Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

3D Printing in Modern Cardiology

Author(s): Simona Celi*, Emanuele Gasparotti, Katia Capellini, Emanuele Vignali, Benigno M. Fanni, Lamia A. Ali, Massimiliano Cantinotti, Michele Murzi, Sergio Berti, Giuseppe Santoro and Vincenzo Positano

Volume 27, Issue 16, 2021

Published on: 22 June, 2020

Page: [1918 - 1930] Pages: 13

DOI: 10.2174/1381612826666200622132440

Price: $65

Abstract

Background: 3D printing represents an emerging technology in the field of cardiovascular medicine. 3D printing can help to perform a better analysis of complex anatomies to optimize intervention planning.

Methods: A systematic review was performed to illustrate the 3D printing technology and to describe the workflow to obtain 3D printed models from patient-specific images. Examples from our laboratory of the benefit of 3D printing in planning interventions were also reported.

Results: 3D printing technique is reliable when applied to high-quality 3D image data (CTA, CMR, 3D echography), but it still needs the involvement of expert operators for image segmentation and mesh refinement. 3D printed models could be useful in interventional planning, although prospective studies with comprehensive and clinically meaningful endpoints are required to demonstrate the clinical utility.

Conclusion: 3D printing can be used to improve anatomy understanding and surgical planning.

Keywords: 3D printing, cardiology, congenital heart disease, structural heart disease, virtual model.

[1]
Celi S, Martini N, Pastormerlo LE, Positano V, Berti S. Multimodality Imaging for Interventional Cardiology. Curr Pharm Des 2017; 23(22): 3285-300.
[http://dx.doi.org/10.2174/1381612823666170704171702] [PMID: 28677508]
[2]
Vivoli G, Gasparotti E, Rezzaghi M, et al. Simultaneous Functional and Morphological Assessment of Left Atrial Appendage by 3D Virtual Models. J Healthc Eng 2019; 2019: 7095845.
[http://dx.doi.org/10.1155/2019/7095845] [PMID: 31249656]
[3]
Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D Printing and its Future Directions. JACC Cardiovasc Imaging 2017; 10(2): 171-84.
[http://dx.doi.org/10.1016/j.jcmg.2016.12.001] [PMID: 28183437]
[4]
Otton JM, Birbara NS, Hussain T, Greil G, Foley TA, Pather N. 3D printing from cardiovascular CT: a practical guide and review. Cardiovasc Diagn Ther 2017; 7(5): 507-26.
[http://dx.doi.org/10.21037/cdt.2017.01.12] [PMID: 29255693]
[5]
Giannopoulos AA, Mitsouras D, Yoo S-J, Liu PP, Chatzizisis YS, Rybicki FJ. Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol 2016; 13(12): 701-18.
[http://dx.doi.org/10.1038/nrcardio.2016.170] [PMID: 27786234]
[6]
Batteux C, Haidar MA, Bonnet D. 3D-Printed Models for Surgical Planning in Complex Congenital Heart Diseases: A Systematic Review. Front Pediatr 2019; 7: 23.
[http://dx.doi.org/10.3389/fped.2019.00023] [PMID: 30805324]
[7]
El Sabbagh A, Eleid MF, Al-Hijji M, et al. The Various Applications of 3D Printing in Cardiovascular Diseases. Curr Cardiol Rep 2018; 20(6): 47.
[http://dx.doi.org/10.1007/s11886-018-0992-9] [PMID: 29749577]
[8]
Hoang D, Perrault D, Stevanovic M, Ghiassi A. Surgical applications of three-dimensional printing: a review of the current literature & how to get started. Ann Transl Med 2016; 4(23): 456.
[http://dx.doi.org/10.21037/atm.2016.12.18] [PMID: 28090512]
[9]
Greil GF, Wolf I, Kuettner A, et al. Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging. Clin Res Cardiol 2007; 96(3): 176-85.
[http://dx.doi.org/10.1007/s00392-007-0482-3] [PMID: 17225916]
[10]
Han BK, Rigsby CK, Hlavacek A, et al. Society of Cardiovascular Computed Tomography; Society of Pediatric Radiology; North American Society of Cardiac Imaging. Computed Tomography Imaging in Patients with Congenital Heart Disease Part I: Rationale and Utility. An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT): Endorsed by the Society of Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr 2015; 9(6): 475-92.
[http://dx.doi.org/10.1016/j.jcct.2015.07.004] [PMID: 26272851]
[11]
Han BK, Rigsby CK, Leipsic J, et al. Society of Cardiovascular Computed Tomography; Society of Pediatric Radiology; North American Society of Cardiac Imaging. Computed Tomography Imaging in Patients with Congenital Heart Disease, Part 2: Technical Recommendations. An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT): Endorsed by the Society of Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr 2015; 9(6): 493-513.
[http://dx.doi.org/10.1016/j.jcct.2015.07.007] [PMID: 26679548]
[12]
Shuman WP, Leipsic JA, Busey JM, et al. Prospectively ECG gated CT pulmonary angiography versus helical ungated CT pulmonary angiography: impact on cardiac related motion artifacts and patient radiation dose. Eur J Radiol 2012; 81(9): 2444-9.
[http://dx.doi.org/10.1016/j.ejrad.2011.06.017] [PMID: 21703791]
[13]
Santarelli MF, Positano V, Martini N, Valvano G, Landini L. Technological Innovations in Magnetic Resonance for Early Detection of Cardiovascular Diseases. Curr Pharm Des 2016; 22(1): 77-89.
[http://dx.doi.org/10.2174/1381612822666151109112240] [PMID: 26548308]
[14]
Wang Y, Truong TN, Yen C, et al. Quantitative evaluation of susceptibility and shielding effects of nitinol, platinum, cobalt-alloy, and stainless steel stents. Magn Reson Med 2003; 49(5): 972-6.
[http://dx.doi.org/10.1002/mrm.10450] [PMID: 12704782]
[15]
Farooqi KM, Lengua CG, Weinberg AD, Nielsen JC, Sanz J. Blood Pool Segmentation Results in Superior Virtual Cardiac Models than Myocardial Segmentation for 3D Printing. Pediatr Cardiol 2016; 37(6): 1028-36.
[http://dx.doi.org/10.1007/s00246-016-1385-8] [PMID: 27041098]
[16]
Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 4D flow MRI. J Magn Reson Imaging 2012; 36(5): 1015-36.
[http://dx.doi.org/10.1002/jmri.23632] [PMID: 23090914]
[17]
Bock J, Frydrychowicz A, Stalder AF, et al. 4D phase contrast MRI at 3 T: effect of standard and blood-pool contrast agents on SNR, PC-MRA, and blood flow visualization. Magn Reson Med 2010; 63(2): 330-8.
[http://dx.doi.org/10.1002/mrm.22199] [PMID: 20024953]
[18]
Lang RM, Badano LP, Tsang W, et al. American Society of Echocardiography; European Association of Echocardiography. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr 2012; 25(1): 3-46.
[http://dx.doi.org/10.1016/j.echo.2011.11.010] [PMID: 22183020]
[19]
Olivieri LJ, Krieger A, Loke Y-H, Nath DS, Kim PCW, Sable CA. Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. J Am Soc Echocardiogr 2015; 28(4): 392-7.
[http://dx.doi.org/10.1016/j.echo.2014.12.016] [PMID: 25660668]
[20]
Samuel BP, Pinto C, Pietila T, Vettukattil JJ. Ultrasound-Derived Three-Dimensional Printing in Congenital Heart Disease. J Digit Imaging 2015; 28(4): 459-61.
[http://dx.doi.org/10.1007/s10278-014-9761-5] [PMID: 25537458]
[21]
Byrne N, Velasco Forte M, Tandon A, Valverde I, Hussain T. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system. JRSM Cardiovasc Dis 2016; •••: 52048004016645467.
[http://dx.doi.org/10.1177/2048004016645467] [PMID: 27170842]
[22]
Audette MA, Chernikov AN, Chrisochoides NP. A Review of Mesh Generation for Medical SimulatorsHandbook of Real-World Applications in Modeling and Simulation. John Wiley Sons, Ltd 2012; pp. 261-97.
[http://dx.doi.org/10.1002/9781118241042.ch7]
[23]
Yerry MA, Shephard MS. Automatic Three-Dimensional Mesh Generation by the Modified-Octree Technique. Int J Numer Methods Eng 1984; 20: 1965-90.
[http://dx.doi.org/10.1002/nme.1620201103]
[24]
Newman TS, Yi H. A Survey of the Marching Cubes Algorithm. Comput Graph 2006; 30: 854-79.
[http://dx.doi.org/10.1016/j.cag.2006.07.021]
[25]
Maragiannis D, Jackson MS, Igo SR, et al. Replicating Patient-Specific Severe Aortic Valve Stenosis With Functional 3D Modeling. Circ Cardiovasc Imaging 2015; 8(10): e003626.
[http://dx.doi.org/10.1161/CIRCIMAGING.115.003626] [PMID: 26450122]
[26]
Vignali E, Manigrasso Z, Gasparotti E, et al. Design, simulation, and fabrication of a three-dimensional printed pump mimicking the left ventricle motion. Int J Artif Organs 2019; 42(10): 539-47.
[http://dx.doi.org/10.1177/0391398819856892] [PMID: 31269860]
[27]
Celi S, Losi P, Berti S. Investigation on Regional Variation of Intraluminal Thrombus: A Mechanical and Histological Study. Bioinspired. Biomimetic and Nanobiomaterials 2012; 1: 183-94.
[http://dx.doi.org/10.1680/bbn.12.00006]
[28]
Vignali E, Gasparotti E, Capellini K, et al. Modelling biomechanical interaction between soft tissue and soft robotic instruments: importance of constitutive anisotropic hyperelastic formulations. Int J Robot Res 2020; 40(2): 027836492092747.
[http://dx.doi.org/10.1177/0278364920927476]]
[29]
Fanni BM. A numerical and 3D printing framework for the in vivo mechanical assessment of patient-specific cardiovascular structures Proceedings of the II International Conference on Simulation for Additive Manufacturing, CIMNE Editor. 31.
[30]
Capellini. 3D Printing and 3D Virtual Models for Surgical and Percutaneous Planning of Congenital Heart Diseases Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. 2020; 3: 281-7.
[31]
Bramlet M, Olivieri L, Farooqi K, Ripley B, Coakley M. Impact of Three-Dimensional Printing on the Study and Treatment of Congenital Heart Disease. Circ Res 2017; 120(6): 904-7.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.310546] [PMID: 28302738]
[32]
Cantinotti M, Valverde I, Kutty S. Three-dimensional printed models in congenital heart disease. Int J Cardiovasc Imaging 2017; 33(1): 137-44.
[http://dx.doi.org/10.1007/s10554-016-0981-2] [PMID: 27677762]
[33]
Valverde I, Gomez-Ciriza G, Hussain T, et al. Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study. Eur J Cardiothorac Surg 2017; 52(6): 1139-48.
[http://dx.doi.org/10.1093/ejcts/ezx208] [PMID: 28977423]
[34]
Reddy VY, Sievert H, Halperin J, et al. PROTECT AF Steering Committee and Investigators. Percutaneous left atrial appendage closure vs warfarin for atrial fibrillation: a randomized clinical trial. JAMA 2014; 312(19): 1988-98.
[http://dx.doi.org/10.1001/jama.2014.15192] [PMID: 25399274]
[35]
Holmes DR Jr, Lakkireddy DR, Whitlock RP, Waksman R, Mack MJ. Left atrial appendage occlusion: opportunities and challenges. J Am Coll Cardiol 2014; 63(4): 291-8.
[http://dx.doi.org/10.1016/j.jacc.2013.08.1631] [PMID: 24076495]
[36]
Camm AJ, Lip GYH, De Caterina R, et al. ESC Committee for Practice Guidelines-CPG; Document Reviewers. 2012 focused update of the ESC Guidelines for the management of atrial fibrillation: an update of the 2010 ESC Guidelines for the management of atrial fibrillation-developed with the special contribution of the European Heart Rhythm Association. Europace 2012; 14(10): 1385-413.
[http://dx.doi.org/10.1093/europace/eus305] [PMID: 22923145]
[37]
Chanda A, Reilly JP. Left Atrial Appendage Occlusion for Stroke Prevention. Prog Cardiovasc Dis 2017; 59(6): 626-35.
[http://dx.doi.org/10.1016/j.pcad.2017.04.003] [PMID: 28457791]
[38]
Berti S, Pastormerlo LE, Rezzaghi M, Trianni G, Paradossi U, Cerone E, et al. Left Atrial Appendage Occlusion in High-Risk Patients with Non-Valvular Atrial Fibrillation Heart 2016.
[http://dx.doi.org/10.1136/heartjnl-2015-309150]
[39]
Berti S, Pastormerlo LE, Celi S, et al. First-in-Human Percutaneous Left Atrial Appendage Occlusion Procedure Guided by Real-Time 3-Dimensional Intracardiac Echocardiography. JACC Cardiovasc Interv 2018; 11(21): 2228-31.
[http://dx.doi.org/10.1016/j.jcin.2018.08.023] [PMID: 30343023]
[40]
Fanni BM, Capellini K, Di Leonardo M, Clemente A, Cerone E, Berti S, et al. Correlation between LAA Morphological Features and Computational Fluid Dynamics Analysis for Non-Valvular Atrial Fibrillation Patients. Appl Sci (Basel) 2020; 10: 1448.
[http://dx.doi.org/10.3390/app10041448]
[41]
Dachman AH, Spindola-Franco H, Solomon N. Left ventricular pseudoaneurysm. Its recognition and significance. JAMA 1981; 246(17): 1951-3.
[http://dx.doi.org/10.1001/jama.1981.03320170063036] [PMID: 7288976]
[42]
Atik FA, Navia JL, Vega PR, et al. Surgical treatment of postinfarction left ventricular pseudoaneurysm. Ann Thorac Surg 2007; 83(2): 526-31.
[http://dx.doi.org/10.1016/j.athoracsur.2006.06.080] [PMID: 17257982]
[43]
Dudiy Y, Jelnin V, Einhorn BN, Kronzon I, Cohen HA, Ruiz CE. Percutaneous closure of left ventricular pseudoaneurysm. Circ Cardiovasc Interv 2011; 4(4): 322-6.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.111.962464] [PMID: 21791672]
[44]
Inayat F, Ghani AR, Riaz I, et al. Left Ventricular Pseudoaneurysm: An Overview of Diagnosis and Management. J Investig Med High Impact Case Rep 2018; 6: 2324709618792025.
[http://dx.doi.org/10.1177/2324709618792025] [PMID: 30090827]
[45]
Wren C, O’Sullivan JJ. Survival with congenital heart disease and need for follow up in adult life. Heart 2001; 85(4): 438-43.
[http://dx.doi.org/10.1136/heart.85.4.438] [PMID: 11250973]
[46]
Hoffman JIE, Kaplan S, Liberthson RR. Prevalence of congenital heart disease. Am Heart J 2004; 147(3): 425-39.
[http://dx.doi.org/10.1016/j.ahj.2003.05.003] [PMID: 14999190]
[47]
Nishimura RA, Otto CM, Bonow RO, et al. ACC/AHA Task Force Members. 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014; 129(23): 2440-92.
[http://dx.doi.org/10.1161/CIR.0000000000000029] [PMID: 24589852]
[48]
Goel S, Pasam RT, Wats K, et al. Transcatheter Aortic Valve Replacement versus Surgical Aortic Valve Replacement in Low-Surgical-Risk Patients: An Updated Meta-Analysis. Catheterization Cardio Interve 2020; 96(1): 169-78.
[http://dx.doi.org/10.1002/CCD.28520]]
[49]
Mihara H, Shibayama K, Jilaihawi H, et al. Assessment of Post-Procedural Aortic Regurgitation After TAVR: An Intraprocedural TEE Study. JACC Cardiovasc Imaging 2015; 8(9): 993-1003.
[http://dx.doi.org/10.1016/j.jcmg.2015.02.029] [PMID: 26319501]
[50]
Gilon D, Cape EG, Handschumacher MD, et al. Effect of threedimensional valve shape on the hemodynamics of aortic stenosis: three-dimensional echocardiographic stereolithography and patient studies. J Am Coll Cardiol 2002; 40(8): 1479-86.
[http://dx.doi.org/10.1016/S0735-1097(02)02269-6] [PMID: 12392840]
[51]
Schmauss D, Schmitz C, Bigdeli AK, et al. Three-dimensional printing of models for preoperative planning and simulation of transcatheter valve replacement. Ann Thorac Surg 2012; 93(2): e31-3.
[http://dx.doi.org/10.1016/j.athoracsur.2011.09.031] [PMID: 22269765]
[52]
Harb SC, Xu B, Klatte R, Griffin BP, Rodriguez LL. Haemodynamic Assessment of Severe Aortic Stenosis Using a Three-Dimensional (3D) Printed Model Incorporating a Flow Circuit. Heart Lung Circ 2018; 27(11): e105-7.
[http://dx.doi.org/10.1016/j.hlc.2018.05.099] [PMID: 29933913]
[53]
Cloonan AJ, Shahmirzadi D, Li RX, Doyle BJ, Konofagou EE, McGloughlin TM. 3D-Printed Tissue-Mimicking Phantoms for Medical Imaging and Computational Validation Applications 3D Printing and Additive Manufacturing. 2014; 1: 14-23.
[54]
Wang K, Zhao Y, Chang Y-H, Qian Z, Zhang C, Wang B, et al. Controlling the Mechanical Behavior of Dual-Material 3D Printed Meta-Materials for Patient-Specific Tissue-Mimicking Phantoms. Mater Des 2016; 90: 704-12.
[http://dx.doi.org/10.1016/j.matdes.2015.11.022]
[55]
Qian Z, Wang K, Liu S, et al. Quantitative Prediction of Paravalvular Leak in Transcatheter Aortic Valve Replacement Based on Tissue-Mimicking 3D Printing. JACC Cardiovasc Imaging 2017; 10(7): 719-31.
[http://dx.doi.org/10.1016/j.jcmg.2017.04.005] [PMID: 28683947]
[56]
Rotman OM, Kovarovic B, Sadasivan C, Gruberg L, Lieber BB, Bluestein D. Realistic Vascular Replicator for TAVR Procedures. Cardiovasc Eng Technol 2018; 9(3): 339-50.
[http://dx.doi.org/10.1007/s13239-018-0356-z] [PMID: 29654509]
[57]
Mashari A, Knio Z, Jeganathan J, et al. Hemodynamic Testing of Patient-Specific Mitral Valves Using a Pulse Duplicator: A Clinical Application of Three-Dimensional Printing. J Cardiothorac Vasc Anesth 2016; 30(5): 1278-85.
[http://dx.doi.org/10.1053/j.jvca.2016.01.013] [PMID: 27179613]
[58]
Baribeau Y, Sharkey A, Mahmood E, et al. Three-Dimensional Printing and Transesophageal Echocardiographic Imaging of Patient-Specific Mitral Valve Models in a Pulsatile Phantom Model. J Cardiothorac Vasc Anesth 2019; 33(12): 3469-75.
[http://dx.doi.org/10.1053/j.jvca.2019.07.141] [PMID: 31451371]
[59]
Sodian R, Loebe M, Hein A, Martin DP, Hoerstrup SP, Potapov EV, et al. Application of Stereolithography for Scaffold Fabrication for Tissue Engineered Heart Valves ASAIO journal (American Society for Artificial Internal Organs. 2002; 48: 12-6.
[http://dx.doi.org/10.1097/00002480-200201000-00004]
[60]
Gasparotti E, Vignali E, Losi P, Scatto M, Fanni BM, Soldani G, et al. A 3D Printed Melt-Compounded Antibiotic Loaded Thermoplastic Polyurethane Heart Valve Ring Design: An Integrated Framework of Experimental Material Tests and Numerical Simulations. International Journal of Polymeric Materials and Polymeric Biomaterials 2019; 68: 1-10.
[http://dx.doi.org/10.1080/00914037.2018.1525717]
[61]
Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 2013; 101(5): 1255-64.
[http://dx.doi.org/10.1002/jbm.a.34420] [PMID: 23015540]
[62]
Saidy NT, Wolf F, Bas O, et al. Biologically Inspired Scaffolds for Heart Valve Tissue Engineering via Melt Electrowriting. Small 2019; 15(24): e1900873.
[http://dx.doi.org/10.1002/smll.201900873] [PMID: 31058444]
[63]
Celi S, Berti S. Three-dimensional sensitivity assessment of thoracic aortic aneurysm wall stress: a probabilistic finite-element study. Eur J Cardiothorac Surg 2014; 45(3): 467-75.
[http://dx.doi.org/10.1093/ejcts/ezt400] [PMID: 23921161]
[64]
Capellini K, Vignali E, Costa E, Gasparotti E, Biancolini ME, Landini L, et al. Computational Fluid Dynamic Study for aTAA Hemodynamics: An Integrated Image-Based and Radial Basis Functions Mesh Morphing Approach. J Biomech Eng 2018; 140(11): 111007.
[http://dx.doi.org/10.1115/1.4040940]
[65]
Boccadifuoco A, Mariotti A, Capellini K, Celi S, Salvetti MV. Validation of Numerical Simulations of Thoracic Aorta Hemodynamics: Comparison with In Vivo Measurements and Stochastic Sensitivity Analysis. Cardiovasc Eng Technol 2018; 9(4): 688-706.
[http://dx.doi.org/10.1007/s13239-018-00387-x] [PMID: 30357714]
[66]
Gehron J, Zirbes J, Bongert M, Schäfer S, Fiebich M, Krombach G, et al. Development and Validation of a Life-Sized Mock Circulatory Loop of the Human Circulation for Fluid-Mechanical Studies ASAIO journal (American Society for Artificial Internal Organs. 2019; 65: 788-97.
[http://dx.doi.org/10.1097/MAT.0000000000000880]
[67]
Vignali E. Development of a Fully Controllable Real-Time Pump to Reproduce Left Ventricle Physiological Flow. Proceedings of XXIV AIMETA Conference. 908-19.
[68]
Chiastra C, Montin E, Bologna M, et al. Reconstruction of stented coronary arteries from optical coherence tomography images: Feasibility, validation, and repeatability of a segmentation method. PLoS One 2017; 12(6): e0177495.
[http://dx.doi.org/10.1371/journal.pone.0177495] [PMID: 28574987]
[69]
Cuenca-Navalon E, Finocchiaro T, Laumen M, Fritschi A, Schmitz-Rode T, Steinseifer U. Design and evaluation of a hybrid mock circulatory loop for total artificial heart testing. Int J Artif Organs 2014; 37(1): 71-80.
[http://dx.doi.org/10.5301/ijao.5000301] [PMID: 24634320]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy