Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Review Article

Drug-free Nanotherapies for Cancer Treatment

Author(s): Pravin Shende* and Prashant Saini

Volume 17, Issue 3, 2021

Published on: 11 November, 2020

Page: [463 - 474] Pages: 12

DOI: 10.2174/1573413716999201111202009

Price: $65

Abstract

Background: In the diagnosis, management, and treatment of cancer, numerous technological advancements have been explored in the past few years to find better applications over the conventional treatment approaches. However, their implementation in clinical practice leads to severe and toxic effects on the healthy tissues. Drugs in the form of actives impart cytotoxic effect but concurrently produce undesirable changes on normal tissues. Moreover, serum half-life and intratumor accumulation limit an effective cancer treatment for therapeutic agents.

Objective: The objective of this review is to promote the significance of nanotherapy in cancer by strategizing drug-free macromolecules in contrast to conventional methodologies.

Methods: This unique concept covers molecularly-imprinted polymers, nanopolymer complex systems, metal nanoparticles, carbon nanotubes, quantum dots, grafted polymer-based systems, and drug-free macromolecular therapeutics for effective and selective therapeutic action.

Results: In advanced drug delivery systems, target-specific therapy indicates a great potential to improve the efficacy of therapeutics by reducing adverse events to other parts of the body but is restricted due to adverse reactions at the therapeutic site. To resolve such complications, drug-free nano therapy approaches act as an alternative system against conventional carriers for treating organspecific cancers like head, neck, lung, breast, prostate, kidney, etc.

Conclusion: The drug-free approaches in various diseases will provide an entirely new perception to avoid or reduce the side and adverse effects of drugs.

Keywords: Molecularly Imprinted Polymer, nanoparticles, photothermal, NIR, macromolecular, drug-free nanotherapy.

Graphical Abstract

[1]
Arruebo, M.; Vilaboa, N.; Sáez-Gutierrez, B.; Lambea, J.; Tres, A.; Valladares, M.; González-Fernández, A. Assessment of the evolution of cancer treatment therapies. Cancers (Basel), 2011, 3(3), 3279-3330..
[http://dx.doi.org/10.3390/cancers3033279] [PMID: 24212956]
[2]
Li, X.; Wang, L.; Fan, Y.; Feng, Q.; Cui, F. Biocompatibility and Toxicity of Nanoparticles and Nanotubes. J. Nanomater., 2012., 548389.
[http://dx.doi.org/10.1155/2012/548389]
[3]
Chhetri, P.; Giri, A.; Pramo, K.C. Current Development of Anti-Cancer Drug S-1. J. clin. Diagn., 2016, 11, XE01-XE05.
[4]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[5]
Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg., 2019, 6(1), 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[6]
Braga, B.C.; Kido, L.A.; Lima, N.L.; Lamas, C.A.; Cagnon, V.H.A.; Ornelas, C.; Pilli, R.A. Enhancing the Anticancer Activity and Selectivity of Goniothalamin Using pH-Sensitive Acetalated Dextran (Ac-Dex) Nanoparticles: A Promising Platform for Delivery of Natural Compounds. ACS Biomater. Sci. Eng., 2020, 6(5), 2929-2942.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00057]
[7]
Shende, P.; Desai, D. Drug-free cyclodextrin-based nanosponges for antimicrobial activity. J. Pharm. Innov., 2020.
[http://dx.doi.org/10.1007/s12247-020-09442-4]
[8]
Masui, K.; Gini, B.; Wykosky, J.; Zanca, C.; Mischel, P.S.; Furnari, F.B.; Cavenee, W.K. A tale of two approaches: complementary mechanisms of cytotoxic and targeted therapy resistance may inform next-generation cancer treatments. Carcinogenesis, 2013, 34(4), 725-738.
[http://dx.doi.org/10.1093/carcin/bgt086] [PMID: 23455378]
[9]
Saito, E.; Kuo, R.; Pearson, R.M.; Gohel, N.; Cheung, B.; King, N.J.C.; Miller, S.D.; Shea, L.D. Designing drug-free biodegradable nanoparticles to modulate inflammatory monocytes and neutrophils for ameliorating inflammation. J. Control. Release, 2019, 300, 185-196.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.025] [PMID: 30822435]
[10]
Deshmukh, K.; Tanwar, Y.S.; Shende, P.; Cavalli, R. Biomimetic estimation of glucose using non-molecular and molecular imprinted polymer nanosponges. Int. J. Pharm., 2015, 494(1), 244-248.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.022] [PMID: 26276257]
[11]
Tse Sum Bui, B.; Haupt, K. Molecularly imprinted polymers: synthetic receptors in bioanalysis. Anal. Bioanal. Chem., 2010, 398(6), 2481-2492.
[http://dx.doi.org/10.1007/s00216-010-4158-x] [PMID: 20845034]
[12]
Vasapollo, G.; Sole, R.D.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly imprinted polymers: present and future prospective. Int. J. Mol. Sci., 2011, 12(9), 5908-5945.
[http://dx.doi.org/10.3390/ijms12095908] [PMID: 22016636]
[13]
Frasco, M.F.; Truta, L.A.; Sales, M.G.; Moreira, F.T. Imprinting Technology in Electrochemical Biomimetic Sensors. Sensors (Basel), 2017, 17(3), 523.
[http://dx.doi.org/10.3390/s17030523] [PMID: 28272314]
[14]
Yan, H.; Row, K.H. Characteristic and Synthetic Approach of Molecularly Imprinted Polymer. Int. J. Mol. Sci., 2006, 7(5), 155-178.
[http://dx.doi.org/10.3390/i7050155]
[15]
Zhang, Y.; Deng, C.; Liu, S.; Wu, J.; Chen, Z. Li, Chong.; Lu, W. Active Targeting of Tumors through Conformational Epitope Imprinting. Angew. Chem., 2015, 127(17), 5157-5160.
[http://dx.doi.org/10.1002/anie.201412114]
[16]
Tang, X.; Li, F.; Jia, J.; Yang, C.; Liu, W.; Jin, B.; Wang, X.; Gao, R.; He, D.; Guo, P. Synthesis of magnetic molecularly imprinted polymers with excellent biocompatibility for the selective separation and inhibition of testosterone in prostate cancer cells., Int. J. nanomed., 2017, 12, 2979-2993..
[17]
Hostettler, I.F.; Rhum, D.; Forman, M.R.; Michael, N. United States Patent subiect,. 2001.
[18]
Bagheri, N.; Habibi, B.; Khataee, A.; Hassanzadeh, J. Application of surface molecular imprinted magnetic graphene oxide and high performance mimetic behavior of bi-metal ZnCo MOF for determination of atropine in human serum. Talanta, 2019, 201, 286-294.
[http://dx.doi.org/10.1016/j.talanta.2019.04.023] [PMID: 31122425]
[19]
Abnous, K.; Danesh, N.M.; Ramezani, M.; Yazdian-Robati, R.; Alibolandi, M.; Taghdisi, S.M. A novel chemotherapy drug-free delivery system composed of three therapeutic aptamers for the treatment of prostate and breast cancers in vitro and in vivo. Nanomedicine (Lond.), 2017, 13(6), 1933-1940.
[http://dx.doi.org/10.1016/j.nano.2017.04.002] [PMID: 28414074]
[20]
Piao, J.G.; Gao, F.; Yang, L. Acid-Responsive Therapeutic Polymer for Prolonging Nanoparticle Circulation Lifetime and Destroying Drug-Resistant Tumors. ACS Appl. Mater. Interfaces, 2016, 8(1), 936-944.
[http://dx.doi.org/10.1021/acsami.5b10550] [PMID: 26654626]
[21]
Sharma, A.; Goyal, A.K.; Rath, G. Recent advances in metal nanoparticles in cancer therapy. J. Drug Target., 2018, 26(8), 617-632.
[http://dx.doi.org/10.1080/1061186X.2017.1400553] [PMID: 29095640]
[22]
Porcel, E.; Liehn, S.; Remita, H.; Usami, N.; Kobayashi, K.; Furusawa, Y.Le Sech.; S, Lacombe. Platinum nanoparticles: a promising material for future cancer therapy. Nanotech, 2010, 21(8), 085103.
[http://dx.doi.org/10.1088/0957-4484/21/8/085103]
[23]
Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[24]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[25]
Muddineti, O.S.; Ghosh, B.; Biswas, S. Current trends in using polymer coated gold nanoparticles for cancer therapy. Int. J. Pharm., 2015, 484(1-2), 252-267.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.038] [PMID: 25701627]
[26]
Darwish, W.M.; Abdoon, A.S.; Shata, M.S.; Elmansy, M. Vincristine-loaded polymeric corona around gold nanorods for combination (chemo-photothermal) therapy of oral squamous carcinoma. React. Funct. Polym., 2020., 151104575.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104575]
[27]
Liu, Y.; Crawford, B.M.; Vo-Dinh, T. Gold nanoparticles-mediated photothermal therapy and immunotherapy. Immunotherapy, 2018, 10(13), 1175-1188.
[http://dx.doi.org/10.2217/imt-2018-0029] [PMID: 30236026]
[28]
Parida, S.; Maiti, C.; Rajesh, Y.; Dey, K.K.; Pal, I.; Parekh, A.; Patra, R.; Dhara, D.; Dutta, P.K.; Mandal, M. Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(1 Pt A), 3039-3052.
[http://dx.doi.org/10.1016/j.bbagen.2016.10.004] [PMID: 27721046]
[29]
Jain, S.; Hirst, D.G.; O’Sullivan, J.M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol., 2012, 85(1010), 101-113.
[http://dx.doi.org/10.1259/bjr/59448833] [PMID: 22010024]
[30]
Chen, C.H.; Wu, Y.J.; Chen, J.J. Gold Nanotheranostics: Photothermal Therapy and Imaging of Mucin 7 Conjugated Antibody Nanoparticles for Urothelial cancer; Biomed; Res. Inter, 2015, p. 813632.
[31]
Liu, J.; Liang, Y.; Liu, T.; Li, D.; Yang, X. Anti-EGFR-Conjugated Hollow Gold Nanospheres Enhance Radiocytotoxic Targeting of Cervical Cancer at Megavoltage Radiation Energies. Nanoscale Res. Lett., 2015, 10, 218.
[http://dx.doi.org/10.1186/s11671-015-0923-2] [PMID: 25995714]
[32]
Puvanakrishnan, P.; Park, J.; Diagaradjane, P.; Schwartz, J.A.; Coleman, C.L.; Gill-Sharp, K.L.; Sang, K.L.; Payne, J.D.; Krishnan, S.; Tunnell, J.W. Near-infrared narrow-band imaging of gold/silica nanoshells in tumors. J. Biomed. Opt., 2009, 14(2), 024044.
[http://dx.doi.org/10.1117/1.3120494] [PMID: 19405772]
[33]
Carpin, L.B.; Bickford, L.R.; Agollah, G.; Yu, T-K.; Schiff, R.; Li, Y.; Drezek, R.A. Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells. Breast Cancer Res. Treat., 2011, 125(1), 27-34.
[http://dx.doi.org/10.1007/s10549-010-0811-5] [PMID: 20217215]
[34]
Stern, J.M.; Stanfield, J.; Kabbani, W.; Hsieh, J-T.; Cadeddu, J.A. Selective prostate cancer thermal ablation with laser activated gold nanoshells. J. Urol., 2008, 179(2), 748-753.
[http://dx.doi.org/10.1016/j.juro.2007.09.018] [PMID: 18082199]
[35]
Huang, Y. C.; Yang, Y. C.; Yang, K. C.; Shieh, H. R.; Wang, T. Y.; Hwu, Y.; Chen, Y. J. Pegylated gold nanoparticles induce apoptosis in human chronic myeloid leukemia cells. BioMed. Res. inter., 2014, 182353.,
[36]
Ali, M.R.K.; Wu, Y.; Tang, Y.; Xiao, H.; Chen, K.; Han, T.; Fang, N.; Wu, R.; El-Sayed, M.A. Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins. Proc. Natl. Acad. Sci. USA, 2017, 114(28), E5655-E5663.
[http://dx.doi.org/10.1073/pnas.1703151114] [PMID: 28652358]
[37]
Choi, J.; Park, Y.; Choi, E.B.; Kim, H.O.; Kim, D.J.; Hong, Y.; Ryu, S.H.; Lee, J.H.; Suh, J.S.; Yang, J.; Huh, Y.M.; Haam, S. Aptamer-conjugated gold nanorod for photothermal ablation of epidermal growth factor receptor-overexpressed epithelial cancer. J. Biomed. Opt., 2014, 19(5), 051203.
[http://dx.doi.org/10.1117/1.JBO.19.5.051203] [PMID: 24297058]
[38]
Du, C.; Wang, A.; Fei, J.; Zhao, J.; Li, J. Polypyrrole-stabilized gold nanorods with enhanced photothermal effect towards two-photon photothermal therapy. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(22), 4539-4545.
[http://dx.doi.org/10.1039/C5TB00560D] [PMID: 32262398]
[39]
El-Sayed, I.H.; Huang, X.; El-Sayed, M.A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett., 2006, 239(1), 129-135.
[http://dx.doi.org/10.1016/j.canlet.2005.07.035] [PMID: 16198049]
[40]
Chen, C.H.; Wu, Y.J.; Chen, J.J. Gold nanotheranostics: photothermal therapy and imaging of Mucin 7 conjugated antibody nanoparticles for urothelial cancer. BioMed Res. Int., 2015., 2015813632.
[http://dx.doi.org/10.1155/2015/813632] [PMID: 25834826]
[41]
Liu, T.; Tian, J.; Chen, Z.; Liang, Y.; Liu, J.; Liu, S.; Li, H.; Zhan, J.; Yang, X. Anti-TROP2 conjugated hollow gold nanospheres as a novel nanostructure for targeted photothermal destruction of cervical cancer cells. Nanotechnology, 2014, 25(34), 345103.
[http://dx.doi.org/10.1088/0957-4484/25/34/345103] [PMID: 25102337]
[42]
Zhang, X.D.; Wu, D.; Shen, X.; Chen, J.; Sun, Y.M.; Liu, P.X.; Liang, X.J. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials, 2012, 33(27), 6408-6419.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.047] [PMID: 22681980]
[43]
O’Neal, D.P.; Hirsch, L.R.; Halas, N.J.; Payne, J.D.; West, J.L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett., 2004, 209(2), 171-176.
[http://dx.doi.org/10.1016/j.canlet.2004.02.004] [PMID: 15159019]
[44]
Hirsch, L.R.; Stafford, R.J.; Bankson, J.A.; Sershen, S.R.; Rivera, B.; Price, R.E.; Hazle, J.D.; Halas, N.J.; West, J.L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA, 2003, 100(23), 13549-13554.
[http://dx.doi.org/10.1073/pnas.2232479100] [PMID: 14597719]
[45]
Iancu, C. Photothermal therapy of human cancers (PTT) using gold nanoparticles. Biotechnol. Mol. Biol. Nanomed., 2013, 1, 53-60.
[46]
Stern, J.M.; Stanfield, J.; Lotan, Y.; Park, S.; Hsieh, J.T.; Cadeddu, J.A. Efficacy of laser-activated gold nanoshells in ablating prostate cancer cells in vitro. J. Endourol., 2007, 21(8), 939-943.
[http://dx.doi.org/10.1089/end.2007.0437] [PMID: 17867958]
[47]
Dickerson, E.B.; Dreaden, E.C.; Huang, X.; El-Sayed, I.H.; Chu, H.; Pushpanketh, S.; McDonald, J.F.; El-Sayed, M.A. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett., 2008, 269(1), 57-66.
[http://dx.doi.org/10.1016/j.canlet.2008.04.026] [PMID: 18541363]
[48]
Pitsillides, C.M.; Joe, E.K.; Wei, X.; Anderson, R.R.; Lin, C.P. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J., 2003, 84(6), 4023-4032.
[http://dx.doi.org/10.1016/S0006-3495(03)75128-5] [PMID: 12770906]
[49]
Paino, I.M.M.; Zucolotto, V. Poly(vinyl alcohol)-coated silver nanoparticles: activation of neutrophils and nanotoxicology effects in human hepatocarcinoma and mononuclear cells. Environ. Toxicol. Pharmacol., 2015, 39(2), 614-621.
[http://dx.doi.org/10.1016/j.etap.2014.12.012] [PMID: 25681999]
[50]
Guo, D.; Zhu, L.; Huang, Z.; Zhou, H.; Ge, Y.; Ma, W.; Wu, J.; Zhang, X.; Zhou, X.; Zhang, Y.; Zhao, Y.; Gu, N. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials, 2013, 34(32), 7884-7894.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.015] [PMID: 23876760]
[51]
Alexandro, M.F.; Monteiro, J.P.; Bonafé, E.G.; Gerola, A.P.; Silva, C.T.; Girotto, E.M.; Rubira, A.F.; Muniz, E.C. Bactericidal activity of hydrogel beads based on N, N, N-trimethyl chitosan/alginate complexes loaded with silver nanoparticles. Chin. Chem. Lett., 2015, 26, 1129-1132.
[http://dx.doi.org/10.1016/j.cclet.2015.04.032]
[52]
Boca, S.C.; Potara, M.; Gabudean, A.M.; Juhem, A.; Baldeck, P.L.; Astilean, S. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Lett., 2011, 311(2), 131-140.
[http://dx.doi.org/10.1016/j.canlet.2011.06.022] [PMID: 21840122]
[53]
Bastos, V.; Ferreira de Oliveira, J.M.; Brown, D.; Jonhston, H.; Malheiro, E.; Daniel-da-Silva, A.L.; Duarte, I.F.; Santos, C.; Oliveira, H. The influence of Citrate or PEG coating on silver nanoparticle toxicity to a human keratinocyte cell line. Toxicol. Lett., 2016, 249, 29-41.
[http://dx.doi.org/10.1016/j.toxlet.2016.03.005] [PMID: 27021274]
[54]
Gliga, A.R.; Skoglund, S.; Wallinder, I.O.; Fadeel, B.; Karlsson, H.L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol., 2014, 11, 11.
[http://dx.doi.org/10.1186/1743-8977-11-11] [PMID: 24529161]
[55]
Caballero-Díaz, E.; Pfeiffer, C.; Kastl, L. RiveraGil, P.; Simonet, B.; Valcárcel, M.; JiménezLamana, J.; Laborda, F.; Parak, W. J. The toxicity of silver nanoparticles depends on their uptake by cells and thus on their surface chemistry. Part. Part. Syst. Charact., 2013, 30, 1079-1085.
[http://dx.doi.org/10.1002/ppsc.201300215]
[56]
Arias, L.S.; Pessan, J.P.; Vieira, A.P.M.; Lima, T.M.T.; Delbem, A.C.B.; Monteiro, D.R. Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics (Basel), 2018, 7(2), 46.
[http://dx.doi.org/10.3390/antibiotics7020046] [PMID: 29890753]
[57]
Kolosnjaj-Tabi, J.; Di Corato, R.; Lartigue, L.; Marangon, I.; Guardia, P.; Silva, A.K.; Luciani, N.; Clément, O.; Flaud, P.; Singh, J.V.; Decuzzi, P.; Pellegrino, T.; Wilhelm, C.; Gazeau, F. Heat-generating iron oxide nanocubes: subtle “destructurators” of the tumoral microenvironment. ACS Nano, 2014, 8(5), 4268-4283.
[http://dx.doi.org/10.1021/nn405356r] [PMID: 24738788]
[58]
Espinosa, A.; Di Corato, R.; Kolosnjaj-Tabi, J.; Flaud, P.; Pellegrino, T.; Wilhelm, C. Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano, 2016, 10(2), 2436-2446.
[http://dx.doi.org/10.1021/acsnano.5b07249] [PMID: 26766814]
[59]
Alili, L.; Sack, M.; Karakoti, A.S.; Teuber, S.; Puschmann, K.; Hirst, S.M.; Reilly, C.M.; Zanger, K.; Stahl, W.; Das, S.; Seal, S.; Brenneisen, P. Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor-stroma interactions. Biomaterials, 2011, 32(11), 2918-2929.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.056] [PMID: 21269688]
[60]
Copper, C.H.; Yan, B.; Lu, W. Combinatorial photothermal and immuno cancer therapy using sulfide nanoparticles. ACS Nano, 2015, 6, 5670-5681.
[PMID: 24801008]
[61]
Huang, Y.; Lai, Y.; Shi, S.; Hao, S.; Wei, J.; Chen, X. Copper sulfide nanoparticles with phospholipid-PEG coating for in vivo near-infrared photothermal cancer therapy. Chem. Asian J., 2015, 10(2), 370-376.
[http://dx.doi.org/10.1002/asia.201403133] [PMID: 25425287]
[62]
You, D.G.; Deepagan, V.G.; Um, W.; Jeon, S.; Son, S.; Chang, H.; Yoon, H.I.; Cho, Y.W.; Swierczewska, M.; Lee, S.; Pomper, M.G.; Kwon, I.C.; Kim, K.; Park, J.H. ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Sci. Rep., 2016, 6, 23200.
[http://dx.doi.org/10.1038/srep23200] [PMID: 26996446]
[63]
Nasr, R.; Hasanzadeh, H.; Khaleghian, A.; Moshtaghian, A.; Emadi, A.; Moshfegh, S. Induction of apoptosis and inhibition of invasion in gastric cancer cells by titanium dioxide nanoparticles. Oman Med. J., 2018, 33(2), 111-117.
[http://dx.doi.org/10.5001/omj.2018.22] [PMID: 29657679]
[64]
Byeon, J.H. Scalable hybrid chemical manufacture to photothermal therapy: PEG-capped phototransducers. Sci. Rep., 2016, 6, 31351.
[http://dx.doi.org/10.1038/srep31351] [PMID: 27506291]
[65]
Vinardell, M.P.; Mitjans, M. Antitumor activities of metal oxide nanoparticles. Nanomaterials (Basel), 2015, 5(2), 1004-1021.
[http://dx.doi.org/10.3390/nano5021004] [PMID: 28347048]
[66]
Alili, L.; Sack, M.; von Montfort, C.; Giri, S.; Das, S.; Carroll, K.; Zanger, K.; Seal, S.; Brenneisen, P. Downregulation of tumor growth and invasion by redox-active nanoparticles., Antiox red. sign., 2013, 19, 765-778..
[67]
Inbasekar, C.; Fathima, N.N. Collagen stabilization using ionic liquid functionalised cerium oxide nanoparticle. Int. J. Biol. Macromol., 2020, 147, 24-28.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.271] [PMID: 31904464]
[68]
Alpaslan, E.; Yazici, H.; Golshan, N.H.; Ziemer, K.S.; Webster, T.J. pH-dependent activity of dextran-coated cerium oxide nanoparticles on prohibiting osteosarcoma cell proliferation. ACS Biomater. Sci. Eng., 2015, 1, 1096-1103.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00194]
[69]
Hong, C.; Lee, J.; Zheng, H.; Hong, S.S.; Lee, C. Porous silicon nanoparticles for cancer photothermotherapy. Nanoscale Res. Lett., 2011, 6(1), 321.
[http://dx.doi.org/10.1186/1556-276X-6-321] [PMID: 21711834]
[70]
Shahbazi, M.A.; Almeida, P.V.; Mäkilä, E.M.; Kaasalainen, M.H.; Salonen, J.J.; Hirvonen, J.T.; Santos, H.A. Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering. Biomaterials, 2014, 35(26), 7488-7500.
[http://dx.doi.org/10.1016/j.biomaterials.2014.05.020] [PMID: 24906344]
[71]
Sobhani, Z.; Behnam, M. A.; Emami, F.; Dehghanian, A.; Jamhiri, I. Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes., Intern. J. nanomed., 2017, 12, 509..
[72]
Robinson, J.T.; Welsher, K.; Tabakman, S.M.; Sherlock, S.P.; Wang, H.; Luong, R.; Dai, H. High performance in vivo near-IR (> 1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res., 2010, 3(11), 779-793.
[http://dx.doi.org/10.1007/s12274-010-0045-1] [PMID: 21804931]
[73]
Zhou, F.; Xing, D.; Ou, Z.; Wu, B.; Resasco, D.E.; Chen, W.R. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Opt., 2009, 14(2), 021009.
[http://dx.doi.org/10.1117/1.3078803] [PMID: 19405722]
[74]
Zhang, W.; Kong, Y.; Jin, X.; Yan, B.; Diao, G.; Piao, Y. Supramolecule assisted synthesis of cyclodextrin polymer functionalized polyaniline/carbon nanotube with core-shell nanostructure as high-performance supercapacitor material. Electrochim. Acta, 2019., 331135345.
[http://dx.doi.org/10.1016/j.electacta.2019.135345]
[75]
Mocan, T.; Matea, C.T.; Cojocaru, I.; Ilie, I.; Tabaran, F.A.; Zaharie, F.; Iancu, C.; Bartos, D.; Mocan, L. Photothermal treatment of human pancreatic cancer using PEGylated multi-walled carbon nanotubes induces apoptosis by triggering mitochondrial membrane depolarization mechanism. J. Cancer, 2014, 5(8), 679-688.
[http://dx.doi.org/10.7150/jca.9481] [PMID: 25258649]
[76]
Wang, S.; Zhang, Q.; Yang, P.; Yu, X.; Huang, L.Y.; Shen, S.; Cai, S. Manganese oxide-coated carbon nanotubes as dual-modality lymph mapping agents for photothermal therapy of tumor metastasis. ACS Appl. Mater. Interfaces, 2016, 8(6), 3736-3743.
[http://dx.doi.org/10.1021/acsami.5b08087] [PMID: 26653008]
[77]
Guo, W.; Qiu, Z.; Guo, C.; Ding, D.; Li, T.; Wang, F.; Sun, J.; Zheng, N.; Liu, S. Multifunctional theranostic agent of Cu2 (OH) PO4 quantum dots for photoacoustic image-guided photothermal/photodynamic combination cancer therapy. ACS Appl. Mater. Interfaces, 2017, 9(11), 9348-9358.
[http://dx.doi.org/10.1021/acsami.6b15703] [PMID: 28248076]
[78]
Tao, W.; Ji, X.; Xu, X.; Islam, M.A.; Li, Z.; Chen, S.; Saw, P.E.; Zhang, H.; Bharwani, Z.; Guo, Z.; Shi, J.; Farokhzad, O.C. Antimonene quantum dots: synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew. Chem. Int. Ed. Engl., 2017, 56(39), 11896-11900.
[http://dx.doi.org/10.1002/anie.201703657] [PMID: 28640986]
[79]
Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.T.; Liu, Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, 10(9), 3318-3323.
[http://dx.doi.org/10.1021/nl100996u] [PMID: 20684528]
[80]
Markovic, Z.M.; Harhaji-Trajkovic, L.M.; Todorovic-Markovic, B.M.; Kepić, D.P.; Arsikin, K.M.; Jovanović, S.P.; Pantovic, A.C.; Dramićanin, M.D.; Trajkovic, V.S. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials, 2011, 32(4), 1121-1129.
[http://dx.doi.org/10.1016/j.biomaterials.2010.10.030] [PMID: 21071083]
[81]
Lu, M.; Huang, Y. Bioinspired exosome-like therapeutics and delivery nanoplatforms. Biomaterials, 2020., 242119925.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119925] [PMID: 32151860]
[82]
Greish, K.; Fang, J.; Inutsuka, T.; Nagamitsu, A.; Maeda, H. Macromolecular Therapeutics Tumour Targeting. Clin. Pharmacokinet., 2013, 42, 1089-1105.
[http://dx.doi.org/10.2165/00003088-200342130-00002] [PMID: 14531722]
[83]
Roccaro, A.M.; Sacco, A.; Purschke, W.G.; Moschetta, M.; Buchner, K.; Maasch, C.; Zboralski, D.; Zöllner, S.; Vonhoff, S.; Mishima, Y.; Maiso, P.; Reagan, M.R.; Lonardi, S.; Ungari, M.; Facchetti, F.; Eulberg, D.; Kruschinski, A.; Vater, A.; Rossi, G.; Klussmann, S.; Ghobrial, I.M. SDF-1 inhibition targets the bone marrow niche for cancer therapy. Cell Rep., 2014, 9(1), 118-128.
[http://dx.doi.org/10.1016/j.celrep.2014.08.042] [PMID: 25263552]
[84]
Lu, Z.; Li, Y.; Liu, T.; Wang, G.; Sun, M.; Jiang, Y.; Rao, H. A dual-template imprinted polymer electrochemical sensor based on AuNPs and nitrogen-doped graphene oxide quantum dots coated on NiS2/biomass carbon for simultaneous determination of dopamine and chlorpromazine. Chem. Eng. J., 2020.124417.
[http://dx.doi.org/10.1016/j.cej.2020.124417]
[85]
Madikizela, L.; Tavengwa, N.; Pakade, V. Molecularly Imprinted Polymers for Pharmaceutical Compounds: Synthetic Procedures and Analytical Applications. Rec. Res. Polymer., 2018, 44-46.
[86]
Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for Drug Delivery Systems. Annu. Rev. Chem. Biomol. Eng., 2010, 1(1), 149-173.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100847]
[87]
Yang, J.; Fan, L.; Xu, Y.; Xia, J. Iron oxide nanoparticles with different polymer coatings for photothermal therapy. J. Nanopart. Res., 2017, 19(10), 1-12.
[http://dx.doi.org/10.1007/s11051-017-4031-3]
[88]
Bouadjela, S.; Abdoune, F.Z.; Benmoussa, N.; Mechernene, L.; Rahmoun, K.; Maschke, U. Effect of titanium dioxide nanoparticles on polymer network formation. Spectrosc. Lett., 2017, 50(10), 522-527.
[http://dx.doi.org/10.1080/00387010.2017.1378683]
[89]
Zuidema, J.; Bertucci, A.; Kang, J.; Sailor, M.J.; Ricci, F. Hybrid Polymer/Porous Silicon Nanofibers for Loading and Sustained Release of Synthetic DNA-based Responsive Devices; Nanoscl, 2020, pp. 1-9.
[90]
Ng, L.Y.; Mohammad, A.W.; Leo, C.P.; Hilal, N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination, 2013, 308, 15-33.
[http://dx.doi.org/10.1016/j.desal.2010.11.033]
[91]
Szleifer, I.; Yerushalmi-Rozen, R. Polymers and carbon nanotubes—dimensionality, interactions and nanotechnology. Polymer (Guildf.), 2005, 46(19), 7803-7818.
[http://dx.doi.org/10.1016/j.polymer.2005.05.104]
[92]
Maiti, D.; Tong, X.; Mou, X.; Yang, K. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front. Pharmacol., 2019, 9, 1401.
[http://dx.doi.org/10.3389/fphar.2018.01401] [PMID: 30914959]
[93]
Chu, T.W.; Kopeček, J. Drug-free macromolecular therapeutics–a new paradigm in polymeric nanomedicines. Biomater. Sci., 2015, 3(7), 908-922.
[http://dx.doi.org/10.1039/C4BM00442F] [PMID: 26191406]
[94]
Wu, K.; Liu, J.; Johnson, R.N.; Yang, J.; Kopeček, J. Drug-free macromolecular therapeutics: induction of apoptosis by coiled-coil-mediated cross-linking of antigens on the cell surface. Angew. Chem. Int. Ed. Engl., 2010, 49(8), 1451-1455.
[http://dx.doi.org/10.1002/anie.200906232] [PMID: 20101660]
[95]
[96]
Wu, K.; Yang, J.; Liu, J.; Kopeček, J. Coiled-coil based drug-free macromolecular therapeutics: in vivo efficacy. J. Control. Release, 2012, 157(1), 126-131.
[http://dx.doi.org/10.1016/j.jconrel.2011.08.002] [PMID: 21843563]
[97]
van der Kolk, L.E.; Grillo-López, A.J.; Baars, J.W.; Hack, C.E.; van Oers, M.H.J. Complement activation plays a key role in the side-effects of rituximab treatment. Br. J. Haematol., 2001, 115(4), 807-811.
[http://dx.doi.org/10.1046/j.1365-2141.2001.03166.x] [PMID: 11843813]
[98]
Allison, M. PML problems loom for Rituxan. Nat. Biotechnol., 2010, 28(2), 105-106.
[http://dx.doi.org/10.1038/nbt0210-105] [PMID: 20139927]
[99]
Cartron, G.; Dacheux, L.; Salles, G.; Solal-Celigny, P.; Bardos, P.; Colombat, P.; Watier, H. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood, 2002, 99(3), 754-758.
[http://dx.doi.org/10.1182/blood.V99.3.754] [PMID: 11806974]
[100]
Smith, M.R. Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene, 2003, 22(47), 7359-7368.
[http://dx.doi.org/10.1038/sj.onc.1206939] [PMID: 14576843]
[101]
Li, L.; Yang, J.; Wang, J.; Kopeček, J. Amplification of CD20 Cross-Linking in Rituximab-Resistant B-Lymphoma Cells Enhances Apoptosis Induction by Drug-Free Macromolecular Therapeutics. ACS Nano, 2018, 12(4), 3658-3670.
[http://dx.doi.org/10.1021/acsnano.8b00797] [PMID: 29595951]
[102]
Nakayama, M.; Yamashita, Y.; Mitsuzaki, K.; Yi, T.; Arakawa, A.; Katahira, K.; Nakayama, Y.; Takahashi, M. Improved tissue characterization of focal liver lesions with ferumoxide-enhanced T1 and T2-weighted MR imaging. J. Magn. Reson. Imaging, 2000, 11(6), 647-654.
[http://dx.doi.org/10.1002/1522-2586(200006)11:6<647:AID-JMRI11>3.0.CO;2-F] [PMID: 10862064]
[103]
Taruno, K.; Kurita, T.; Kuwahata, A.; Yanagihara, K.; Enokido, K.; Katayose, Y.; Nakamura, S.; Takei, H.; Sekino, M.; Kusakabe, M. Multicenter clinical trial on sentinel lymph node biopsy using superparamagnetic iron oxide nanoparticles and a novel handheld magnetic probe. J. Surg. Oncol., 2019, 120(8), 1391-1396.
[http://dx.doi.org/10.1002/jso.25747] [PMID: 31667855]
[104]
Li, L.; Yang, J.; Wang, J.; Kopeček, J. Drug-Free Macromolecular Therapeutics Induce Apoptosis via Calcium Influx and Mitochondrial Signaling Pathway. Macromol. Biosci., 2018, 18(1), 1-13.
[http://dx.doi.org/10.1002/mabi.201700196] [PMID: 28805013]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy