Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Vitamin D: A Pleiotropic Hormone with Possible Psychotropic Activities

Author(s): Donatella Marazziti*, Elisabetta Parra, Stefania Palermo, Filippo Maria Barberi, Beatrice Buccianelli, Sara Ricciardulli, Andrea Cappelli, Federico Mucci and Liliana Dell’Osso

Volume 28, Issue 19, 2021

Published on: 10 December, 2020

Page: [3843 - 3864] Pages: 22

DOI: 10.2174/0929867328666201210104701

Price: $65

Abstract

Background: After the recognition of the efficacy of cod–liver oil in rickets at the end of the eighteenth century, and the isolation and synthesis of the liposoluble vitamin D in 1931, its mode of actions and functions were deeply explored. Biochemical studies permitted to identify five forms of vitamin D, called D1, D2, D3, D4 and D5, differing in ultrastructural conformation and origin, with vitamin D2 (ergocalciferol) and D3 (cholecalciferol) representing the active forms. In the last decades especially, a constantly increasing bulk of data highlighted how vitamin D could regulate several activities and processes.

Aims: The aim of the present paper was to review and comment on the literature on vitamin D, with a focus on its possible role in the pathophysiology of neuropsychiatric disorders.

Discussion: Available literature indicates that vitamin D regulates a variety of processes in humans and in the central nervous system. Vitamin D deficiency is associated with an enhanced pro-inflammatory state, and formation of Aβ oligomers that might contribute to the cognitive decline typical of the elderly age and, perhaps, dementia. More in general, vitamin D is supposed to play a crucial role in neuroinflammation processes that are currently hypothesized to be involved in the pathophysiology of different psychiatric disorders, such as major depression, bipolar disorders, obsessive-compulsive disorders and psychosis.

Conclusion: It is conceivable that vitamin D supplementation might pave the way towards “natural” treatments of a broad range of neuropsychiatric disorders, or at least be useful to boost response to psychotropic drugs in resistant cases.

Keywords: Vitamin D, biochemistry, physiology, immune system, central nervous system, neuro-inflammation, mood disorders, obsessive-compulsive disorders, spectrum disorders, autism.

[1]
Holick, M.F. Vitamin D: a millenium perspective. J. Cell. Biochem., 2003, 88(2), 296-307.
[http://dx.doi.org/10.1002/jcb.10338] [PMID: 12520530]
[2]
Ovesen, L.; Brot, C.; Jakobsen, J. Food contents and biological activity of 25-hydroxyvitamin D: a vitamin D metabolite to be reckoned with? Ann. Nutr. Metab., 2003, 47(3-4), 107-113.
[http://dx.doi.org/10.1159/000070031] [PMID: 12743460]
[3]
Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium.Ross, A.C.; Taylor, C.L.; Yaktine, A.L.; Del Valle, H.B., Eds.; Dietary reference intakes for calcium and vitamin D; National Academies Press: Washington, DC, 2011.
[4]
Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.D.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Mäkitie, O.; Ramos-Abad, L.; Ward, L.; DiMeglio, L.A.; Atapattu, N.; Cassinelli, H.; Braegger, C.; Pettifor, J.M.; Seth, A.; Idris, H.W.; Bhatia, V.; Fu, J.; Goldberg, G.; Sävendahl, L.; Khadgawat, R.; Pludowski, P.; Maddock, J.; Hyppönen, E.; Oduwole, A.; Frew, E.; Aguiar, M.; Tulchinsky, T.; Butler, G.; Högler, W. Global consensus recommendations on prevention and management of nutritional rickets. J. Clin. Endocrinol. Metab., 2016, 101(2), 394-415.
[http://dx.doi.org/10.1210/jc.2015-2175] [PMID: 26745253]
[5]
Chang, S.W.; Lee, H.C. Vitamin D and health - the missing vitamin in humans. Pediatr. Neonatol., 2019, 60(3), 237-244.
[http://dx.doi.org/10.1016/j.pedneo.2019.04.007] [PMID: 31101452]
[6]
Bi, W.G.; Nuyt, A.M.; Weiler, H.; Leduc, L.; Santamaria, C.; Wei, S.Q. Association between vitamin D supplementation during pregnancy and offspring growth, morbidity, and mortality: a systematic review and meta-analysis. JAMA Pediatr., 2018, 172(7), 635-645.
[http://dx.doi.org/10.1001/jamapediatrics.2018.0302] [PMID: 29813153]
[7]
Briones, T.L.; Darwish, H. Vitamin D mitigates age-related cognitive decline through the modulation of pro-inflammatory state and decrease in amyloid burden. J. Neuroinflammation, 2012, 9, 244.
[http://dx.doi.org/10.1186/1742-2094-9-244] [PMID: 23098125]
[8]
Collins, J.A.; Fauser, B.C.J.M. Balancing the strengths of systematic and narrative reviews. Hum. Reprod. Update, 2005, 11(2), 103-104.
[http://dx.doi.org/10.1093/humupd/dmh058] [PMID: 15618290]
[9]
Holick, M.F. The vitamin D epidemic and its health consequences. J. Nutr., 2005, 135(11), 2739S-2748S.
[http://dx.doi.org/10.1093/jn/135.11.2739S] [PMID: 16251641]
[10]
Lehmann, B.; Meurer, M. Vitamin D metabolism. Dermatol. Ther., 2010, 23(1), 2-12.
[http://dx.doi.org/10.1111/j.1529-8019.2009.01286.x] [PMID: 20136904]
[11]
Pérez-López, F.R. Vitamin D metabolism and cardiovascular risk factors in postmenopausal women. Maturitas, 2009, 62(3), 248-262.
[http://dx.doi.org/10.1016/j.maturitas.2008.12.020] [PMID: 19211206]
[12]
Jones, G.; Strugnell, S.A.; DeLuca, H.F. Current understanding of the molecular actions of vitamin D. Physiol. Rev., 1998, 78(4), 1193-1231.
[http://dx.doi.org/10.1152/physrev.1998.78.4.1193] [PMID: 9790574]
[13]
Kato, S. The function of vitamin D receptor in vitamin D action. J. Biochem., 2000, 127(5), 717-722.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022662] [PMID: 10788778]
[14]
DeLuca, H.F. Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr., 2004, 80(6)(Suppl.), 1689S-1696S.
[http://dx.doi.org/10.1093/ajcn/80.6.1689S] [PMID: 15585789]
[15]
Bover, J.; Egido, J.; Fernández-Giráldez, E.; Praga, M.; Solozábal-Campos, C.; Torregrosa, J.V.; Martínez-Castelao, A. Vitamin D receptor and the importance of its activation in patients with chronic kidney disease. Nefrologia, 2015, 35(1), 28-41.
[http://dx.doi.org/10.3265/Nefrologia.pre2014.Sep.11796] [PMID: 25611831]
[16]
Christiansen, C. The functions and metabolites of vitamin D and their possible implications in osteoporosis. Scand. J. Clin. Lab. Invest., 1988, 48(190), 86-88.
[http://dx.doi.org/10.1080/00365518809168519]
[17]
Kilim, H.P.; Rosen, H. Optimizing calcium and vitamin D intake through diet and supplements. Cleve. Clin. J. Med., 2018, 85(7), 543-550.
[http://dx.doi.org/10.3949/ccjm.85a.17106] [PMID: 30004379]
[18]
Gallieni, M.; Cozzolino, M.; Fallabrino, G.; Pasho, S.; Olivi, L.; Brancaccio, D. Vitamin D: physiology and pathophysiology. Int. J. Artif. Organs, 2009, 32(2), 87-94.
[http://dx.doi.org/10.1177/039139880903200205] [PMID: 19363780]
[19]
Hazell, T.J.; DeGuire, J.R.; Weiler, H.A. Vitamin D: an overview of its role in skeletal muscle physiology in children and adolescents. Nutr. Rev., 2012, 70(9), 520-533.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00510.x] [PMID: 22946852]
[20]
Kong, C.; Wang, C.; Shi, Y.; Yan, L.; Xu, J.; Qi, W. Active vitamin D activates chondrocyte autophagy to reduce osteoarthritis via mediating the AMPK-mTOR signaling pathway. Biochem. Cell Biol., 2020, 98(3), 434-442.
[http://dx.doi.org/10.1139/bcb-2019-0333] [PMID: 31815524]
[21]
Koundourakis, N.E.; Avgoustinaki, P.D.; Malliaraki, N.; Margioris, A.N. Muscular effects of vitamin D in young athletes and non-athletes and in the elderly. Hormones (Athens), 2016, 15(4), 471-488.
[http://dx.doi.org/10.14310/horm.2002.1705] [PMID: 28222403]
[22]
Jean, G.; Souberbielle, J.C.; Chazot, C. Vitamin D in chronic kidney disease and dialysis patients. Nutrients, 2017, 9(4), 328.
[http://dx.doi.org/10.3390/nu9040328] [PMID: 28346348]
[23]
Adami, S.; Romagnoli, E.; Carnevale, V.; Scillitani, A.; Giusti, A.; Rossini, M.; Gatti, D.; Nuti, R.; Minisola, S. Italian Society for Osteoporosis, Mineral Metabolism and Bone Diseases (SIOMMMS). Guidelines on prevention and treatment of vitamin D deficiency. Italian society for osteoporosis, mineral metabolism and bone diseases (SIOMMMS). Reumatismo, 2011, 63(3), 129-147.
[http://dx.doi.org/10.4081/reumatismo.2011.129] [PMID: 22257914]
[24]
Houston, D.K.; Cesari, M.; Ferrucci, L.; Cherubini, A.; Maggio, D.; Bartali, B.; Johnson, M.A.; Schwartz, G.G.; Kritchevsky, S.B. Association between vitamin D status and physical performance: the InCHIANTI study. J. Gerontol. A Biol. Sci. Med. Sci., 2007, 62(4), 440-446.
[http://dx.doi.org/10.1093/gerona/62.4.440] [PMID: 17452740]
[25]
Zamboni, M.; Zoico, E.; Tosoni, P.; Zivelonghi, A.; Bortolani, A.; Maggi, S.; Di Francesco, V.; Bosello, O. Relation between vitamin D, physical performance, and disability in elderly persons. J. Gerontol. A Biol. Sci. Med. Sci., 2002, 57(1), M7-M11.
[http://dx.doi.org/10.1093/gerona/57.1.M7] [PMID: 11773206]
[26]
Li, Y.C.; Kong, J.; Wei, M.; Chen, Z.F.; Liu, S.Q.; Cao, L.P. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J. Clin. Invest., 2002, 110(2), 229-238.
[http://dx.doi.org/10.1172/JCI0215219] [PMID: 12122115]
[27]
Grant, W.B.; Garland, C.F. A critical review of studies on vitamin D in relation to colorectal cancer. Nutr. Cancer, 2004, 48(2), 115-123.
[http://dx.doi.org/10.1207/s15327914nc4802_1] [PMID: 15231446]
[28]
Holick, M.F. Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am. J. Clin. Nutr., 2004, 79(3), 362-371.
[http://dx.doi.org/10.1093/ajcn/79.3.362] [PMID: 14985208]
[29]
Giovannucci, E.; Liu, Y.; Rimm, E.B.; Hollis, B.W.; Fuchs, C.S.; Stampfer, M.J.; Willett, W.C. Prospective study of predictors of vitamin D status and cancer incidence and mortality in men. J. Natl. Cancer Inst., 2006, 98(7), 451-459.
[http://dx.doi.org/10.1093/jnci/djj101] [PMID: 16595781]
[30]
Zhou, W.; Heist, R.S.; Liu, G.; Asomaning, K.; Neuberg, D.S.; Hollis, B.W.; Wain, J.C.; Lynch, T.J.; Giovannucci, E.; Su, L.; Christiani, D.C. Circulating 25-hydroxyvitamin D levels predict survival in early-stage non-small-cell lung cancer patients. J. Clin. Oncol., 2007, 25(5), 479-485.
[http://dx.doi.org/10.1200/JCO.2006.07.5358] [PMID: 17290055]
[31]
Jeon, S.M.; Shin, E.A. Exploring vitamin D metabolism and function in cancer. Exp. Mol. Med., 2018, 50(4), 1-14.
[http://dx.doi.org/10.1038/s12276-018-0038-9] [PMID: 29657326]
[32]
Fleet, J.C. Molecular actions of vitamin D contributing to cancer prevention. Mol. Aspects Med., 2008, 29(6), 388-396.
[http://dx.doi.org/10.1016/j.mam.2008.07.003] [PMID: 18755215]
[33]
Mai, X.M.; Chen, Y.; Camargo, C.A.Jr.; Langhammer, A. Cross-sectional and prospective cohort study of serum 25-hydroxyvitamin D level and obesity in adults: the HUNT study. Am. J. Epidemiol., 2012, 175(10), 1029-1036.
[http://dx.doi.org/10.1093/aje/kwr456] [PMID: 22312120]
[34]
Prietl, B.; Treiber, G.; Pieber, T.R.; Amrein, K. Vitamin D and immune function. Nutrients, 2013, 5(7), 2502-2521.
[http://dx.doi.org/10.3390/nu5072502] [PMID: 23857223]
[35]
Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: nutrient, hormone, and immunomodulator. Nutrients, 2018, 10(11), 1656.
[http://dx.doi.org/10.3390/nu10111656] [PMID: 30400332]
[36]
Illescas-Montes, R.; Melguizo-Rodríguez, L.; Ruiz, C.; Costela-Ruiz, V.J. Vitamin D and autoimmune diseases. Life Sci., 2019, 233, 116744.
[http://dx.doi.org/10.1016/j.lfs.2019.116744] [PMID: 31401314]
[37]
Provvedini, D.M.; Tsoukas, C.D.; Deftos, L.J.; Manolagas, S.C. 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science, 1983, 221(4616), 1181-1183.
[http://dx.doi.org/10.1126/science.6310748] [PMID: 6310748]
[38]
Takahashi, K.; Nakayama, Y.; Horiuchi, H.; Ohta, T.; Komoriya, K.; Ohmori, H.; Kamimura, T. Human neutrophils express messenger RNA of vitamin D receptor and respond to 1alpha,25-dihydroxyvitamin D3. Immunopharmacol. Immunotoxicol., 2002, 24(3), 335-347.
[http://dx.doi.org/10.1081/IPH-120014721] [PMID: 12375732]
[39]
Aranow, C. Vitamin D and the immune system. J. Investig. Med., 2011, 59(6), 881-886.
[http://dx.doi.org/10.2310/JIM.0b013e31821b8755] [PMID: 21527855]
[40]
Tokuda, N.; Mizuki, N.; Kasahara, M.; Levy, R.B. 1,25-Dihydroxyvitamin D3 down-regulation of HLA-DR on human peripheral blood monocytes. Immunology, 1992, 75(2), 349-354.
[PMID: 1551697]
[41]
Xu, H.; Soruri, A.; Gieseler, R.K.; Peters, J.H. 1,25-Dihydroxyvitamin D3 exerts opposing effects to IL-4 on MHC class-II antigen expression, accessory activity, and phagocytosis of human monocytes. Scand. J. Immunol., 1993, 38(6), 535-540.
[http://dx.doi.org/10.1111/j.1365-3083.1993.tb03237.x] [PMID: 8256111]
[42]
Heberden, C.; Denis, I.; Pointillart, A.; Mercier, T. TGF-β and calcitriol. Gen. Pharmacol., 1998, 30(2), 145-151.
[http://dx.doi.org/10.1016/S0306-3623(97)00271-1] [PMID: 9502167]
[43]
Provvedini, D.M.; Deftos, L.J.; Manolagas, S.C. 1,25-Dihydroxyvitamin D3 promotes in vitro morphologic and enzymatic changes in normal human monocytes consistent with their differentiation into macrophages. Bone, 1986, 7(1), 23-28.
[http://dx.doi.org/10.1016/8756-3282(86)90148-1] [PMID: 3083846]
[44]
Lemire, J.M. Immunomodulatory role of 1,25-dihydroxyvitamin D3. J. Cell. Biochem., 1992, 49(1), 26-31.
[http://dx.doi.org/10.1002/jcb.240490106] [PMID: 1644850]
[45]
Manolagas, S.C.; Hustmyer, F.G.; Yu, X.P. Immunomodulating properties of 1,25-dihydroxyvitamin D3. Kidney Int. Suppl., 1990, 29, S9-S16.
[PMID: 2170738]
[46]
Kreutz, M.; Andreesen, R. Induction of human monocyte to macrophage maturation in vitro by 1,25-dihydroxyvitamin D3. Blood, 1990, 76(12), 2457-2461.
[http://dx.doi.org/10.1182/blood.V76.12.2457.2457] [PMID: 2265241]
[47]
Orikasa, M.; Kawase, T.; Suzuki, A. Induction of macrophagic and granulocytic differentiation of murine bone marrow progenitor cells by 1,25-dihydroxyvitamin D3. Calcif. Tissue Int., 1993, 53(3), 193-200.
[http://dx.doi.org/10.1007/BF01321837] [PMID: 8242472]
[48]
Lemire, J.M.; Adams, J.S.; Kermani-Arab, V.; Bakke, A.C.; Sakai, R.; Jordan, S.C. 1,25-Dihydroxyvitamin D3 suppresses human T helper/inducer lymphocyte activity in vitro . J. Immunol., 1985, 134(5), 3032-3035.
[PMID: 3156926]
[49]
Sharifi, A.; Vahedi, H.; Nedjat, S.; Rafiei, H.; Hosseinzadeh-Attar, M.J. Effect of single-dose injection of vitamin D on immune cytokines in ulcerative colitis patients: a randomized placebo-controlled trial. APMIS, 2019, 127(10), 681-687.
[http://dx.doi.org/10.1111/apm.12982] [PMID: 31274211]
[50]
Gombart, A.F.; Pierre, A.; Maggini, S. A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients, 2020, 12(1), 236.
[http://dx.doi.org/10.3390/nu12010236] [PMID: 31963293]
[51]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[52]
Cantorna, M.T.; Snyder, L.; Lin, Y.D.; Yang, L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients, 2015, 7(4), 3011-3021.
[http://dx.doi.org/10.3390/nu7043011] [PMID: 25912039]
[53]
Lei, G.S.; Zhang, C.; Cheng, B.H.; Lee, C.H. Mechanisms of action of vitamin D as supplemental therapy for pneumocystis pneumonia. Antimicrob. Agents Chemother., 2017, 61(10), e01226-e17.
[http://dx.doi.org/10.1128/AAC.01226-17] [PMID: 28760906]
[54]
Wimalawansa, S.J. Vitamin D deficiency: effects on oxidative stress, epigenetics, gene regulation, and aging. Biology (Basel), 2019, 8(2), 30.
[http://dx.doi.org/10.3390/biology8020030] [PMID: 31083546]
[55]
Canning, M.O.; Grotenhuis, K.; de Wit, H.; Ruwhof, C.; Drexhage, H.A. 1-alpha,25-Dihydroxyvitamin D3 (1,25(OH)(2)D(3)) hampers the maturation of fully active immature dendritic cells from monocytes. Eur. J. Endocrinol., 2001, 145(3), 351-357.
[http://dx.doi.org/10.1530/eje.0.1450351] [PMID: 11517017]
[56]
Grad, R. Cod and the consumptive: a brief history of cod-liver oil in the treatment of pulmonary tuberculosis. Pharm. Hist., 2004, 46(3), 106-120.
[PMID: 15712453]
[57]
Penna, G.; Adorini, L. 1 α,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J. Immunol., 2000, 164(5), 2405-2411.
[http://dx.doi.org/10.4049/jimmunol.164.5.2405] [PMID: 10679076]
[58]
Piemonti, L.; Monti, P.; Sironi, M.; Fraticelli, P.; Leone, B.E.; Dal Cin, E.; Allavena, P.; Di Carlo, V. Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells. J. Immunol., 2000, 164(9), 4443-4451.
[http://dx.doi.org/10.4049/jimmunol.164.9.4443] [PMID: 10779743]
[59]
Baeke, F.; Takiishi, T.; Korf, H.; Gysemans, C.; Mathieu, C. Vitamin D: modulator of the immune system. Curr. Opin. Pharmacol., 2010, 10(4), 482-496.
[http://dx.doi.org/10.1016/j.coph.2010.04.001] [PMID: 20427238]
[60]
Chen, S.; Sims, G.P.; Chen, X.X.; Gu, Y.Y.; Chen, S.; Lipsky, P.E. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J. Immunol., 2007, 179(3), 1634-1647.
[http://dx.doi.org/10.4049/jimmunol.179.3.1634] [PMID: 17641030]
[61]
Mathieu, C.; Waer, M.; Casteels, K.; Laureys, J.; Bouillon, R. Prevention of type I diabetes in NOD mice by nonhypercalcemic doses of a new structural analog of 1,25-dihydroxyvitamin D3, KH1060. Endocrinology, 1995, 136(3), 866-872.
[http://dx.doi.org/10.1210/endo.136.3.7867594] [PMID: 7867594]
[62]
Mathieu, C.; Waer, M.; Laureys, J.; Rutgeerts, O.; Bouillon, R. Prevention of autoimmune diabetes in NOD mice by 1,25 dihydroxyvitamin D3. Diabetologia, 1994, 37(6), 552-558.
[http://dx.doi.org/10.1007/BF00403372] [PMID: 7926338]
[63]
Mathieu, C.; Laureys, J.; Sobis, H.; Vandeputte, M.; Waer, M.; Bouillon, R. 1,25-Dihydroxyvitamin D3 prevents insulitis in NOD mice. Diabetes, 1992, 41(11), 1491-1495.
[http://dx.doi.org/10.2337/diab.41.11.1491] [PMID: 1397723]
[64]
Lemire, J.M.; Archer, D.C. 1,25-dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J. Clin. Invest., 1991, 87(3), 1103-1107.
[http://dx.doi.org/10.1172/JCI115072] [PMID: 1705564]
[65]
Antico, A.; Tampoia, M.; Tozzoli, R.; Bizzaro, N. Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? a systematic review of the literature. Autoimmun. Rev., 2012, 12(2), 127-136.
[http://dx.doi.org/10.1016/j.autrev.2012.07.007] [PMID: 22776787]
[66]
Bock, G.; Pieber, T.R.; Prietl, B. Vitamin D: role in autoimmunity. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour., 2012, 7, 1-7.
[http://dx.doi.org/10.1079/PAVSNNR20127041]
[67]
Zittermann, A.; Tenderich, G.; Koerfer, R. Vitamin D and the adaptive immune system with special emphasis to allergic reactions and allograft rejection. Inflamm. Allergy Drug Targets, 2009, 8(2), 161-168.
[http://dx.doi.org/10.2174/187152809788462644] [PMID: 19537326]
[68]
Bach, J.F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med., 2002, 347(12), 911-920.
[http://dx.doi.org/10.1056/NEJMra020100] [PMID: 12239261]
[69]
Rondanelli, M.; Miccono, A.; Lamburghini, S.; Avanzato, I.; Riva, A.; Allegrini, P.; Faliva, M.A.; Peroni, G.; Nichetti, M.; Perna, S. Self-care for common colds: the pivotal role of vitamin D, vitamin C, zinc, and echinacea in three main immune interactive clusters (physical barriers, innate and adaptive immunity) involved during an episode of common colds-practical advice on dosages and on the time to take these nutrients/botanicals in order to prevent or treat common colds. Evid. Based Complement. Alternat. Med., 2018, 2018, 5813095.
[http://dx.doi.org/10.1155/2018/5813095] [PMID: 29853961]
[70]
Bearden, A.; Van Winden, K.; Frederick, T.; Kono, N.; Operskalski, E.; Pandian, R.; Barton, L.; Stek, A.; Kovacs, A. Low maternal vitamin D is associated with increased risk of congenital and peri/postnatal transmission of Cytomegalovirus in women with HIV. PLoS One, 2020, 15(2), e0228900.
[http://dx.doi.org/10.1371/journal.pone.0228900] [PMID: 32053638]
[71]
Hansdottir, S.; Monick, M.M.; Hinde, S.L.; Lovan, N.; Look, D.C.; Hunninghake, G.W. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J. Immunol., 2008, 181(10), 7090-7099.
[http://dx.doi.org/10.4049/jimmunol.181.10.7090] [PMID: 18981129]
[72]
Olliver, M.; Spelmink, L.; Hiew, J.; Meyer-Hoffert, U.; Henriques-Normark, B.; Bergman, P. Immunomodulatory effects of vitamin D on innate and adaptive immune responses to Streptococcus pneumoniae. J. Infect. Dis., 2013, 208(9), 1474-1481.
[http://dx.doi.org/10.1093/infdis/jit355] [PMID: 23922371]
[73]
Greiller, C.L.; Martineau, A.R. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients, 2015, 7(6), 4240-4270.
[http://dx.doi.org/10.3390/nu7064240] [PMID: 26035247]
[74]
Hewison, M. Antibacterial effects of vitamin D. Nat. Rev. Endocrinol., 2011, 7(6), 337-345.
[http://dx.doi.org/10.1038/nrendo.2010.226] [PMID: 21263449]
[75]
Laaksi, I. Vitamin D and respiratory infection in adults. Proc. Nutr. Soc., 2012, 71(1), 90-97.
[http://dx.doi.org/10.1017/S0029665111003351] [PMID: 22115013]
[76]
Wang, G.; Mishra, B.; Epand, R.F.; Epand, R.M. High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. Biochim. Biophys. Acta, 2014, 1838(9), 2160-2172.
[http://dx.doi.org/10.1016/j.bbamem.2014.01.016] [PMID: 24463069]
[77]
Cannell, J.J.; Vieth, R.; Umhau, J.C.; Holick, M.F.; Grant, W.B.; Madronich, S.; Garland, C.F.; Giovannucci, E. Epidemic influenza and vitamin D. Epidemiol. Infect., 2006, 134(6), 1129-1140.
[http://dx.doi.org/10.1017/S0950268806007175] [PMID: 16959053]
[78]
Jolliffe, D.A.; Griffiths, C.J.; Martineau, A.R. Vitamin D in the prevention of acute respiratory infection: systematic review of clinical studies. J. Steroid Biochem. Mol. Biol., 2013, 136, 321-329.
[http://dx.doi.org/10.1016/j.jsbmb.2012.11.017] [PMID: 23220552]
[79]
Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; Goodall, E.C.; Grant, C.C.; Griffiths, C.J.; Janssens, W.; Laaksi, I.; Manaseki-Holland, S.; Mauger, D.; Murdoch, D.R.; Neale, R.; Rees, J.R.; Simpson, S., Jr; Stelmach, I.; Kumar, G.T.; Urashima, M.; Camargo, C.A., Jr Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ, 2017, 356, i6583.
[http://dx.doi.org/10.1136/bmj.i6583] [PMID: 28202713]
[80]
Bergman, P.; Norlin, A.C.; Hansen, S.; Rekha, R.S.; Agerberth, B.; Björkhem-Bergman, L.; Ekström, L.; Lindh, J.D.; Andersson, J. Vitamin D3 supplementation in patients with frequent respiratory tract infections: a randomised and double-blind intervention study. BMJ Open, 2012, 2(6), e001663.
[http://dx.doi.org/10.1136/bmjopen-2012-001663] [PMID: 23242238]
[81]
Laaksi, I.; Ruohola, J.P.; Tuohimaa, P.; Auvinen, A.; Haataja, R.; Pihlajamäki, H.; Ylikomi, T. An association of serum vitamin D concentrations < 40 nmol/L with acute respiratory tract infection in young Finnish men. Am. J. Clin. Nutr., 2007, 86(3), 714-717.
[http://dx.doi.org/10.1093/ajcn/86.3.714] [PMID: 17823437]
[82]
Litonjua, A.A.; Weiss, S.T. Is vitamin D deficiency to blame for the asthma epidemic? J. Allergy Clin. Immunol., 2007, 120(5), 1031-1035.
[http://dx.doi.org/10.1016/j.jaci.2007.08.028] [PMID: 17919705]
[83]
Janssens, W.; Bouillon, R.; Claes, B.; Carremans, C.; Lehouck, A.; Buysschaert, I.; Coolen, J.; Mathieu, C.; Decramer, M.; Lambrechts, D. Vitamin D deficiency is highly prevalent in COPD and correlates with variants in the vitamin D-binding gene. Thorax, 2010, 65(3), 215-220.
[http://dx.doi.org/10.1136/thx.2009.120659] [PMID: 19996341]
[84]
Gombart, A.F.; Bhan, I.; Borregaard, N.; Tamez, H.; Camargo, C.A.Jr.; Koeffler, H.P.; Thadhani, R. Low plasma level of cathelicidin antimicrobial peptide (hCAP18) predicts increased infectious disease mortality in patients undergoing hemodialysis. Clin. Infect. Dis., 2009, 48(4), 418-424.
[http://dx.doi.org/10.1086/596314] [PMID: 19133797]
[85]
Jeng, L.; Yamshchikov, A.V.; Judd, S.E.; Blumberg, H.M.; Martin, G.S.; Ziegler, T.R.; Tangpricha, V. Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis. J. Transl. Med., 2009, 7, 28.
[http://dx.doi.org/10.1186/1479-5876-7-28] [PMID: 19389235]
[86]
Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 2020, 12(4), 988.
[http://dx.doi.org/10.3390/nu12040988] [PMID: 32252338]
[87]
Misra, D.P.; Agarwal, V.; Gasparyan, A.Y.; Zimba, O. Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin. Rheumatol., 2020, 39(7), 2055-2062.
[http://dx.doi.org/10.1007/s10067-020-05073-9] [PMID: 32277367]
[88]
Kakodkar, P.; Kaka, N.; Baig, M.N. A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19). Cureus, 2020, 12(4), e7560.
[http://dx.doi.org/10.7759/cureus.7560] [PMID: 32269893]
[89]
Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T.; Wang, Y.; Pan, S.; Zou, X.; Yuan, S.; Shang, Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med., 2020, 8(5), 475-481.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[90]
Ilie, P.C.; Stefanescu, S.; Smith, L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin. Exp. Res., 2020, 32(7), 1195-1198.
[http://dx.doi.org/10.1007/s40520-020-01570-8] [PMID: 32377965]
[91]
Mitchell, F. Vitamin-D and COVID-19: do deficient risk a poorer outcome? Lancet Diabetes Endocrinol., 2020, 8(7), 570.
[http://dx.doi.org/10.1016/S2213-8587(20)30183-2] [PMID: 32445630]
[92]
Xue, Y.; Fleet, J.C. Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice. Gastroenterology, 2009, 136(4), 1317-1327, e1-2.
[http://dx.doi.org/10.1053/j.gastro.2008.12.051] [PMID: 19254681]
[93]
Christakos, S.; Veldurthy, V.; Patel, N.; Wei, R. Intestinal regulation of calcium: vitamin D and bone physiology. Adv. Exp. Med. Biol., 2017, 1033, 3-12.
[http://dx.doi.org/10.1007/978-3-319-66653-2_1] [PMID: 29101648]
[94]
Jiang, P.; Zhang, L.H.; Cai, H.L.; Li, H.D.; Liu, Y.P.; Tang, M.M.; Dang, R.L.; Zhu, W.Y.; Xue, Y.; He, X. Neurochemical effects of chronic administration of calcitriol in rats. Nutrients, 2014, 6(12), 6048-6059.
[http://dx.doi.org/10.3390/nu6126048] [PMID: 25533012]
[95]
Jiang, P.; Zhang, W.Y.; Li, H.D.; Cai, H.L.; Liu, Y.P.; Chen, L.Y. Stress and vitamin D: altered vitamin D metabolism in both the hippocampus and myocardium of chronic unpredictable mild stress exposed rats. Psychoneuroendocrinology, 2013, 38(10), 2091-2098.
[http://dx.doi.org/10.1016/j.psyneuen.2013.03.017] [PMID: 23608137]
[96]
Dobson, R.; Cock, H.R.; Brex, P.; Giovannoni, G. Vitamin D supplementation. Pract. Neurol., 2018, 18(1), 35-42.
[http://dx.doi.org/10.1136/practneurol-2017-001720] [PMID: 28947637]
[97]
Thouvenot, É.; Camu, W. Vitamin D and neurology. Presse Med., 2013, 42(10), 1398-1404.
[http://dx.doi.org/10.1016/j.lpm.2013.07.012] [PMID: 24054766]
[98]
Lu’o’ng, K.V.; Nguyên, L.T. The beneficial role of vitamin D in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen., 2011, 26(7), 511-520.
[http://dx.doi.org/10.1177/1533317511429321] [PMID: 22202127]
[99]
Mpandzou, G.; Aït Ben Haddou, E.; Regragui, W.; Benomar, A.; Yahyaoui, M. Vitamin D deficiency and its role in neurological conditions: a review. Rev. Neurol. (Paris), 2016, 172(2), 109-122.
[http://dx.doi.org/10.1016/j.neurol.2015.11.005] [PMID: 26867662]
[100]
Spanier, J.A.; Nashold, F.E.; Nelson, C.D.; Praska, C.E.; Hayes, C.E. Vitamin D3-mediated resistance to a multiple sclerosis model disease depends on myeloid cell 1,25-dihydroxyvitamin D3 synthesis and correlates with increased CD4+ T cell CTLA-4 expression. J. Neuroimmunol., 2020, 338, 577105.
[http://dx.doi.org/10.1016/j.jneuroim.2019.577105] [PMID: 31731231]
[101]
Li, A.; Zhang, W.; Zhang, H.; Yi, B. Vitamin D/vitamin D receptor, autophagy and inflammation relevant diseases. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2017, 42(8), 979-985.
[http://dx.doi.org/10.11817/j.issn.1672-7347.2017.08.017] [PMID: 28872092]
[102]
Wu, S.; Sun, J. Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection. Discov. Med., 2011, 11(59), 325-335.
[PMID: 21524386]
[103]
Garbossa, S.G.; Folli, F. Vitamin D, sub-inflammation and insulin resistance. A window on a potential role for the interaction between bone and glucose metabolism. Rev. Endocr. Metab. Disord., 2017, 18(2), 243-258.
[http://dx.doi.org/10.1007/s11154-017-9423-2] [PMID: 28409320]
[104]
Liu, F.R.; Yang, L.Y.; Zheng, H.F.; Zhou, Y.; Chen, B.B.; Xu, H.; Zhang, Y.W.; Shen, D.Y. Plasma levels of interleukin 18 but not amyloid-β or Tau are elevated in female depressive patients. Compr. Psychiatry, 2020, 97, 152159.
[http://dx.doi.org/10.1016/j.comppsych.2020.152159] [PMID: 31931428]
[105]
Spach, K.M.; Pedersen, L.B.; Nashold, F.E.; Kayo, T.; Yandell, B.S.; Prolla, T.A.; Hayes, C.E. Gene expression analysis suggests that 1,25-dihydroxyvitamin D3 reverses experimental autoimmune encephalomyelitis by stimulating inflammatory cell apoptosis. Physiol. Genomics, 2004, 18(2), 141-151.
[http://dx.doi.org/10.1152/physiolgenomics.00003.2004] [PMID: 15138306]
[106]
Szabó, A. Skeletal and extra-skeletal consequences of vitamin D deficiency. Orv. Hetil., 2011, 152(33), 1312-1319.
[http://dx.doi.org/10.1556/OH.2011.29186] [PMID: 21824858]
[107]
Weisman, Y. Vitamin D deficiency and insufficiency. Isr. Med. Assoc. J., 2013, 15(7), 377-378.
[PMID: 23943985]
[108]
Berg, A.O.; Jørgensen, K.N.; Nerhus, M.; Athanasiu, L.; Popejoy, A.B.; Bettella, F.; Norbom, L.C.B.; Gurholt, T.P.; Dahl, S.R.; Andreassen, O.A.; Djurovic, S.; Agartz, I.; Melle, I. Vitamin D levels, brain volume, and genetic architecture in patients with psychosis. PLoS One, 2018, 13(8), e0200250.
[http://dx.doi.org/10.1371/journal.pone.0200250] [PMID: 30142216]
[109]
de Oliveira, D.L.; Hirotsu, C.; Tufik, S.; Andersen, M.L. The interfaces between vitamin D, sleep and pain. J. Endocrinol., 2017, 234(1), R23-R36.
[http://dx.doi.org/10.1530/JOE-16-0514] [PMID: 28536294]
[110]
American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders; 5th ed.; American Psychiatric Association Press: Washington, DC, 2013, pp. 160-168.
[111]
Marazziti, D.; Rutigliano, G.; Baroni, S.; Landi, P.; Dell’Osso, L. Metabolic syndrome and major depression. CNS Spectr., 2014, 19(4), 293-304.
[http://dx.doi.org/10.1017/S1092852913000667] [PMID: 24103843]
[112]
Kaneko, I.; Sabir, M.S.; Dussik, C.M.; Whitfield, G.K.; Karrys, A.; Hsieh, J.C.; Haussler, M.R.; Meyer, M.B.; Pike, J.W.; Jurutka, P.W. 1,25-Dihydroxyvitamin D regulates expression of the tryptophan hydroxylase 2 and leptin genes: Implication for behavioral influences of vitamin D. FASEB J., 2015, 29(9), 4023-4035.
[http://dx.doi.org/10.1096/fj.14-269811] [PMID: 26071405]
[113]
Sabir, M.S.; Haussler, M.R.; Mallick, S.; Kaneko, I.; Lucas, D.A.; Haussler, C.A.; Whitfield, G.K.; Jurutka, P.W. Optimal vitamin D spurs serotonin: 1,25-dihydroxyvitamin D represses serotonin reuptake transport (SERT) and degradation (MAO-A) gene expression in cultured rat serotonergic neuronal cell lines. Genes Nutr., 2018, 13, 19.
[http://dx.doi.org/10.1186/s12263-018-0605-7] [PMID: 30008960]
[114]
Landel, V.; Stephan, D.; Cui, X.; Eyles, D.; Feron, F. Differential expression of vitamin D-associated enzymes and receptors in brain cell subtypes. J. Steroid Biochem. Mol. Biol., 2018, 177, 129-134.
[http://dx.doi.org/10.1016/j.jsbmb.2017.09.008] [PMID: 28893622]
[115]
Sapolsky, R.M. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch. Gen. Psychiatry, 2000, 57(10), 925-935.
[http://dx.doi.org/10.1001/archpsyc.57.10.925] [PMID: 11015810]
[116]
Bremner, J.D. Stress and brain atrophy. CNS Neurol. Disord. Drug Targets, 2006, 5(5), 503-512.
[http://dx.doi.org/10.2174/187152706778559309] [PMID: 17073653]
[117]
Obradovic, D.; Gronemeyer, H.; Lutz, B.; Rein, T. Cross-talk of vitamin D and glucocorticoids in hippocampal cells. J. Neurochem., 2006, 96(2), 500-509.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03579.x] [PMID: 16336217]
[118]
Khairy, E.Y.; Attia, M.M. Protective effects of vitamin D on neurophysiologic alterations in brain aging: Role of brain-derived neurotrophic factor (BDNF). Nutr. Neurosci., 2019, 16, 1-10.
[http://dx.doi.org/10.1080/1028415X.2019.1665854] [PMID: 31524100]
[119]
Sedaghat, K.; Yousefian, Z.; Vafaei, A.A.; Rashidy-Pour, A.; Parsaei, H.; Khaleghian, A.; Choobdar, S. Mesolimbic dopamine system and its modulation by vitamin D in a chronic mild stress model of depression in the rat. Behav. Brain Res., 2019, 356, 156-169.
[http://dx.doi.org/10.1016/j.bbr.2018.08.020] [PMID: 30144460]
[120]
Geng, C.; Shaikh, A.S.; Han, W.; Chen, D.; Guo, Y.; Jiang, P. Vitamin D and depression: mechanisms, determination and application. Asia Pac. J. Clin. Nutr., 2019, 28(4), 689-694.
[http://dx.doi.org/10.6133/apjcn.201912_28(4).0003] [PMID: 31826364]
[121]
Gowda, U.; Mutowo, M.P.; Smith, B.J.; Wluka, A.E.; Renzaho, A.M. Vitamin D supplementation to reduce depression in adults: meta-analysis of randomized controlled trials. Nutrition, 2015, 31(3), 421-429.
[http://dx.doi.org/10.1016/j.nut.2014.06.017] [PMID: 25701329]
[122]
Berridge, M.J. Vitamin D and depression: Cellular and regulatory mechanisms. Pharmacol. Rev., 2017, 69(2), 80-92.
[http://dx.doi.org/10.1124/pr.116.013227] [PMID: 28202503]
[123]
Pereira, F.; Barbáchano, A.; Singh, P.K.; Campbell, M.J.; Muñoz, A.; Larriba, M.J. Vitamin D has wide regulatory effects on histone demethylase genes. Cell Cycle, 2012, 11(6), 1081-1089.
[http://dx.doi.org/10.4161/cc.11.6.19508] [PMID: 22370479]
[124]
Guidotti, A.; Auta, J.; Chen, Y.; Davis, J.M.; Dong, E.; Gavin, D.P.; Grayson, D.R.; Matrisciano, F.; Pinna, G.; Satta, R.; Sharma, R.P.; Tremolizzo, L.; Tueting, P. Epigenetic GABAergic targets in schizophrenia and bipolar disorder. Neuropharmacology, 2011, 60(7-8), 1007-1016.
[http://dx.doi.org/10.1016/j.neuropharm.2010.10.021] [PMID: 21074545]
[125]
He, Y.; Wu, Z.; Lan, T.; Wang, Y.; Tian, Y.; Chen, X.; Li, Y.; Bai, M.; Liu, J.; Gong, X.; Cheng, K.; Xie, P. The 25(OH)D/VDR signaling may play a role in major depression. Biochem. Biophys. Res. Commun., 2020, 523(2), 405-410.
[http://dx.doi.org/10.1016/j.bbrc.2019.12.071] [PMID: 31866009]
[126]
Samad, N.; Yasmin, F.; Manzoor, N. Biomarkers in drug free subjects with depression: correlation with tryptophan. Psychiatry Investig., 2019, 16(12), 948-953.
[http://dx.doi.org/10.30773/pi.2019.0110] [PMID: 31711278]
[127]
Mohaddesi, H.; Naz, M.S.G.; Najarzadeh, M.; Yeganehpour, M.; Khalkhali, H. Correlation between depression with serum levels of vitamin D, calcium and magnesium in women of reproductive age. J. Caring Sci., 2019, 8(2), 117-119.
[http://dx.doi.org/10.15171/jcs.2019.017] [PMID: 31249822]
[128]
Black, L.J.; Jacoby, P.; Allen, K.L.; Trapp, G.S.; Hart, P.H.; Byrne, S.M.; Mori, T.A.; Beilin, L.J.; Oddy, W.H. Low vitamin D levels are associated with symptoms of depression in young adult males. Aust. N. Z. J. Psychiatry, 2014, 48(5), 464-471.
[http://dx.doi.org/10.1177/0004867413512383] [PMID: 24226892]
[129]
Anglin, R.E.; Samaan, Z.; Walter, S.D.; McDonald, S.D. Vitamin D deficiency and depression in adults: systematic review and meta-analysis. Br. J. Psychiatry, 2013, 202, 100-107.
[http://dx.doi.org/10.1192/bjp.bp.111.106666] [PMID: 23377209]
[130]
Hoogendijk, W.J.; Lips, P.; Dik, M.G.; Deeg, D.J.; Beekman, A.T.; Penninx, B.W. Depression is associated with decreased 25-hydroxyvitamin D and increased parathyroid hormone levels in older adults. Arch. Gen. Psychiatry, 2008, 65(5), 508-512.
[http://dx.doi.org/10.1001/archpsyc.65.5.508] [PMID: 18458202]
[131]
Kim, S.Y.; Jeon, S.W.; Lim, W.J.; Oh, K.S.; Shin, D.W.; Cho, S.J.; Park, J.H.; Shin, Y.C. The relationship between serum vitamin D levels, C-reactive protein, and anxiety symptoms. Psychiatry Investig., 2020, 17(4), 312-319.
[http://dx.doi.org/10.30773/pi.2019.0290] [PMID: 32213801]
[132]
Zhao, G.; Ford, E.S.; Li, C.; Balluz, L.S. No associations between serum concentrations of 25-hydroxyvitamin D and parathyroid hormone and depression among US adults. Br. J. Nutr., 2010, 104(11), 1696-1702.
[http://dx.doi.org/10.1017/S0007114510002588] [PMID: 20642877]
[133]
Pan, A.; Lu, L.; Franco, O.H.; Yu, Z.; Li, H.; Lin, X. Association between depressive symptoms and 25-hydroxyvitamin D in middle-aged and elderly Chinese. J. Affect. Disord., 2009, 118(1-3), 240-243.
[http://dx.doi.org/10.1016/j.jad.2009.02.002] [PMID: 19249103]
[134]
Nanri, A.; Mizoue, T.; Matsushita, Y.; Poudel-Tandukar, K.; Sato, M.; Ohta, M.; Mishima, N. Association between serum 25-hydroxyvitamin D and depressive symptoms in Japanese: analysis by survey season. Eur. J. Clin. Nutr., 2009, 63(12), 1444-1447.
[http://dx.doi.org/10.1038/ejcn.2009.96] [PMID: 19690578]
[135]
Fond, G.; Young, A.H.; Godin, O.; Messiaen, M.; Lançon, C.; Auquier, P.; Boyer, L. Improving diet for psychiatric patients: high potential benefits and evidence for safety. J. Affect. Disord., 2020, 265, 567-569.
[http://dx.doi.org/10.1016/j.jad.2019.11.092] [PMID: 31757621]
[136]
Spedding, S. Vitamin D and depression: a systematic review and meta-analysis comparing studies with and without biological flaws. Nutrients, 2014, 6(4), 1501-1518.
[http://dx.doi.org/10.3390/nu6041501] [PMID: 24732019]
[137]
Hatfield, D.P.; Sweeney, K.P.; Lau, J.; Lichtenstein, A.H. Critical assessment of high-circulation print newspaper coverage of the Institute of Medicine report dietary reference intakes for calcium and vitamin D. Public Health Nutr., 2014, 17(8), 1868-1876.
[http://dx.doi.org/10.1017/S1368980013002073] [PMID: 23902633]
[138]
Shaffer, J.A.; Edmondson, D.; Wasson, L.T.; Falzon, L.; Homma, K.; Ezeokoli, N.; Li, P.; Davidson, K.W. Vitamin D supplementation for depressive symptoms: a systematic review and meta-analysis of randomized controlled trials. Psychosom. Med., 2014, 76(3), 190-196.
[http://dx.doi.org/10.1097/PSY.0000000000000044] [PMID: 24632894]
[139]
Vellekkatt, F.; Menon, V. Efficacy of vitamin D supplementation in major depression: a meta-analysis of randomized controlled trials. J. Postgrad. Med., 2019, 65(2), 74-80.
[http://dx.doi.org/10.4103/jpgmM_571_17] [PMID: 29943744]
[140]
Alghamdi, S.; Alsulami, N.; Khoja, S.; Alsufiani, H.; Tayeb, H.O.; Tarazi, F.I. Vitamin D supplementation ameliorates severity of major depressive disorder. J. Mol. Neurosci., 2020, 70(2), 230-235.
[http://dx.doi.org/10.1007/s12031-019-01461-2] [PMID: 31836995]
[141]
Khoraminya, N.; Tehrani-Doost, M.; Jazayeri, S.; Hosseini, A.; Djazayery, A. Therapeutic effects of vitamin D as adjunctive therapy to fluoxetine in patients with major depressive disorder. Aust. N. Z. J. Psychiatry, 2013, 47(3), 271-275.
[http://dx.doi.org/10.1177/0004867412465022] [PMID: 23093054]
[142]
Cheng, Y.C.; Huang, Y.C.; Huang, W.L. The effect of vitamin D supplement on negative emotions: a systematic review and meta-analysis. Depress. Anxiety, 2020, 37(6), 549-564.
[http://dx.doi.org/10.1002/da.23025] [PMID: 32365423]
[143]
Stokes, C.S.; Grünhage, F.; Baus, C.; Volmer, D.A.; Wagenpfeil, S.; Riemenschneider, M.; Lammert, F. Vitamin D supplementation reduces depressive symptoms in patients with chronic liver disease. Clin. Nutr., 2016, 35(4), 950-957.
[http://dx.doi.org/10.1016/j.clnu.2015.07.004] [PMID: 26212170]
[144]
Kjærgaard, M.; Waterloo, K.; Wang, C.E.; Almås, B.; Figenschau, Y.; Hutchinson, M.S.; Svartberg, J.; Jorde, R. Effect of vitamin D supplement on depression scores in people with low levels of serum 25-hydroxyvitamin D: nested case-control study and randomised clinical trial. Br. J. Psychiatry, 2012, 201(5), 360-368.
[http://dx.doi.org/10.1192/bjp.bp.111.104349] [PMID: 22790678]
[145]
Jorde, R.; Kubiak, J. No improvement in depressive symptoms by vitamin D supplementation: results from a randomised controlled trial. J. Nutr. Sci., 2018, 7, e30.
[http://dx.doi.org/10.1017/jns.2018.19] [PMID: 30510695]
[146]
Stumpf, W.E.; Privette, T.H. Light, vitamin D and psychiatry. Role of 1,25 dihydroxyvitamin D3 (soltriol) in etiology and therapy of seasonal affective disorder and other mental processes. Psychopharmacology (Berl.), 1989, 97(3), 285-294.
[http://dx.doi.org/10.1007/BF00439440] [PMID: 2497477]
[147]
Humble, M.B. Vitamin D, light and mental health. J. Photochem. Photobiol. B, 2010, 101(2), 142-149.
[http://dx.doi.org/10.1016/j.jphotobiol.2010.08.003] [PMID: 20800506]
[148]
Melrose, S. Seasonal affective disorder: an overview of assessment and treatment approaches. Depress. Res. Treat., 2015, 2015, 178564.
[http://dx.doi.org/10.1155/2015/178564] [PMID: 26688752]
[149]
Rosenthal, N.E.; Sack, D.A.; Gillin, J.C.; Lewy, A.J.; Goodwin, F.K.; Davenport, Y.; Mueller, P.S.; Newsome, D.A.; Wehr, T.A. Seasonal affective disorder. A description of the syndrome and preliminary findings with light therapy. Arch. Gen. Psychiatry, 1984, 41(1), 72-80.
[http://dx.doi.org/10.1001/archpsyc.1984.01790120076010] [PMID: 6581756]
[150]
Donofry, S.D.; Roecklein, K.A.; Rohan, K.J.; Wildes, J.E.; Kamarck, M.L. Prevalence and correlates of binge eating in seasonal affective disorder. Psychiatry Res., 2014, 217(1-2), 47-53.
[http://dx.doi.org/10.1016/j.psychres.2014.03.012] [PMID: 24680872]
[151]
Westrin, A.; Lam, R.W. Seasonal affective disorder: a clinical update. Ann. Clin. Psychiatry, 2007, 19(4), 239-246.
[http://dx.doi.org/10.1080/10401230701653476] [PMID: 18058281]
[152]
Stewart, A.E.; Roecklein, K.A.; Tanner, S.; Kimlin, M.G. Possible contributions of skin pigmentation and vitamin D in a polyfactorial model of seasonal affective disorder. Med. Hypotheses, 2014, 83(5), 517-525.
[http://dx.doi.org/10.1016/j.mehy.2014.09.010] [PMID: 25270233]
[153]
Gloth, F.M.III.; Alam, W.; Hollis, B. Vitamin D vs. broad spectrum phototherapy in the treatment of seasonal affective disorder. J. Nutr. Health Aging, 1999, 3(1), 5-7.
[PMID: 10888476]
[154]
Kerr, D.C.; Zava, D.T.; Piper, W.T.; Saturn, S.R.; Frei, B.; Gombart, A.F. Associations between vitamin D levels and depressive symptoms in healthy young adult women. Psychiatry Res., 2015, 227(1), 46-51.
[http://dx.doi.org/10.1016/j.psychres.2015.02.016] [PMID: 25791903]
[155]
Frandsen, T.B.; Pareek, M.; Hansen, J.P.; Nielsen, C.T. Vitamin D supplementation for treatment of seasonal affective symptoms in healthcare professionals: a double-blind randomised placebo-controlled trial. BMC Res. Notes, 2014, 7, 528.
[http://dx.doi.org/10.1186/1756-0500-7-528] [PMID: 25125215]
[156]
Altunsoy, N.; Yüksel, R.N.; Yirun, M.C.; Kılıçarslan, A.; Aydemir, Ç. Exploring the relationship between vitamin D and mania: correlations between serum vitamin D levels and disease activity. Nord. J. Psychiatry, 2018, 72(3), 221-225.
[http://dx.doi.org/10.1080/08039488.2018.1424238] [PMID: 29308715]
[157]
Grande, I.; Berk, M.; Birmaher, B.; Vieta, E. Bipolar disorder. Lancet, 2016, 387(10027), 1561-1572.
[http://dx.doi.org/10.1016/S0140-6736(15)00241-X] [PMID: 26388529]
[158]
Müller, J.K.; Leweke, F.M. Bipolar disorder: clinical overview. Med. Monatsschr. Pharm., 2016, 39(9), 363-369.
[PMID: 29956510]
[159]
Łojko, D.; Stelmach-Mardas, M.; Suwalska, A. Is diet important in bipolar disorder? Psychiatr. Pol., 2018, 52(5), 783-795.
[http://dx.doi.org/10.12740/PP/OnlineFirst/78703] [PMID: 30584813]
[160]
Boerman, R.; Cohen, D.; Schulte, P.F.; Nugter, A. Prevalence of vitamin D deficiency in adult outpatients with bipolar disorder or schizophrenia. J. Clin. Psychopharmacol., 2016, 36(6), 588-592.
[http://dx.doi.org/10.1097/JCP.0000000000000580] [PMID: 27662458]
[161]
Sikoglu, E.M.; Navarro, A.A.; Starr, D.; Dvir, Y.; Nwosu, B.U.; Czerniak, S.M.; Rogan, R.C.; Castro, M.C.; Edden, R.A.; Frazier, J.A.; Moore, C.M. Vitamin D3 supplemental treatment for mania in youth with bipolar spectrum disorders. J. Child Adolesc. Psychopharmacol., 2015, 25(5), 415-424.
[http://dx.doi.org/10.1089/cap.2014.0110] [PMID: 26091195]
[162]
Marsh, W.K.; Penny, J.L.; Rothschild, A.J. Vitamin D supplementation in bipolar depression: a double blind placebo controlled trial. J. Psychiatr. Res., 2017, 95, 48-53.
[http://dx.doi.org/10.1016/j.jpsychires.2017.07.021] [PMID: 28777983]
[163]
Esnafoğlu, E.; Yaman, E. Vitamin B12, folic acid, homocysteine and vitamin D levels in children and adolescents with obsessive compulsive disorder. Psychiatry Res., 2017, 254, 232-237.
[http://dx.doi.org/10.1016/j.psychres.2017.04.032] [PMID: 28477545]
[164]
Kuygun Karcı, C.; Gül Celik, G. Nutritional and herbal supplements in the treatment of obsessive compulsive disorder. Gen. psychiatr., 2020, 33(2), 100159.
[http://dx.doi.org/10.1136/gpsych-2019-100159] [PMID: 32215361]
[165]
Marazziti, D.; Di Nasso, E. What pharmacology teaches us about the pathophysiology of obsessive-compulsive disorder. Rev. Bras. Psiquiatr., 2000, 22(4), 185-188.
[http://dx.doi.org/10.1590/S1516-44462000000400009]
[166]
Marazziti, D.; Albert, U.; Mucci, F.; Piccinni, A. The glutamate and the immune systems: new targets for the pharmacological treatment of OCD. Curr. Med. Chem., 2018, 25(41), 5731-5738.
[http://dx.doi.org/10.2174/0929867324666171108152035] [PMID: 29119912]
[167]
Marazziti, D.; Mucci, F.; Fontenelle, L.F. Immune system and obsessive-compulsive disorder. Psychoneuroendocrinology, 2018, 93, 39-44.
[http://dx.doi.org/10.1016/j.psyneuen.2018.04.013] [PMID: 29689421]
[168]
Swedo, S.E.; Leckman, J.F.; Rose, N.R. From research subgroup to clinical syndrome: modifying the PANDAS criteria to describe PANS (pediatric acute-onset neuropsychiatric syndrome). Pediatr. Therapeut., 2012, 2(2), 113.
[http://dx.doi.org/10.4172/2161-0665.1000113]
[169]
Çelik, G.; Taş, D.; Tahiroğlu, A.; Avci, A.; Yüksel, B.; Çam, P. Vitamin D deficiency in obsessive-compulsive disorder patients with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections: a case control study. Noro Psikiyatri Arsivi, 2016, 53(1), 33-37.
[http://dx.doi.org/10.5152/npa.2015.8763] [PMID: 28360763]
[170]
Goodman, W.K.; Price, L.H.; Rasmussen, S.A.; Mazure, C.; Fleischmann, R.L.; Hill, C.L.; Heninger, G.R.; Charney, D.S. The yale-brown obsessive compulsive scale. I. development, use, and reliability. Arch. Gen. Psychiatry, 1989, 46(11), 1006-1011.
[http://dx.doi.org/10.1001/archpsyc.1989.01810110048007] [PMID: 2684084]
[171]
Stagi, S.; Lepri, G.; Rigante, D.; Matucci Cerinic, M.; Falcini, F. Cross-sectional evaluation of plasma vitamin D levels in a large cohort of Italian patients with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. J. Child Adolesc. Psychopharmacol., 2018, 28(2), 124-129.
[http://dx.doi.org/10.1089/cap.2016.0159] [PMID: 29112476]
[172]
Titus-Lay, E.; Eid, T.J.; Kreys, T.J.; Chu, B.X.J.; Malhotra, A. Trichotillomania associated with a 25-hydroxy vitamin D deficiency: a case report. Ment. Health Clin., 2020, 10(1), 38-43.
[http://dx.doi.org/10.9740/mhc.2020.01.038] [PMID: 31942278]
[173]
Constans, T.; Mondon, K.; Annweiler, C.; Hommet, C. Vitamin D and cognition in the elderly. Psychol. Neuropsychiatr. Vieil., 2010, 8(4), 255-262.
[http://dx.doi.org/10.1684/pnv.2010.0233] [PMID: 21147664]
[174]
Kechichian, E.; Ezzedine, K. Vitamin D and the skin: An update for dermatologists. Am. J. Clin. Dermatol., 2018, 19(2), 223-235.
[http://dx.doi.org/10.1007/s40257-017-0323-8] [PMID: 28994020]
[175]
Lee, B.K.; Eyles, D.W.; Magnusson, C.; Newschaffer, C.J.; McGrath, J.J.; Kvaskoff, D.; Ko, P.; Dalman, C.; Karlsson, H.; Gardner, R.M. Developmental vitamin D and autism spectrum disorders: findings from the Stockholm Youth Cohort. Mol. Psychiatry, 2021, 26(5), 1578-1588.
[http://dx.doi.org/10.1038/s41380-019-0578-y] [PMID: 31695167]
[176]
Harms, L.R.; Burne, T.H.; Eyles, D.W.; McGrath, J.J. Vitamin D and the brain. Best Pract. Res. Clin. Endocrinol. Metab., 2011, 25(4), 657-669.
[http://dx.doi.org/10.1016/j.beem.2011.05.009] [PMID: 21872806]
[177]
Reichrath, J.; Lehmann, B.; Carlberg, C.; Varani, J.; Zouboulis, C.C. Vitamins as hormones. Horm. Metab. Res., 2007, 39(2), 71-84.
[http://dx.doi.org/10.1055/s-2007-958715] [PMID: 17326003]
[178]
Ali, A.; Cui, X.; Eyles, D. Developmental vitamin D deficiency and autism: putative pathogenic mechanisms. J. Steroid Biochem. Mol. Biol., 2018, 175, 108-118.
[http://dx.doi.org/10.1016/j.jsbmb.2016.12.018] [PMID: 28027915]
[179]
Anjum, I.; Jaffery, S.S.; Fayyaz, M.; Samoo, Z.; Anjum, S. The role of vitamin D in brain health: a mini literature review. Cureus, 2018, 10(7), e2960.
[http://dx.doi.org/10.7759/cureus.2960] [PMID: 30214848]
[180]
Berridge, M.J. Vitamin D deficiency: infertility and neurodevelopmental diseases (attention deficit hyperactivity disorder, autism, and schizophrenia). Am. J. Physiol. Cell Physiol., 2018, 314(2), C135-C151.
[http://dx.doi.org/10.1152/ajpcell.00188.2017] [PMID: 29070492]
[181]
Cannell, J.J. Autism and vitamin D. Med. Hypotheses, 2008, 70(4), 750-759.
[http://dx.doi.org/10.1016/j.mehy.2007.08.016] [PMID: 17920208]
[182]
Máčová, L.; Bičíková, M.; Ostatníková, D.; Hill, M.; Stárka, L. Vitamin D, neurosteroids and autism. Physiol. Res., 2017, 66(Suppl. 3), S333-S340.
[http://dx.doi.org/10.33549/physiolres.933721] [PMID: 28948817]
[183]
Alzghoul, L. Role of vitamin D in autism spectrum disorder. Curr. Pharm. Des., 2019, 25(41), 4357-4367.
[http://dx.doi.org/10.2174/1381612825666191122092215] [PMID: 31755381]
[184]
Goksugur, S.B.; Tufan, A.E.; Semiz, M.; Gunes, C.; Bekdas, M.; Tosun, M.; Demircioglu, F. Vitamin D status in children with attention-deficit-hyperactivity disorder. Pediatr. Int., 2014, 56(4), 515-519.
[http://dx.doi.org/10.1111/ped.12286] [PMID: 24417979]
[185]
Guerini, F.R.; Bolognesi, E.; Chiappedi, M.; Mensi, M.M.; Fumagalli, O.; Rogantini, C.; Zanzottera, M.; Ghezzo, A.; Zanette, M.; Agliardi, C.; Costa, A.S.; Sotgiu, S.; Carta, A.; Al Daghri, N.; Clerici, M. Vitamin D receptor polymorphisms associated with autism spectrum disorder. Autism Res., 2020, 13(5), 680-690.
[http://dx.doi.org/10.1002/aur.2279] [PMID: 32083397]
[186]
Yang, H.; Wu, X. The correlation between vitamin D receptor (VDR) gene polymorphisms and autism: a meta-analysis. J. Mol. Neurosci., 2020, 70(2), 260-268.
[http://dx.doi.org/10.1007/s12031-019-01464-z] [PMID: 31900887]
[187]
Dehbokri, N.; Noorazar, G.; Ghaffari, A.; Mehdizadeh, G.; Sarbakhsh, P.; Ghaffary, S. Effect of vitamin D treatment in children with attention-deficit hyperactivity disorder. World J. Pediatr., 2019, 15(1), 78-84.
[http://dx.doi.org/10.1007/s12519-018-0209-8] [PMID: 30456564]
[188]
Gan, J.; Galer, P.; Ma, D.; Chen, C.; Xiong, T. The effect of vitamin D supplementation on attention-deficit/hyperactivity disorder: a systematic review and meta-analysis of randomized controlled trials. J. Child Adolesc. Psychopharmacol., 2019, 29(9), 670-687.
[http://dx.doi.org/10.1089/cap.2019.0059] [PMID: 31368773]
[189]
Mohammadpour, N.; Jazayeri, S.; Tehrani-Doost, M.; Djalali, M.; Hosseini, M.; Effatpanah, M.; Davari-Ashtiani, R.; Karami, E. Effect of vitamin D supplementation as adjunctive therapy to methylphenidate on ADHD symptoms: a randomized, double blind, placebo-controlled trial. Nutr. Neurosci., 2018, 21(3), 202-209.
[http://dx.doi.org/10.1080/1028415X.2016.1262097] [PMID: 27924679]
[190]
Cannell, J.J. Vitamin D and autism, what’s new? Rev. Endocr. Metab. Disord., 2017, 18(2), 183-193.
[http://dx.doi.org/10.1007/s11154-017-9409-0] [PMID: 28217829]
[191]
Pet, M.A.; Brouwer-Brolsma, E.M. The impact of maternal vitamin D status on offspring brain development and function: a systematic review. Adv. Nutr., 2016, 7(4), 665-678.
[http://dx.doi.org/10.3945/an.115.010330] [PMID: 27422502]
[192]
Vinkhuyzen, A.A.E.; Eyles, D.W.; Burne, T.H.J.; Blanken, L.M.E.; Kruithof, C.J.; Verhulst, F.; Jaddoe, V.W.; Tiemeier, H.; McGrath, J.J. Gestational vitamin D deficiency and autism-related traits: the generation R study. Mol. Psychiatry, 2018, 23(2), 240-246.
[http://dx.doi.org/10.1038/mp.2016.213] [PMID: 27895322]
[193]
Marotta, R.; Risoleo, M.C.; Messina, G.; Parisi, L.; Carotenuto, M.; Vetri, L.; Roccella, M. The neurochemistry of autism. Brain Sci., 2020, 10(3), 163.
[http://dx.doi.org/10.3390/brainsci10030163] [PMID: 32182969]
[194]
Patrick, R.P.; Ames, B.N. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J., 2014, 28(6), 2398-2413.
[http://dx.doi.org/10.1096/fj.13-246546] [PMID: 24558199]
[195]
Coentre, R.; da Silva, I.C. Symptomatic correlates of vitamin D deficiency in first-episode psychosis. Psychiatry J., 2019, 2019, 7839287.
[http://dx.doi.org/10.1155/2019/7839287] [PMID: 31187033]
[196]
Eyles, D.W.; Trzaskowski, M.; Vinkhuyzen, A.A.E.; Mattheisen, M.; Meier, S.; Gooch, H.; Anggono, V.; Cui, X.; Tan, M.C.; Burne, T.H.J.; Jang, S.E.; Kvaskoff, D.; Hougaard, D.M.; Nørgaard-Pedersen, B.; Cohen, A.; Agerbo, E.; Pedersen, C.B.; Børglum, A.D.; Mors, O.; Sah, P.; Wray, N.R.; Mortensen, P.B.; McGrath, J.J. The association between neonatal vitamin D status and risk of schizophrenia. Sci. Rep., 2018, 8(1), 17692.
[http://dx.doi.org/10.1038/s41598-018-35418-z] [PMID: 30523285]
[197]
Krivoy, A.; Onn, R.; Vilner, Y.; Hochman, E.; Weizman, S.; Paz, A.; Hess, S.; Sagy, R.; Kimhi-Nesher, S.; Kalter, E.; Friedman, T.; Friedman, Z.; Bormant, G.; Trommer, S.; Valevski, A.; Weizman, A. Vitamin D supplementation in chronic schizophrenia patients treated with clozapine: a randomized, double-blind, placebo-controlled clinical trial. EBioMedicine, 2017, 26, 138-145.
[http://dx.doi.org/10.1016/j.ebiom.2017.11.027] [PMID: 29226809]
[198]
Jarosz, A.C.; El-Sohemy, A. Association between vitamin D status and premenstrual symptoms. J. Acad. Nutr. Diet., 2019, 119(1), 115-123.
[http://dx.doi.org/10.1016/j.jand.2018.06.014] [PMID: 30177298]
[199]
McCarty, D.E. Resolution of hypersomnia following identification and treatment of vitamin d deficiency. J. Clin. Sleep Med., 2010, 6(6), 605-608.
[http://dx.doi.org/10.5664/jcsm.27996] [PMID: 21206551]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy