Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Stachydrine Inhibits PC12 Cell Apoptosis Induced by Aβ25-35 in an in vitro Cell Model of Neurocognitive Disorders

Author(s): Huan Fu, Mei Liu, Jinxiu Yan, Na Zhao and Liangchao Qu*

Volume 18, Issue 5, 2021

Published on: 10 November, 2020

Page: [480 - 489] Pages: 10

DOI: 10.2174/1570180817999201110115007

Price: $65

Abstract

Background: Abnormal deposition of amyloid beta (Aβ) is considered the primary cause of neurocognitive disorders (NCDs). Inhibiting cytotoxicity is an important aspect of the treatment of NCDs. Stachydrine (STA) has been widely used for gynecological and cardiovascular disorders. However, whether STA has protective functions in PC12 cells treated with Aβ25-35 remains unclear.

Introduction: Traditional Chinese Medicine, stachydrine (STA), is a water-soluble alkaloid of Leonurus heterophyllus, which can inhibit cell apoptosis, suppress tumor growth, maintain homeostasis of myocardial cells, and alleviate endothelial dysfunction. This study will investigate the effect of STA on inhibiting PC12 cell apoptosis induced by Aβ25-35 in an in vitro cell model of neurocognitive disorders.

Methods: The differentially expressed genes (DEGs) in cells treated with STA were analyzed according to the Gene Expression Omnibus (GSE) 85871 data, and the STITCH database was used to identify the target genes of STA. PC12 cells were treated with Aβ25-35 and/or STA, 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed and lactate dehydrogenase (LDH) activity was determined. The cell cycle distribution was detected by flow cytometry, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) or Western blotting were used to detect the expression of genes or proteins.

Results: GSE85871 data showed 37 upregulated and 48 downregulated genes among the DEGs affected by STA. The results from the STITCH database showed that RPS8 and EED were target genes of STA. GSE1297 analysis showed the 13 most significantly upregulated genes. STA might affect the occurrence of NCDs through the interaction of TP53 with EED and RPS8. Finally, Aβ25-35 promoted apoptosis and LDH release of PC-12 cells, arrested the cell cycle in the G2/M phase, and inhibited the expression of the RPS8, EED, Bcl-2 and P53 genes. STA could reverse the effect of Aβ25-35.

Conclusion: STA may play an important role in inhibiting apoptosis induced by Aβ25-35 by targeting the RPS8 and EED genes in the NCDs model in vitro.

Keywords: Stachydrine, neurocognitive disorders, PC-12, apoptosis, 25-35, in vitro, traditional chinese medicine.

Graphical Abstract

[1]
Querfurth, H.W.; LaFerla, F.M. Alzheimer’s disease. N. Engl. J. Med., 2010, 362(4), 329-344.
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[2]
Blazer, D. Neurocognitive disorders in DSM-5. Am. J. Psychiatry, 2013, 170(6), 585-587.
[http://dx.doi.org/10.1176/appi.ajp.2013.13020179] [PMID: 23732964]
[3]
Association Association. 2019 Alzheimer’s disease facts and figures. Alzheimers Dement., 2019, 15(3), 321-387.
[http://dx.doi.org/10.1016/j.jalz.2019.01.010]
[4]
Blasko, I.; Wagner, M.; Whitaker, N.; Grubeck-Loebenstein, B.; Jansen-Dürr, P. The amyloid β peptide abeta (25-35) induces apoptosis independent of p53. FEBS Lett., 2000, 470(2), 221-225.
[http://dx.doi.org/10.1016/S0014-5793(00)01323-5] [PMID: 10734238]
[5]
Naldi, M.; Fiori, J.; Pistolozzi, M.; Drake, A.F.; Bertucci, C.; Wu, R.; Mlynarczyk, K.; Filipek, S.; De Simone, A.; Andrisano, V. Amyloid β-peptide 25-35 self-assembly and its inhibition: A model undecapeptide system to gain atomistic and secondary structure details of the Alzheimer’s disease process and treatment. ACS Chem. Neurosci., 2012, 3(11), 952-962.
[http://dx.doi.org/10.1021/cn3000982] [PMID: 23173074]
[6]
Assis-Nascimento, P.; Jarvis, K.M.; Montague, J.R.; Mudd, L.M. Beta-amyloid toxicity in embryonic rat astrocytes. Neurochem. Res., 2007, 32(9), 1476-1482.
[http://dx.doi.org/10.1007/s11064-007-9335-8] [PMID: 17406977]
[7]
Li, Y-P.; Bushnell, A.F.; Lee, C-M.; Perlmutter, L.S.; Wong, S.K. β-amyloid induces apoptosis in human-derived neurotypic SH-SY5Y cells. Brain Res., 1996, 738(2), 196-204.
[http://dx.doi.org/10.1016/S0006-8993(96)00733-0] [PMID: 8955513]
[8]
Dickson, D.W. Apoptotic mechanisms in Alzheimer neurofibrillary degeneration: Cause or effect? J. Clin. Invest., 2004, 114(1), 23-27.
[http://dx.doi.org/10.1172/JCI22317] [PMID: 15232608]
[9]
Calissano, P.; Matrone, C.; Amadoro, G. Apoptosis and in vitro Alzheimer disease neuronal models. Commun. Integr. Biol., 2009, 2(2), 163-169.
[http://dx.doi.org/10.4161/cib.7704] [PMID: 19513272]
[10]
Wang, J.; Gu, B.J.; Masters, C.L.; Wang, Y.J. A systemic view of Alzheimer disease - insights from amyloid-β metabolism beyond the brain. Nat. Rev. Neurol., 2017, 13(10), 612-623.
[http://dx.doi.org/10.1038/nrneurol.2017.111] [PMID: 28960209]
[11]
Nie, J.; Zhao, C.; Deng, L.I.; Chen, J.; Yu, B.; Wu, X.; Pang, P.; Chen, X. Efficacy of traditional Chinese medicine in treating cancer. Biomed. Rep., 2016, 4(1), 3-14.
[http://dx.doi.org/10.3892/br.2015.537] [PMID: 26870326]
[12]
Jiang, M.; Zhang, C.; Cao, H.; Chan, K.; Lu, A. The role of Chinese medicine in the treatment of chronic diseases in China. Planta Med., 2011, 77(9), 873-881.
[http://dx.doi.org/10.1055/s-0030-1270983] [PMID: 21472645]
[13]
Zhang, C.; Lu, Y.; Tong, Q-Q.; Zhang, L.; Guan, Y.F.; Wang, S.J.; Xing, Z.H. Effect of stachydrine on endoplasmic reticulum stress-induced apoptosis in rat kidney after unilateral ureteral obstruction. J. Asian Nat. Prod. Res., 2013, 15(4), 373-381.
[http://dx.doi.org/10.1080/10286020.2013.769964] [PMID: 23464629]
[14]
Cao, T-T.; Chen, H-H.; Dong, Z.; Xu, Y.W.; Zhao, P.; Guo, W.; Wei, H.C.; Zhang, C.; Lu, R. Stachydrine protects against pressure overload-induced cardiac hypertrophy by suppressing autophagy. Cell. Physiol. Biochem., 2017, 42(1), 103-114.
[http://dx.doi.org/10.1159/000477119] [PMID: 28494450]
[15]
FCA, B.; YZA, C.; MW, A. A review of pharmacological and pharmacokinetic properties of stachydrine 155, 104755.
[16]
Adams, J.M.; Cory, S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ., 2018, 25(1), 27-36.
[http://dx.doi.org/10.1038/cdd.2017.161] [PMID: 29099483]
[17]
Feeley, K.P.; Adams, C.M.; Mitra, R.; Eischen, C.M. Mdm2 is required for survival and growth of p53-deficient cancer cells. Cancer Res., 2017, 77(14), 3823-3833.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0809] [PMID: 28576884]
[18]
Hao, Y.; Kong, X.; Ruan, Y.; Gan, H.; Chen, H.; Zhang, C.; Ren, S.; Gu, J. CDK11p46 and RPS8 associate with each other and suppress translation in a synergistic manner. Biochem. Biophys. Res. Commun., 2011, 407(1), 169-174.
[http://dx.doi.org/10.1016/j.bbrc.2011.02.132] [PMID: 21371428]
[19]
Berthier, A.; Jiménez-Sáinz, J.; Pulido, R. PINK1 regulates histone H3 trimethylation and gene expression by interaction with the polycomb protein EED/WAIT1. Proc. Natl. Acad. Sci. USA, 2013, 110(36), 14729-14734.
[http://dx.doi.org/10.1073/pnas.1216844110] [PMID: 23959866]
[20]
Smith, L.M.; Zhu, R.; Strittmatter, S.M. Disease-modifying benefit of Fyn blockade persists after washout in mouse Alzheimer’s model. Neuropharmacology, 2018, 130, 54-61.
[http://dx.doi.org/10.1016/j.neuropharm.2017.11.042] [PMID: 29191754]
[21]
Carvalho, C.; Santos, M.S.; Oliveira, C.R.; Moreira, P.I. Alzheimer’s disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers. Biochim. Biophys. Acta, 2015, 1852(8), 1665-1675.
[http://dx.doi.org/10.1016/j.bbadis.2015.05.001] [PMID: 25960150]
[22]
Fujita, K.; Motoki, K.; Tagawa, K.; Chen, X.; Hama, H.; Nakajima, K.; Homma, H.; Tamura, T.; Watanabe, H.; Katsuno, M.; Matsumi, C.; Kajikawa, M.; Saito, T.; Saido, T.; Sobue, G.; Miyawaki, A.; Okazawa, H. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer’s disease. Sci. Rep., 2016, 6(1), 31895.
[http://dx.doi.org/10.1038/srep31895] [PMID: 27557632]
[23]
Cruz-Rivera, Y.E.; Perez-Morales, J.; Santiago, Y.M.; Gonzalez, V.M.; Morales, L.; Cabrera-Rios, M.; Isaza, C.E. A selection of important genes and their correlated behavior in Alzheimer’s disease. J. Alzheimers Dis., 2018, 65(1), 193-205.
[http://dx.doi.org/10.3233/JAD-170799] [PMID: 30040709]
[24]
Llorente, P.; Kristen, H.; Sastre, I.; Toledano-Zaragoza, A.; Aldudo, J.; Recuero, M.; Bullido, M.J. A free radical-generating system regulates amyloid oligomers: Involvement of cathepsin B. J. Alzheimers Dis., 2018, 66(4), 1397-1408.
[http://dx.doi.org/10.3233/JAD-170159] [PMID: 30400084]
[25]
Liu, S.; Li, X.; Gao, J.; Liu, Y.; Shi, J.; Gong, Q. Icariside II, a phosphodiesterase-5 inhibitor, attenuates beta-amyloid-induced cognitive deficits via BDNF/TrkB/CREB signaling. Cell. Physiol. Biochem., 2018, 49(3), 985.
[http://dx.doi.org/10.1159/000493232] [PMID: 30196289]
[26]
Xu, P.; Wang, H.; Li, Z.; Yang, Z. Triptolide attenuated injury via inhibiting oxidative stress in Amyloid-Beta25-35-treated differentiated PC12 cells. Life Sci., 2016, 145, 19-26.
[http://dx.doi.org/10.1016/j.lfs.2015.12.018] [PMID: 26679104]
[27]
Frozza, R.L.; Lourenco, M.V.; De Felice, F.G. Challenges for Alzheimer’s disease therapy: insights from novel mechanisms beyond memory defects. Front. Neurosci., 2018, 12, 37.
[http://dx.doi.org/10.3389/fnins.2018.00037] [PMID: 29467605]
[28]
Hung, Y-C.; Wang, P-W.; Pan, T-L. Functional proteomics reveal the effect of Salvia miltiorrhiza aqueous extract against vascular atherosclerotic lesions. Biochim. Biophys. Acta, 2010, 1804(6), 1310-1321.
[http://dx.doi.org/10.1016/j.bbapap.2010.02.001] [PMID: 20170756]
[29]
Yang, L.; Ye, C.Y.; Huang, X.T.; Tang, X.C.; Zhang, H.Y. Decreased accumulation of subcellular amyloid-β with improved mitochondrial function mediates the neuroprotective effect of huperzine A. J. Alzheimers Dis., 2012, 31(1), 131-142.
[http://dx.doi.org/10.3233/JAD-2012-120274] [PMID: 22531425]
[30]
Wang, B.S.; Wang, H.; Wei, Z.H.; Song, Y.Y.; Zhang, L.; Chen, H.Z. Efficacy and safety of natural acetylcholinesterase inhibitor huperzine A in the treatment of Alzheimer’s disease: An updated meta-analysis. J. Neural Transm. (Vienna), 2009, 116(4), 457-465.
[http://dx.doi.org/10.1007/s00702-009-0189-x] [PMID: 19221692]
[31]
Bastianetto, S.; Ramassamy, C.; Doré, S.; Christen, Y.; Poirier, J.; Quirion, R. The Ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by β-amyloid. Eur. J. Neurosci., 2000, 12(6), 1882-1890.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00069.x] [PMID: 10886329]
[32]
Muhammad, T.; Ali, T.; Ikram, M.; Khan, A.; Alam, S.I.; Kim, M.O. Melatonin rescue oxidative stress-mediated neuroinflammation/neurodegeneration and memory impairment in scopolamine-induced amnesia mice model. J. Neuroimmune Pharmacol., 2019, 14(2), 278-294.
[http://dx.doi.org/10.1007/s11481-018-9824-3] [PMID: 30478761]
[33]
Thancharoen, O.; Limwattananon, C.; Waleekhachonloet, O.; Rattanachotphanit, T.; Limwattananon, P.; Limpawattana, P. Ginkgo biloba extract (egb761), cholinesterase inhibitors, and memantine for the treatment of mild-to-moderate Alzheimer’s disease: A network meta-analysis. Drugs Aging, 2019, 36(5), 435-452.
[http://dx.doi.org/10.1007/s40266-019-00648-x] [PMID: 30937879]
[34]
Qu, L.; Huang, J.; Fan, M.; Hao, Y.; Yan, J. Effects of stachyine on apoptosis in an Aβ25-35-induced PC12 cell model of Alzheimer’s disease. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2020, 40(7), 1023-1028.
[PMID: 32701248]
[35]
Tan, J.; Yang, X.; Zhuang, L.; Jiang, X.; Chen, W.; Lee, P.L.; Karuturi, R.K.; Tan, P.B.; Liu, E.T.; Yu, Q. Pharmacologic disruption of polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev., 2007, 21(9), 1050-1063.
[http://dx.doi.org/10.1101/gad.1524107] [PMID: 17437993]
[36]
Szybińska, A.; Leśniak, W. P53 dysfunction in neurodegenerative diseases-the cause or effect of pathological changes? Aging Dis., 2017, 8(4), 506-518.
[http://dx.doi.org/10.14336/AD.2016.1120] [PMID: 28840063]
[37]
Hooper, C.; Meimaridou, E.; Tavassoli, M.; Melino, G.; Lovestone, S.; Killick, R. p53 is upregulated in Alzheimer’s disease and induces tau phosphorylation in HEK293a cells. Neurosci. Lett., 2007, 418(1), 34-37.
[http://dx.doi.org/10.1016/j.neulet.2007.03.026] [PMID: 17399897]
[38]
Ashkenazi, A.; Fairbrother, W.J.; Leverson, J.D.; Souers, A.J. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat. Rev. Drug Discov., 2017, 16(4), 273-284.
[http://dx.doi.org/10.1038/nrd.2016.253] [PMID: 28209992]
[39]
Liang, Y.; Huang, M.; Jiang, X.; Liu, Q.; Chang, X.; Guo, Y. The neuroprotective effects of Berberine against amyloid β-protein-induced apoptosis in primary cultured hippocampal neurons via mitochondria-related caspase pathway. Neurosci. Lett., 2017, 655, 46-53.
[http://dx.doi.org/10.1016/j.neulet.2017.06.048] [PMID: 28668383]

© 2024 Bentham Science Publishers | Privacy Policy