Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Green Tea from the Far East to the Drug Store: Focus on the Beneficial Cardiovascular Effects

Author(s): Linda Landini*, Eleni Rebelos and Miikka-Juhani Honka

Volume 27, Issue 16, 2021

Published on: 02 November, 2020

Page: [1931 - 1940] Pages: 10

DOI: 10.2174/1381612826666201102104902

Price: $65

Abstract

Cardiovascular diseases (CVD) are the leading cause of death worldwide. Evidence from observational and randomized controlled studies showing the potential benefits of green tea on lowering CVD risk has been emerging rapidly during the past few decades. These benefits include reduced risk for major cardiovascular events, lowering of blood pressure, decreased LDL cholesterol levels and weight loss. At the same time, the understanding of the physiological mechanisms behind these alterations is advancing. Consumption of green tea originated from China thousands of years ago, but since then, it expanded all over the world. Recent advances in understanding the role of tea polyphenols, mainly catechins, as mediators of tea’s health benefits, have caused the emergence of various types of green tea extracts (GTE) on the market. While taking green tea is generally considered safe, there are concerns about the safety of using tea extracts. The present article reviews the current evidence of green tea consumption leading to reduced CVD risk, its potential biological mechanisms and the safety of using GTE.

Keywords: Green tea, GTE, cardiovascular disease, supplements, safety, beneficial cardiovascular effects.

[1]
World Health Organization World Health Organization Cardiovascular diseases (CVDs) Available at: http://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
[2]
Bloom DE, Cafiero ET, Jané-Llopis E, et al. The Global Economic Burden of Non-communicable Diseases. Program on the Global Demography of Aging 2012.
[3]
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 2015; 373(22): 2117-28.
[4]
Ellis M, Coulton R, Mauger M. Early European Encounters with TeaEmpire of Tea: The Asian Leaf that Conquered the World. London, UK: Reaktion 2015; pp. 14-30.
[5]
Toyb N, Gayi S, Zhang Y, Boglio D, Milicevic B. TEA - An INFOCOMM Commodity Profile. Geneva, Switzerland United Nations Conference on Trade and Development. Available at: https://unctad.org/system/files/official-document/INFOCOMM_cp11_Tea_en.pdf
[6]
Bhagwat S, Haytowitz DB. USDA Database for the Flavonoid Content of Selected Foods Release. Washington, D.C., United States: Agricultural Research Service, US Department of Agriculture 2016 Available at: .https://data.nal.usda.gov/dataset/usda-database-flavonoid-content-selected-foods-release-32-november-2015
[7]
Etheridge C, Bond T, Derbyshire E. Effects Of Tea Consumption On Measures Of Cardiovascular Disease: A Systematic Review Of Meta-Analysis Studies And Randomised Controlled Trials. Journal of Nutrition Food Sciences 2018; 8: 5.
[http://dx.doi.org/10.4172/2155-9600.1000724]
[8]
Tang J, Zheng JS, Fang L, Jin Y, Cai W, Li D. Tea consumption and mortality of all cancers, CVD and all causes: a meta-analysis of eighteen prospective cohort studies. Br J Nutr 2015; 114(5): 673-83.
[http://dx.doi.org/10.1017/S0007114515002329] [PMID: 26202661]
[9]
Liu X, Du X, Han G, Gao W. Association between tea consumption and risk of cognitive disorders: A dose-response meta-analysis of observational studies. Oncotarget 2017; 8(26): 43306-21.
[http://dx.doi.org/10.18632/oncotarget.17429] [PMID: 28496007]
[10]
Zhang C, Qin YY, Wei X, Yu FF, Zhou YH, He J. Tea consumption and risk of cardiovascular outcomes and total mortality: a systematic review and meta-analysis of prospective observational studies. Eur J Epidemiol 2015; 30(2): 103-13.
[http://dx.doi.org/10.1007/s10654-014-9960-x] [PMID: 25354990]
[11]
Pang J, Zhang Z, Zheng T, et al. Green tea consumption and risk of cardiovascular and ischemic related diseases: A meta-analysis. Int J Cardiol 2016; 202: 967-74.
[http://dx.doi.org/10.1016/j.ijcard.2014.12.176]
[12]
Brunström M, Carlberg B. Association of Blood Pressure Lowering With Mortality and Cardiovascular Disease Across Blood Pressure Levels: A Systematic Review and Meta-analysis. JAMA Intern Med 2018; 178(1): 28-36.
[http://dx.doi.org/10.1001/jamainternmed.2017.6015] [PMID: 29131895]
[13]
Yarmolinsky J, Gon G, Edwards P. Effect of tea on blood pressure for secondary prevention of cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2015; 73(4): 236-46.
[http://dx.doi.org/10.1093/nutrit/nuv001]
[14]
Greyling A, Ras RT, Zock PL, et al. The Effect of Black Tea on Blood Pressure: A Systematic Review with Meta-Analysis of Randomized Controlled Trials. PLoS One 2014; 9(7): e103247.
[http://dx.doi.org/10.1371/journal.pone.0103247]
[15]
Khalesi S, Sun J, Buys N, Jamshidi A, Nikbakht-Nasrabadi E, Khosravi-Boroujeni H. reen tea catechins and blood pressure: a systematic review and meta-analysis of randomised controlled trials. Eur J Nutr 2014; 53(6): 1299-311.
[http://dx.doi.org/10.1007/s00394-014-0720-1]
[16]
Onakpoya I, Spencer E, Heneghan C, Thompson M. The effect of green tea on blood pressure and lipid profile: a systematic review and meta-analysis of randomized clinical trials. Nutr Metab Cardiovasc Dis 2014; 24(8): 823-36.
[http://dx.doi.org/10.1016/j.numecd.2014.01.016] [PMID: 24675010]
[17]
Peng X, Zhou R, Wang B, et al. Effect of green tea consumption on blood pressure: A meta-analysis of 13 randomized controlled trials. Scientific Reports 2014; 4(1): 6251.
[18]
Liu G, Mi XN, Zheng XX, Xu YL, Lu J, Huang XH. Effects of tea intake on blood pressure: a meta-analysis of randomised controlled trials. Br J Nutr 2014; 112(7): 1043-54.
[http://dx.doi.org/10.1017/S0007114514001731] [PMID: 25137341]
[19]
Hartley L, Flowers N, Holmes J, et al. Green and black tea for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev 2013.
[http://dx.doi.org/10.1002/14651858.CD009934.pub2]
[20]
Debette S, Courbon D, Leone N, et al. Tea consumption is inversely associated with carotid plaques in women. Arterioscler Thromb Vasc Biol 2008; 28(2): 353-9.
[http://dx.doi.org/10.1161/ATVBAHA.107.151928] [PMID: 18063810]
[21]
Reis JP, Loria CM, Steffen LM, et al. Coffee, decaffeinated coffee, caffeine, and tea consumption in young adulthood and atherosclerosis later in life: the CARDIA study. Arterioscler Thromb Vasc Biol 2010; 30(10): 2059-66.
[http://dx.doi.org/10.1161/ATVBAHA.110.208280] [PMID: 20616310]
[22]
Geleijnse JM, Launer LJ, Hofman A, Pols HA, Witteman JC. Tea flavonoids may protect against atherosclerosis: the Rotterdam Study. Arch Intern Med 1999; 159(18): 2170-4.
[http://dx.doi.org/10.1001/archinte.159.18.2170] [PMID: 10527294]
[23]
Wang QM, Gong QY, Yan JJ, et al. Association between green tea intake and coronary artery disease in a Chinese population. Circ J 2010; 74(2): 294-300.
[http://dx.doi.org/10.1253/circj.CJ-09-0543] [PMID: 20019411]
[24]
Sano J, Inami S, Seimiya K, et al. Effects of green tea intake on the development of coronary artery disease. Circ J 2004; 68(7): 665-70.
[http://dx.doi.org/10.1253/circj.68.665] [PMID: 15226633]
[25]
Sasazuki S, Kodama H, Yoshimasu K, et al. Relation between green tea consumption and the severity of coronary atherosclerosis among Japanese men and women. Ann Epidemiol 2000; 10(6): 401-8.
[http://dx.doi.org/10.1016/S1047-2797(00)00066-1] [PMID: 10964006]
[26]
Hirano R, Momiyama Y, Takahashi R, et al. Comparison of green tea intake in Japanese patients with and without angiographic coronary artery disease. Am J Cardiol 2002; 90(10): 1150-3.
[http://dx.doi.org/10.1016/S0002-9149(02)02787-X]
[27]
Ding S, Jiang J, Yu P, Zhang G, Zhang G, Liu X. Green tea polyphenol treatment attenuates atherosclerosis in high-fat diet-fed apolipoprotein E-knockout mice via alleviating dyslipidemia and up-regulating autophagy. PLoS One 2017; 12(8): e0181666.
[http://dx.doi.org/10.1371/journal.pone.0181666] [PMID: 28777810]
[28]
Kavantzas N, Chatziioannou A, Yanni AE, et al. Effect of green tea on angiogenesis and severity of atherosclerosis in cholesterol-fed rabbit. Vascular Pharmacology 2006; 44(6): 461-3.
[http://dx.doi.org/10.1016/j.vph.2006.03.008]
[29]
Minatti J, Wazlawik E, Hort MA, et al. Green tea extract reverses endothelial dysfunction and reduces atherosclerosis progression in homozygous knockout low-density lipoprotein receptor mice. Nutr Res 2012; 32(9): 684-93.
[http://dx.doi.org/10.1016/j.nutres.2012.08.003] [PMID: 23084641]
[30]
Bernatoniene J, Kopustinskiene DM. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules 2018; 23(4): E965.
[http://dx.doi.org/10.3390/molecules23040965] [PMID: 29677167]
[31]
Negishi H, Xu J, Ikeda K, Njelekela M, Nara Y, Yamori Y. Black and Green Tea Polyphenols Attenuate Blood Pressure Increases in Stroke-Prone Spontaneously Hypertensive Rats. J Nutr 2004; 134(1): 38-42.
[32]
Zheng J, Lee HCM. Cardioprotective effects of epigallocatechin-3-gallate against doxorubicin-induced cardiomyocyte injury. Eur J Pharmacol 2011; 652(1): 82-8.
[33]
Sheng R, Gu ZL, Xie ML, Zhou WX, Guo CY. EGCG inhibits cardiomyocyte apoptosis in pressure overload-induced cardiac hypertrophy and protects cardiomyocytes from oxidative stress in rats. Acta Pharmacol Sin 2007; 28(2): 191-201.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00495.x] [PMID: 17241521]
[34]
Yang GZ, Wang ZJ, Bai F, et al. Epigallocatechin-3-gallate protects HUVECs from PM2.5-induced oxidative stress injury by activating critical antioxidant pathways. Molecules 2015; 20(4): 6626-39.
[http://dx.doi.org/10.3390/molecules20046626] [PMID: 25875041]
[35]
Pullikotil P, Chen H, Muniyappa R, et al. Epigallocatechin gallate induces expression of heme oxygenase-1 in endothelial cells via p38 MAPK and Nrf-2 that suppresses proinflammatory actions of TNF-α. J Nutr Biochem 2012; 23(9): 1134-45.
[http://dx.doi.org/10.1016/j.jnutbio.2011.06.007] [PMID: 22137262]
[36]
Liu P, Liu J, Kuo H, Chong I, Hsieh C. Epigallocatechin Gallate Attenuates Proliferation and Oxidative Stress in Human Vascular Smooth Muscle Cells Induced by Interleukin-1 via Heme Oxygenase-1. Mediators Inflamm 2014; 523684.
[37]
Sung H, Min WK, Lee W, et al. The effects of green tea ingestion over four weeks on atherosclerotic markers. Ann Clin Biochem 2005; 42(Pt 4): 292-7.
[http://dx.doi.org/10.1258/0004563054255597] [PMID: 15989729]
[38]
Inami S, Takano M, Yamamoto M, et al. Tea catechin consumption reduces circulating oxidized low-density lipoprotein. Int Heart J 2007; 48(6): 725-32.
[http://dx.doi.org/10.1536/ihj.48.725] [PMID: 18160764]
[39]
Suzuki-Sugihara N, Kishimoto Y, Saita E, et al. Green tea catechins prevent low-density lipoprotein oxidation via their accumulation in low-density lipoprotein particles in humans. Nutr Res 2016; 36(1): 16-23.
[http://dx.doi.org/10.1016/j.nutres.2015.10.012] [PMID: 26773777]
[40]
Zhong S, Li L, Shen X, et al. An update on lipid oxidation and inflammation in cardiovascular diseases Free Radical Biology and Medicine; Redox lipidomics and adductomics Advanced analytical strategies to study oxidzed lipids and lipid-protein adducts 2019; 144: 266-78.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.03.036]
[41]
Nantz MP, Rowe CA, Bukowski JF, Percival SS. Standardized capsule of Camellia sinensis lowers cardiovascular risk factors in a randomized, double-blind, placebo-controlled study. Nutrition 2009; 25(2): 147-54.
[http://dx.doi.org/10.1016/j.nut.2008.07.018] [PMID: 18848434]
[42]
Matsuzawa Y, Kwon TG, Lennon RJ, Lerman LO, Lerman A. Prognostic Value of Flow-Mediated Vasodilation in Brachial Artery and Fingertip Artery for Cardiovascular Events: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2015; 4(11): e002270.
[http://dx.doi.org/10.1161/JAHA.115.002270] [PMID: 26567372]
[43]
Ras RT, Zock PL, Draijer R. Tea Consumption Enhances Endothelial-Dependent Vasodilation; a Meta-Analysis. PLOS ONE 2011; 6(3): e16974.
[44]
Kim JA, Formoso G, Li Y, et al. Epigallocatechin gallate, a green tea polyphenol, mediates NO-dependent vasodilation using signaling pathways in vascular endothelium requiring reactive oxygen species and Fyn. J Biol Chem 2007; 282(18): 13736-45.
[http://dx.doi.org/10.1074/jbc.M609725200] [PMID: 17363366]
[45]
Reiter CEN, Kim J, Quon MJ. Green tea polyphenol epigallocatechin gallate reduces endothelin-1 expression and secretion in vascular endothelial cells: roles for AMP-activated protein kinase, Akt, and FOXO1 Endocrinology. 2010; 151(1): 103-4.
[46]
Nagaya N, Yamamoto H, Uematsu M, et al. Green tea reverses endothelial dysfunction in healthy smokers. Heart 2004; 90(12): 1485-6.
[http://dx.doi.org/10.1136/hrt.2003.026740] [PMID: 15547040]
[47]
Kim W, Jeong MH, Cho SH, et al. Effect of green tea consumption on endothelial function and circulating endothelial progenitor cells in chronic smokers. Circ J 2006; 70(8): 1052-7.
[http://dx.doi.org/10.1253/circj.70.1052] [PMID: 16864941]
[48]
Lorenz M, Rauhut F, Hofer C, et al. Tea-induced improvement of endothelial function in humans: No role for epigallocatechin gallate (EGCG). Sci Rep 2017; 7(1): 2279-02384.
[49]
Nordestgaard BG. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease: New Insights From Epidemiology, Genetics, and Biology. Circ Res 2016; 118(4): 547-63.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306249] [PMID: 26892957]
[50]
Borén J, Chapman MJ, Krauss RM, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2020; 41(24): 2313-30.
[http://dx.doi.org/10.1093/eurheartj/ehz962] [PMID: 32052833]
[51]
Yuan F, Dong H, Fang K, Gong J, Lu F. Effects of green tea on lipid metabolism in overweight or obese people: A meta-analysis of randomized controlled trials. Mol Nutr Food Res 2018; 62(1)
[http://dx.doi.org/10.1002/mnfr.201601122] [PMID: 28636182]
[52]
Samavat H, Newman AR, Wang R, Yuan JM, Wu AH, Kurzer MS. Effects of green tea catechin extract on serum lipids in postmenopausal women: a randomized, placebo-controlled clinical trial. Am J Clin Nutr 2016; 104(6): 1671-82.
[http://dx.doi.org/10.3945/ajcn.116.137075] [PMID: 27806972]
[53]
Zhao Y, Asimi S, Wu K, Zheng J, Li D. Black tea consumption and serum cholesterol concentration: Systematic review and meta-analysis of randomized controlled trials. Clinical Nutrition 2015; 34(4): 612-9.
[54]
Wang D, Chen C, Wang Y, Liu J, Lin R. Effect of Black Tea Consumption on Blood Cholesterol: A Meta-Analysis of 15 Randomized Controlled Trials. PLoS One 2014; 9(9): e107711.
[55]
Li Y, Wang C, Huai Q, et al. Effects of tea or tea extract on metabolic profiles in patients with type 2 diabetes mellitus: a meta-analysis of ten randomized controlled trials. Diabetes Metab Res Rev 2016; 32(1): 2-10.
[http://dx.doi.org/10.1002/dmrr.2641] [PMID: 25689396]
[56]
Mihaylova B, Emberson J, Blackwell L, et al. Cholesterol Treatment Trialists’ (CTT) Collaborators. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 2012; 380(9841): 581-90.
[http://dx.doi.org/10.1016/S0140-6736(12)60367-5] [PMID: 22607822]
[57]
Ukawa Y, Sagesaka Y, Hatakeyama Y, Noro A, Fukuhara I. Effect of consumption of tea beverage containing catechins with a galloyl moiety on lipid excretion into feces. Japanese Pharmacology and Therapeutics 2013; 41: 919-27.
[58]
Ashigai H, Taniguchi Y, Suzuki M, et al. Fecal Lipid Excretion after Consumption of a Black Tea Polyphenol Containing Beverage-Randomized, Placebo-Controlled, Double-Blind, Crossover Study. Biol Pharm Bull 2016; 39(5): 699-704.
[http://dx.doi.org/10.1248/bpb.b15-00662] [PMID: 26887502]
[59]
Kobayashi M, Nishizawa M, Inoue N, et al. Epigallocatechin gallate decreases the micellar solubility of cholesterol via specific interaction with phosphatidylcholine. J Agric Food Chem 2014; 62(13): 2881-90.
[http://dx.doi.org/10.1021/jf405591g] [PMID: 24628603]
[60]
Gondoin A, Grussu D, Stewart D, Mcdougall G. White and green tea polyphenols inhibit pancreatic lipase in vitro. Food Res Inter 2010; 43: 1537-44.
[http://dx.doi.org/10.1016/j.foodres.2010.04.029]
[61]
Glisan SL, Grove KA, Yennawar NH, Lambert JD. Inhibition of pancreatic lipase by black tea theaflavins: Comparative enzymology and in silico modeling studies. Food Chem 2017; 216: 296-300.
[http://dx.doi.org/10.1016/j.foodchem.2016.08.052] [PMID: 27596423]
[62]
Chen T, Wang MMC, Hsieh S, Hsieh M, Chen W, Tzen JTC. Pancreatic lipase inhibition of strictinin isolated from Pu’er tea (Cammelia sinensis) and its anti-obesity effects in C57BL6 mice. J Funct Foods 2018; 48: 1-8.
[63]
Cuccioloni M, Mozzicafreddo M, Spina M, et al. Epigallocatechin-3-gallate potently inhibits the in vitro activity of hydroxy-3-methyl-glutaryl-CoA reductase. J Lipid Res 2011; 52(5): 897-907.
[http://dx.doi.org/10.1194/jlr.M011817] [PMID: 21357570]
[64]
Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol 2017; 14(3): 133-44.
[http://dx.doi.org/10.1038/nrcardio.2016.185] [PMID: 27905474]
[65]
Mahajan N, Dhawan V, Sharma G, Jain S, Kaul D. Induction of inflammatory gene expression by THP-1 macrophages cultured in normocholesterolaemic hypertensive sera and modulatory effects of green tea polyphenols’. J Hum Hypertens 2008; 22(2): 141-3.
[http://dx.doi.org/10.1038/sj.jhh.1002277]
[66]
Wang T, Xiang Z, Wang Y, et al. (-)-Epigallocatechin Gallate Targets Notch to Attenuate the Inflammatory Response in the Immediate Early Stage in Human Macrophages. Front Immunol 2017; 8: 433.
[http://dx.doi.org/10.3389/fimmu.2017.00433] [PMID: 28443100]
[67]
Kumazoe M, Nakamura Y, Yamashita M, et al. Green Tea Polyphenol Epigallocatechin-3-gallate Suppresses Toll-like Receptor 4 Expression via Up-regulation of E3 Ubiquitin-protein Ligase RNF216. J Biol Chem 2017; 292(10): 4077-88.
[http://dx.doi.org/10.1074/jbc.M116.755959] [PMID: 28154178]
[68]
Gaul DS, Stein S, Matter CM. Neutrophils in cardiovascular disease. Eur Heart J 2017; 38(22): 1702-4.
[http://dx.doi.org/10.1093/eurheartj/ehx244]
[69]
Marinovic MP, Morandi AC, Otton R. Green tea catechins alone or in combination alter functional parameters of human neutrophils via suppressing the activation of TLR-4/NFκB p65 signal pathway. Toxicol In Vitro 2015; 29(7): 1766-78.
[http://dx.doi.org/10.1016/j.tiv.2015.07.014] [PMID: 26187476]
[70]
Albuquerque KF, Marinovic MP, Morandi AC, Bolin AP, Otton R. Green tea polyphenol extract in vivo attenuates inflammatory features of neutrophils from obese rats. Eur J Nutr 2016; 55(3): 1261-74.
[http://dx.doi.org/10.1007/s00394-015-0940-z] [PMID: 26031433]
[71]
Lee HA, Song YR, Park MH, Chung H, Na HS, Chung J. Catechin ameliorates Porphyromonas gingivalis-induced inflammation via the regulation of TLR2/4 and inflammasome signaling. J Periodontol 2020; 91(5): 661-70.
[72]
Lagha AB, Grenier D. Tea polyphenols protect gingival keratinocytes against TNF-α-induced tight junction barrier dysfunction and attenuate the inflammatory response of monocytes/macrophages. Cytokine 2019; 115: 64-75.
[http://dx.doi.org/10.1016/j.cyto.2018.12.009] [PMID: 30640129]
[73]
Lagha AB, Groeger S, Meyle J, Grenier D. Green tea polyphenols enhance gingival keratinocyte integrity and protect against invasion by Porphyromonas gingivalis. Pathog Dis 2018; 76(4)
[http://dx.doi.org/10.1093/femspd/fty030] [PMID: 29635433]
[74]
Czesnikiewicz-Guzik M, Osmenda G, Siedlinski M, et al. Causal association between periodontitis and hypertension: evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy. Eur Heart J 2019; 40(42): 3459-70.
[http://dx.doi.org/10.1093/eurheartj/ehz646] [PMID: 31504461]
[75]
Orlandi M, Suvan J, Petrie A, et al. Association between periodontal disease and its treatment, flow-mediated dilatation and carotid intima-media thickness: A systematic review and meta-analysis Atherosclerosis 2014; 236(1): 39-46.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.06.002]
[76]
Schmitt A, Carra MC, Boutouyrie P, Bouchard P. Periodontitis and arterial stiffness: a systematic review and meta-analysis. J Clin Periodontol 2015; 42(11): 977-87.
[http://dx.doi.org/10.1111/jcpe.12467] [PMID: 26465940]
[77]
Haghighatdoost F, Hariri M. The effect of green tea on inflammatory mediators: A systematic review and meta-analysis of randomized clinical trials. Phytother Res 2019; 33(9): 2274-87.
[http://dx.doi.org/10.1002/ptr.6432] [PMID: 31309655]
[78]
Ligthart S, Vaez A, Võsa U, et al. LifeLines Cohort Study; CHARGE Inflammation Working Group. Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders. Am J Hum Genet 2018; 103(5): 691-706.
[http://dx.doi.org/10.1016/j.ajhg.2018.09.009] [PMID: 30388399]
[79]
Gokulakrisnan A, Jayachandran Dare B, Thirunavukkarasu C. Attenuation of the cardiac inflammatory changes and lipid anomalies by (-)-epigallocatechin-gallate in cigarette smoke-exposed rats. Mol Cell Biochem 2011; 354(1-2): 1-10.
[http://dx.doi.org/10.1007/s11010-011-0785-6] [PMID: 21633901]
[80]
Rhoads JP, Major AS. How Oxidized Low-Density Lipoprotein Activates Inflammatory Responses. Crit Rev Immunol 2018; 38(4): 333-42.
[http://dx.doi.org/10.1615/CritRevImmunol.2018026483] [PMID: 30806246]
[81]
Kelly T, Yang W, Chen C, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes 2005; 32(9): 1431-7.
[82]
World Health Organization. World Health Organization. Obesity and overweight. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
[83]
Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863(5): 1037-45.
[http://dx.doi.org/10.1016/j.bbadis.2016.04.017] [PMID: 27156888]
[84]
Wolfram S, Wang Y, Thielecke F. Anti-obesity effects of green tea: from bedside to bench. Mol Nutr Food Res 2006; 50(2): 176-87.
[http://dx.doi.org/10.1002/mnfr.200500102] [PMID: 16470636]
[85]
Wolfram S, Raederstorff D, Wang Y, Teixeira SR, Elste V, Weber P. TEAVIGO (epigallocatechin gallate) supplementation prevents obesity in rodents by reducing adipose tissue mass. Ann Nutr Metab 2005; 49(1): 54-63.
[http://dx.doi.org/10.1159/000084178] [PMID: 15735368]
[86]
Furuyashiki T, Nagayasu H, Aoki Y, et al. Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARgamma2 and C/EBPalpha in 3T3-L1 cells. Biosci Biotechnol Biochem 2004; 68(11): 2353-9.
[http://dx.doi.org/10.1271/bbb.68.2353] [PMID: 15564676]
[87]
Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J. Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disord 2000; 24(2): 252-8.
[http://dx.doi.org/10.1038/sj.ijo.0801101] [PMID: 10702779]
[88]
Matsumoto N, Ishigaki F, Ishigaki A, Iwashina H, Hara Y. Reduction of Blood Glucose Levels by Tea Catechin Biosci Biotechnol Biochem 1993; 57(4): 525-7.
[http://dx.doi.org/10.1271/bbb.57.525]
[89]
Juhel C, Armand M, Pafumi Y, Rosier C, Vandermander J, Lairon D. Green tea extract (AR25) inhibits lipolysis of triglycerides in gastric and duodenal medium in vitro. J Nutr Biochem 2000; 11(1): 45-51.
[http://dx.doi.org/10.1016/S0955-2863(99)00070-4] [PMID: 15539342]
[90]
Choo JJ. Green tea reduces body fat accretion caused by high-fat diet in rats through beta-adrenoceptor activation of thermogenesis in brown adipose tissue. J Nutr Biochem 2003; 14(11): 671-6.
[http://dx.doi.org/10.1016/j.jnutbio.2003.08.005] [PMID: 14629899]
[91]
Hasegawa N, Yamda N, Mori M. Powdered green tea has antilipogenic effect on Zucker rats fed a high-fat diet. Phytother Res 2003; 17(5): 477-80.
[http://dx.doi.org/10.1002/ptr.1177] [PMID: 12748982]
[92]
Klaus S, Pültz S, Thöne-Reineke C, Wolfram S. Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int J Obes 2005; 29(6): 615-23.
[http://dx.doi.org/10.1038/sj.ijo.0802926] [PMID: 15738931]
[93]
Wu CH, Lu FH, Chang CS, Chang TC, Wang RH, Chang CJ. Relationship among habitual tea consumption, percent body fat, and body fat distribution. Obes Res 2003; 11(9): 1088-95.
[http://dx.doi.org/10.1038/oby.2003.149] [PMID: 12972679]
[94]
Westerterp-Plantenga MS, Lejeune MP, Kovacs EM. Body weight loss and weight maintenance in relation to habitual caffeine intake and green tea supplementation. Obes Res 2005; 13(7): 1195-204.
[http://dx.doi.org/10.1038/oby.2005.142] [PMID: 16076989]
[95]
Saeedi P, Petersohn I, Salpea P, et al. IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. In: Diabetes Res Clin Pract 2019; p. 157107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843] [PMID: 31518657]
[96]
Sarwar N, Gao P, Seshasai SR, et al. Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010; 375(9733): 2215-22.
[http://dx.doi.org/10.1016/S0140-6736(10)60484-9] [PMID: 20609967]
[97]
Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. BMJ 2016; 355.
[http://dx.doi.org/10.1136/bmj.i5953]
[98]
Wu LY, Juan CC, Ho LT, Hsu YP, Hwang LS. Effect of green tea supplementation on insulin sensitivity in Sprague-Dawley rats. J Agric Food Chem 2004; 52(3): 643-8.
[http://dx.doi.org/10.1021/jf030365d] [PMID: 14759162]
[99]
Collins QF, Liu HY, Pi J, Liu Z, Quon MJ, Cao W. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase. J Biol Chem 2007; 282(41): 30143-9.
[http://dx.doi.org/10.1074/jbc.M702390200] [PMID: 17724029]
[100]
Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M, Granner DK. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem 2002; 277(38): 34933-40.
[http://dx.doi.org/10.1074/jbc.M204672200] [PMID: 12118006]
[101]
Koyama Y, Abe K, Sano Y, et al. Effects of green tea on gene expression of hepatic gluconeogenic enzymes in vivo. Planta Med 2004; 70(11): 1100-2.
[http://dx.doi.org/10.1055/s-2004-832659] [PMID: 15549673]
[102]
Hajiaghaalipour F, Khalilpourfarshbafi M, Arya A. Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. Int J Biol Sci 2015; 11(5): 508-24.
[http://dx.doi.org/10.7150/ijbs.11241] [PMID: 25892959]
[103]
Iso H, Date C, Wakai K, Fukui M, Tamakoshi A. JACC Study Group. The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Ann Intern Med 2006; 144(8): 554-62.
[http://dx.doi.org/10.7326/0003-4819-144-8-200604180-00005] [PMID: 16618952]
[104]
Tsuneki H, Ishizuka M, Terasawa M, Wu JB, Sasaoka T, Kimura I. Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans. BMC Pharmacol 2004; •••: 4.
[105]
Wang X, Tian J, Jiang J, et al. Effects of green tea or green tea extract on insulin sensitivity and glycaemic control in populations at risk of type 2 diabetes mellitus: a systematic review and meta-analysis of randomised controlled trials. J Hum Nutr Diet 2014; 27(5): 501-12.
[http://dx.doi.org/10.1111/jhn.12181] [PMID: 24206044]
[106]
Tian C, Huang Q, Yang L, et al. Green tea consumption is associated with reduced incident CHD and improved CHD-related biomarkers in the Dongfeng-Tongji cohort. Scientific Reports 2016; 6(1): 24353.
[107]
Mantovani A, Scorletti E, Mosca A, Alisi A, Byrne CD, Targher G. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metab Clin Exp 2020; p. 30.
[http://dx.doi.org/10.1016/j.metabol.2020.154170]
[108]
Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 1999; 94(9): 2467-74.
[http://dx.doi.org/10.1111/j.1572-0241.1999.01377.x] [PMID: 10484010]
[109]
Ertle J, Dechêne A, Sowa JP, et al. Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int J Cancer 2011; 128(10): 2436-43.
[http://dx.doi.org/10.1002/ijc.25797] [PMID: 21128245]
[110]
Targher G, Byrne CD, Lonardo A, Zoppini G, Barbui C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis. J Hepatol 2016; 65(3): 589-600.
[http://dx.doi.org/10.1016/j.jhep.2016.05.013] [PMID: 27212244]
[111]
Petta S, Gastaldelli A, Rebelos E, et al. Pathophysiology of Non Alcoholic Fatty Liver Disease. Int J Mol Sci 2016; 17(12): E2082.
[http://dx.doi.org/10.3390/ijms17122082] [PMID: 27973438]
[112]
European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. Obes Facts 2016; 9(2): 65-90.
[http://dx.doi.org/10.1159/000443344] [PMID: 27055256]
[113]
Bruno RS, Dugan CE, Smyth JA, DiNatale DA, Koo SI. Green tea extract protects leptin-deficient, spontaneously obese mice from hepatic steatosis and injury. J Nutr 2008; 138(2): 323-31.
[http://dx.doi.org/10.1093/jn/138.2.323] [PMID: 18203899]
[114]
Park HJ, DiNatale DA, Chung MY, et al. Green tea extract attenuates hepatic steatosis by decreasing adipose lipogenesis and enhancing hepatic antioxidant defenses in ob/ob mice. J Nutr Biochem 2011; 22(4): 393-400.
[http://dx.doi.org/10.1016/j.jnutbio.2010.03.009] [PMID: 20655714]
[115]
Imai K, Nakachi K. Cross sectional study of effects of drinking green tea on cardiovascular and liver diseases. BMJ 1995; 310(6981): 693-6.
[http://dx.doi.org/10.1136/bmj.310.6981.693] [PMID: 7711535]
[116]
Kuzu N, Bahcecioglu IH, Dagli AF, Ozercan IH, Ustündag B, Sahin K. Epigallocatechin gallate attenuates experimental non-alcoholic steatohepatitis induced by high fat diet. J Gastroenterol Hepatol 2008; 23(8 Pt 2): e465-70.
[http://dx.doi.org/10.1111/j.1440-1746.2007.05052.x] [PMID: 17683497]
[117]
Pezeshki A, Safi S, Feizi A, Askari G, Karami F. The Effect of Green Tea Extract Supplementation on Liver Enzymes in Patients with Nonalcoholic Fatty Liver Disease. Int J Prev Med 2016; 7(28)
[118]
Yin X, Yang J, Li T, et al. The effect of green tea intake on risk of liver disease: a meta analysis. Int J Clin Exp Med 2015; 8(6): 8339-46.
[PMID: 26309486]
[119]
Mansour-Ghanaei F, Hadi A, Pourmasoumi M, Joukar F, Golpour S, Najafgholizadeh A. Green tea as a safe alternative approach for nonalcoholic fatty liver treatment: A systematic review and meta-analysis of clinical trials. Phytotherapy Research 2018; 32(10): 1876-84.
[http://dx.doi.org/10.1002/ptr.6130]
[120]
Mereles D, Buss SJ, Hardt SE, Hunstein W, Katus HA. Effects of the main green tea polyphenol epigallocatechin-3-gallate on cardiac involvement in patients with AL amyloidosis. Clin Res Cardiol 2010; 99(8): 483-90.
[http://dx.doi.org/10.1007/s00392-010-0142-x]
[121]
Hetland BH, Dirven H. Safety assessment on levels of (-)-Epigallocatechin-3-gallate (EGCG) in green tea extracts used in food supplements. Oslo, Norway: Norwegian Institute of Public Health 2015.
[122]
Hu J, Webster D, Cao J, Shao A. The safety of green tea and green tea extract consumption in adults - Results of a systematic review. Regul Toxicol Pharmacol 2018; 95: 412-33.
[http://dx.doi.org/10.1016/j.yrtph.2018.03.019] [PMID: 29580974]
[123]
Lambert JD, Kennett MJ, Sang S, Reuhl KR, Ju J, Yang CS. Hepatotoxicity of high oral dose (-)-epigallocatechin-3-gallate in mice. Food Chem Toxicol 2010; 48(1): 409-16.
[http://dx.doi.org/10.1016/j.fct.2009.10.030] [PMID: 19883714]
[124]
Galati G, Lin A, Sultan AM, O’Brien PJ. Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins. Free Radic Biol Med 2006; 40(4): 570-80.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.09.014] [PMID: 16458187]
[125]
Goodin MG, Bray BJ, Rosengren RJ. Sex- and strain-dependent effects of epigallocatechin gallate (EGCG) and epicatechin gallate (ECG) in the mouse. Food Chem Toxicol 2006; 44(9): 1496-504.
[http://dx.doi.org/10.1016/j.fct.2006.04.012] [PMID: 16762473]
[126]
Dekant W, Fujii K, Shibata E, Morita O, Shimotoyodome A. Safety assessment of green tea based beverages and dried green tea extracts as nutritional supplements. Toxicol Lett 2017; 277: 104-8.
[http://dx.doi.org/10.1016/j.toxlet.2017.06.008] [PMID: 28655517]
[127]
Pastoriza S, Mesías M, Cabrera C, Rufián-Henares JA. Healthy properties of green and white teas: an update. Food Funct 2017; 8(8): 2650-62.
[http://dx.doi.org/10.1039/C7FO00611J] [PMID: 28640307]
[128]
Ahmad Fuzi S. A 1-h time interval between a meal containing iron and consumption of tea attenuates the inhibitory effects on iron absorption: a controlled trial in a cohort of healthy UK women using a stable iron isotope. Am J Clin Nutr 2017; 106(6): 1413-21.
[129]
Zoller H, Koch RO, Theurl I, et al. Expression of the duodenal iron transporters divalent-metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterology 2001; 120(6): 1412-9.
[http://dx.doi.org/10.1053/gast.2001.24033] [PMID: 11313311]
[130]
Kim Y. Effect of Iron Deficiency on the Increased Blood Divalent Metal ConcentrationsIron Deficiency Anemia. Rijeka, Croatia: IntechOpen 2019; pp. 39-51.
[http://dx.doi.org/10.5772/intechopen.78958]
[131]
Brzezicha-Cirocka J, Grembecka M, Szefer P. Monitoring of essential and heavy metals in green tea from different geographical origins. Environ Monit Assess 2016; 188(3): 183-3.
[http://dx.doi.org/10.1007/s10661-016-5157-y]
[132]
World Health Organization, Food and Agriculture Organization of the United Nations, Joint FAO/WHO Expert Committee on Food Additives. World Health Organization, Food and Agriculture Organization of the United Nations, Joint FAO/WHO Expert Committee on Food Additives. Evaluation of certain food additives and contaminants: seventy-third [73rd] report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva: World Health Organization. 2011.
[133]
Ghuniem MM, Khorshed MA, Reda M, Mahmoud SM, Hammad G. Assessment of the Potential Health Risk of Heavy Metal Exposure from the Consumption of Herbal, Black and Green Tea. Biomedical Journal of Scientific & Technical Research 2019; 16(1): 11810-7.
[http://dx.doi.org/10.26717/BJSTR.2019.16.002806]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy