, a new marker for inflammation and endothelial dysfunction, in acute kidney injury. North. Clin. Istanb., 2018, 6(2), 124-128.
[http://dx.doi.org/10.14744/nci.2018.70446] [PMID: 31297477]
[99]
Braun, A.B.; Litonjua, A.A.; Moromizato, T.; Gibbons, F.K.; Giovannucci, E.; Christopher, K.B. Association of low serum 25-hydroxyvitamin D levels and acute kidney injury in the critically ill. Crit. Care Med., 2012, 40(12), 3170-3179.
[http://dx.doi.org/10.1097/CCM.0b013e318260c928] [PMID: 22975885]
[100]
Zapatero, A.; Dot, I.; Diaz, Y.; Gracia, M.P.; Pérez-Terán, P.; Climent, C.; Masclans, J.R.; Nolla, J. Severe vitamin D deficiency upon admission in critically ill patients is related to acute kidney injury and a poor prognosis. Med. Intensiva, 2018, 42(4), 216-224.
[http://dx.doi.org/10.1016/j.medin.2017.07.004] [PMID: 28847615]
[101]
Ala-Kokko, T.I.; Mutt, S.J.; Nisula, S.; Koskenkari, J.; Liisanantti, J.; Ohtonen, P.; Poukkanen, M.; Laurila, J.J.; Pettilä, V.; Herzig, K.H.; Group, F.S. FINNAKI Study Group. Vitamin D deficiency at admission is not associated with 90-day mortality in patients with severe sepsis or septic shock: Observational FINNAKI cohort study. Ann. Med., 2016, 48(1-2), 67-75.
[http://dx.doi.org/10.3109/07853890.2015.1134807] [PMID: 26800186]
[102]
Leaf, D.E.; Christov, M.; Jüppner, H.; Siew, E.; Ikizler, T.A.; Bian, A.; Chen, G.; Sabbisetti, V.S.; Bonventre, J.V.; Cai, X.; Wolf, M.; Waikar, S.S. Fibroblast growth factor 23 levels are elevated and associated with severe acute kidney injury and death following cardiac surgery. Kidney Int., 2016, 89(4), 939-948.
[http://dx.doi.org/10.1016/j.kint.2015.12.035] [PMID: 26924052]
[103]
Turan, A.; Artis, A.S.; Hanline, C.; Saha, P.; Maheshwari, K.; Kurz, A.; Devereaux, P.J.; Duceppe, E.; Patel, A.; Tiboni, M.; Ruetzler, K.; Pearse, R.; Chan, M.T.V.; Wu, W.K.K.; Srinathan, S.; Garg, A.X.; Sapsford, R.; Sessler, D.I. Preoperative vitamin D concentration and cardiac, renal, and infectious morbidity after noncardiac surgery. Anesthesiology, 2020, 132(1), 121-130.
[http://dx.doi.org/10.1097/ALN.0000000000003000] [PMID: 31651439]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy