Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

An Overview of the Antimicrobial Activity of Polymeric Nanoparticles Against Enterobacteriaceae

Author(s): Maísa Soares de Oliveira, João Augusto Oshiro-Junior*, Mariana Morais Dantas, Naara Felipe da Fonsêca, Hilthon Alves Ramos, João Victor Belo da Silva and Ana Claudia Dantas de Medeiros*

Volume 27, Issue 10, 2021

Published on: 29 October, 2020

Page: [1311 - 1322] Pages: 12

DOI: 10.2174/1381612826666201029095327

Price: $65

Abstract

Bacterial resistance is considered one of the most important public health problems of the century, due to the ability of bacteria to rapidly develop resistance mechanisms, which makes it difficult to treat infections, leading to a high rate of morbidity and mortality. Based on this, several options are being sought as an alternative to currently available treatments, with a particular focus on nanotechnology. Nanomaterials have important potential for use in medical interventions aimed at preventing, diagnosing and treating numerous diseases by directing the delivery of drugs. This review presents data on the use of polymeric nanoparticles having in vitro and in vivo activity against bacteria belonging to the Enterobacteriaceae family.

Keywords: Drug delivery system, nanotechnology, enterobacteriaceae, bacterial resistance, nanoparticles, polymeric.

[1]
Interagency Coordination Group on Antimicrobial Resistance. Interagency Coordination Group on Antimicrobial Resistance, No Time to Wait: Securing the Future From Drug-resistant Infections World Health Organization Available from: https://www.who.int/antimicrobial-resistance/interagency-coordination-group/final-report/en/
[2]
Arora A, Mishra A. Antibacterial polymers - a mini review. Materials Today: Proceedings 2018; 5: 17156-61.
[3]
Tackling Drug-Resistant Infections globally, Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations Review on Antimicrobial Resistance Available from: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf
[4]
Tangcharoensathien V, Sattayawutthipong W, Kanjanapimai S, Kanpravidth W, Brown R, Sommanustweechai A. Antimicrobial resistance: from global agenda to national strategic plan, Thailand. Bull World Health Organ 2017; 95(8): 599-603.
[http://dx.doi.org/10.2471/BLT.16.179648] [PMID: 28804172]
[5]
Lakshminarayanan R, Ye E, Young DJ, Li Z, Loh XJ. Recent Advances in the Development of Antimicrobial Nanoparticles for Combating Resistant Pathogens. Adv Healthc Mater 2018; 7(13): e1701400.
[http://dx.doi.org/10.1002/adhm.201701400] [PMID: 29717819]
[6]
Sharma M, Chetia P, Puzari M, et al. Menace to the ultimate antimicrobials among common Enterobacteriaceae clinical isolates in part of North-East India. bioRxiv 2019.
[7]
Almugadam BA, Ali NO, Ahmed AB, et al. Prevalence and antibiotics susceptibility patterns of carbapenem resistant Enterobacteriaceae. J Bacteriol Mycol 2018; 6: 187-90.
[http://dx.doi.org/10.15406/jbmoa.2018.06.00201]
[8]
Soontaros S, Leelakanok N. Association between carbapenem-resistant Enterobacteriaceae and death: A systematic review and meta-analysis. Am J Infect Control 2019; 47(10): 1200-12.
[http://dx.doi.org/10.1016/j.ajic.2019.03.020] [PMID: 31072673]
[9]
Seibert G, Hörner R, Meneghetti BH, et al. Infecções hospitalares por enterobactérias produtoras de Klebsiella pneumoniae carbapenemase em um hospital escola. Einstein (Sao Paulo) 2024(12): 282-6.
[10]
Shaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci 2015; 22(1): 90-101.
[http://dx.doi.org/10.1016/j.sjbs.2014.08.002] [PMID: 25561890]
[11]
Doi Y, Paterson DL. Carbapenemase-producing Enterobacteriaceae. Semin Respir Crit Care Med 2015; 36(1): 74-84.
[http://dx.doi.org/10.1055/s-0035-1544208] [PMID: 25643272]
[12]
Chotiprasitsakul D, Srichatrapimuk S, Kirdlarp S, Pyden AD, Santanirand P. Epidemiology of carbapenem-resistant Enterobacteriaceae: a 5-year experience at a tertiary care hospital. Infect Drug Resist 2019; 12: 461-8.
[http://dx.doi.org/10.2147/IDR.S192540] [PMID: 30863128]
[13]
Lam SJ, Wongb EHH, Boyerb C, et al. Antimicrobial polymeric nanoparticles. Prog Polym Sci 2018; 76: 40-64.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.07.007]
[14]
Rožman P. The potential of non-myeloablative heterochronous autologous hematopoietic stem cell transplantation for extending a healthy life span. Geroscience 2018; 40(3): 221-42.
[http://dx.doi.org/10.1007/s11357-018-0027-x] [PMID: 29948868]
[15]
Zeng S, Xu Z, Wang X, et al. Time series analysis of antibacterial usage and bacterial resistance in China: observations from a tertiary hospital from 2014 to 2018. Infect Drug Resist 2019; 12: 2683-91.
[http://dx.doi.org/10.2147/IDR.S220183] [PMID: 31695444]
[16]
Dorati R, Detrizio A, Spalla M, et al. Gentamicin Sulfate PEG-PLGA/PLGA-H nanoparticles: screening design and antimicrobial effect evaluation toward clinic bacterial isolates. Nanomaterials 2018; 8: 01-20.
[17]
Inam M, Foster JC, Gao J, et al. Size and Shape Affects the Antimicrobial Activity of Quaternized Nanoparticles. J Polyme Sci 2019; 57: 255-9.
[http://dx.doi.org/10.1002/pola.29195]
[18]
Sato MR, Oshiro-Junior JA, Souza PC, et al. Copper(II) complex-loaded castor oil-based nanostructured lipid carriers used against Mycobacterium tuberculosis : Development, characterisation, in vitro and in vivo biological assays. Pharmazie 2019; 74(12): 715-20.
[PMID: 31907109]
[19]
Araújo GMF, Barros ARA, Oshiro-Junior JA, et al. Nanoemulsions Loaded with Amphotericin B: Development, Characterization and Leishmanicidal Activity. Curr Pharm Des 2019; 25(14): 1616-22.
[http://dx.doi.org/10.2174/1381612825666190705202030] [PMID: 31298163]
[20]
Barros RM, de Oliveira MS, Costa KMN, et al. Physicochemical characterization of bioactive compounds in nanocarriers. Curr Pharm Des 2020; 26(33): 4163-73.
[http://dx.doi.org/10.2174/1381612826666200310144533] [PMID: 32156229]
[21]
Oshiro-Junior JA, Sato MR, Boni FI, et al. Phthalocyanine-loaded nanostructured lipid carriers functionalized with folic acid for photodynamic therapy. Mater Sci Eng C 2020; 108: 110462.
[22]
Silvestre ALP, Oshiro-Júnior JA, Garcia C, et al. Monoclonal antibodies carried in drug delivery nanosystems as a strategy for cancer treatment. Curr Med Chem 2020; 27: 1.
[http://dx.doi.org/10.2174/0929867327666200121121409] [PMID: 31965938]
[23]
Schaffazick SP, Guterres SS, Freitas LL, et al. Caracterização e estabilidade físico-química de sistemas poliméricos nanoparticulados para administração de fármacos. Quim Nova 2003; 26: 726-37.
[http://dx.doi.org/10.1590/S0100-40422003000500017]
[24]
Cheng R, Meng F, Deng C, Klok HA, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013; 34(14): 3647-57.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.084] [PMID: 23415642]
[25]
Villanova JCO, Oréfice RL, Cunha AS. Aplicações Farmacêuticas de Polímeros. Polímeros. Ciência e Tecnologia 2010; 20: 51-64.
[26]
de Oliveira MS, Oshiro-Junior JA, Sato MR, Conceição MM, Medeiros ACD. Polymeric nanoparticle associated with ceftriaxone and extract of schinopsis brasiliensis engler against multiresistant enterobacteria. Pharmaceutics 2020; 12(8): E695.
[http://dx.doi.org/10.3390/pharmaceutics12080695] [PMID: 32718016]
[27]
Abriata JP, Turatti RC, Luiz MT, et al. Development, characterization and biological in vitro assays of paclitaxel-loaded PCL polymeric nanoparticles. Mater Sci Eng C 2019; 96: 347-55.
[http://dx.doi.org/10.1016/j.msec.2018.11.035] [PMID: 30606542]
[28]
Umerska A, Gaucher C, Oyarzun-Ampuero F, et al. Polymeric Nanoparticles for Increasing Oral Bioavailability of Curcumin. Antioxidants 2018; 24: 7-46.
[http://dx.doi.org/10.3390/antiox7040046]
[29]
Baksi R, Singh DP, Borse SP, Rana R, Sharma V, Nivsarkar M. In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed Pharmacother 2018; 106: 1513-26.
[http://dx.doi.org/10.1016/j.biopha.2018.07.106] [PMID: 30119227]
[30]
Balzus B, Sahle FF, Hönzke S, et al. Formulation and ex vivo evaluation of polymeric nanoparticles for controlled delivery of corticosteroids to the skin and the corneal epithelium. Eur J Pharm Biopharm 2017; 115: 122-30.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.001] [PMID: 28189623]
[32]
Frederick A. Escherichia coli, Prevalência e resistência a antibióticos na Malásia: uma mini revisão. J Microbiol 2011; 1: 47-53.
[http://dx.doi.org/10.3923/mj.2011.47.53]
[33]
Moş I, Micle O, Zdrâncă M, et al. Antibiotic sensitivity of the Escherichia coli strains isolated from infected skin wounds. Farmacia 2010; 58: 637-45.
[34]
Somorin YM, Vollmerhausen T, Waters N, et al. Absence of curli in soil-persistent Escherichia coli is mediated by a C-di-GMP signaling defect and suggests evidence of biofilm-independent niche specialization. Front Microbiol 2018; 9: 1340.
[http://dx.doi.org/10.3389/fmicb.2018.01340] [PMID: 29997584]
[35]
Starlander G, Yin H, Edquist P, Melhus Å. Survival in the environment is a possible key factor for the expansion of Escherichia coli strains producing extended-spectrum β-lactamases. APMIS 2014; 122(1): 59-67.
[http://dx.doi.org/10.1111/apm.12102] [PMID: 23755901]
[36]
van Driel AA, Notermans DW, Meima A, et al. Antibiotic resistance of Escherichia coli isolated from uncomplicated UTI in general practice patients over a 10-year period. Eur J Clin Microbiol Infect Dis 2019; 38(11): 2151-8.
[http://dx.doi.org/10.1007/s10096-019-03655-3] [PMID: 31440915]
[37]
Farshad S, Emamghoraishi F, Japoni A. Association of virulent genes hly, sfa, cnf-1 and pap with antibiotic sensitivity in Escherichia coli strains isolated from children with community-acquired UTI. Iran Red Crescent Med J 2010; 12: 33-7.
[38]
Ibrahim IAJ, Al-Shwaikh RM, Ismaeil MI. Virulence and antimicrobial resistance of Escherichia coli isolated from Tigris River and children diarrhea. Infect Drug Resist 2014; 7: 317-22.
[http://dx.doi.org/10.2147/IDR.S70684] [PMID: 25473302]
[39]
Poirel L, Madec JY, Lupo A, et al. Antimicrobial Resistance in Escherichia coli. Microbiol Spectr 2018; 6(4): 1-27.
[PMID: 30003866]
[40]
Liu M, Teng CP, Win KY, et al. Polymeric encapsulation of turmeric extract for bioimaging and antimicrobial applications. Macromol Rapid Commun 2019; 40(5): e1800216.
[http://dx.doi.org/10.1002/marc.201800216] [PMID: 30085362]
[41]
Masood F, Yasin T, Bukhari H, Mujahid M. Characterization and application of roxithromycin loaded cyclodextrin based nanoparticles for treatment of multidrug resistant bacteria. Mater Sci Eng 2016; 61: 1-7.
[http://dx.doi.org/10.1016/j.msec.2015.11.076] [PMID: 26838816]
[42]
Cruz J, Flórez J, Torres R, et al. Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or poly(lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA). Nanotechnology 2017; 28(13): 135102.
[http://dx.doi.org/10.1088/1361-6528/aa5f63] [PMID: 28266350]
[43]
Liakos IL, Iordache F, Carzino R, et al. Cellulose acetate - essential oil nanocapsules with antimicrobial activity for biomedical applications. Colloids Surf B Biointerfaces 2018; 172: 471-9.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.069] [PMID: 30199764]
[44]
Mezzatesta ML, Gona F, Stefani S. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol 2012; 7(7): 887-902.
[http://dx.doi.org/10.2217/fmb.12.61] [PMID: 22827309]
[45]
Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 2015; 13(1): 42-51.
[http://dx.doi.org/10.1038/nrmicro3380] [PMID: 25435309]
[46]
Azevedo PAA, Furlan JPR, Oliveira-Silva M, et al. Detection of virulence and β-lactamase encoding genes in Enterobacter aerogenes and Enterobacter cloacae clinical isolates from Brazil. Braz J Microbiol 2018; 49(Suppl. 1): 224-8.
[http://dx.doi.org/10.1016/j.bjm.2018.04.009] [PMID: 29858139]
[47]
Gupta A, Landis RF, Li CH, et al. Engineered Polymer Nanoparticles with Unprecedented Antimicrobial Efficacy and Therapeutic Indices against Multidrug-Resistant Bacteria and Biofilms. J Am Chem Soc 2018; 140(38): 12137-43.
[http://dx.doi.org/10.1021/jacs.8b06961] [PMID: 30169023]
[48]
Mehra M, Sheorain J, Kumari S. Synthesis of berberine loaded polymeric nanoparticles by central composite design. AIP Conf Proc 2016; 1724.
[http://dx.doi.org/10.1063/1.4945180]
[49]
Rani R, Dilbaghi N, Dhingra D, Kumar S. Optimization and evaluation of bioactive drug-loaded polymeric nanoparticles for drug delivery. Int J Biol Macromol 2015; 78: 173-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.03.070] [PMID: 25881957]
[50]
Kamaruzzaman NF, Tan LP, Hamdan RH, et al. Antimicrobial polymers: The potential replacement of existing antibiotics? Int J Mol Sci 2019; 20(11): 1-31.
[http://dx.doi.org/10.3390/ijms20112747] [PMID: 31167476]
[51]
Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev 2019; 43(2): 123-44.
[http://dx.doi.org/10.1093/femsre/fuy043] [PMID: 30452654]
[52]
Patro LPP, Rathinavelan T. Targeting the Sugary Armor of Klebsiella Species. Front Cell Infect Microbiol 2019; 9: 367.
[http://dx.doi.org/10.3389/fcimb.2019.00367] [PMID: 31781512]
[53]
Parisi OI, Scrivano L, Sinicropi MS, Puoci F. Polymeric nanoparticle constructs as devices for antibacterial therapy. Curr Opin Pharmacol 2017; 36: 72-7.
[http://dx.doi.org/10.1016/j.coph.2017.08.004] [PMID: 28892800]
[54]
Shaaban MI, Shaker MA, Mady FM. Imipenem/cilastatin encapsulated polymeric nanoparticles for destroying carbapenem-resistant bacterial isolates. J Nanobiotechnology 2017; 15(1): 29.
[http://dx.doi.org/10.1186/s12951-017-0262-9] [PMID: 28399890]
[55]
Khanum R, Qureshi MJ, Mohandas K. Antibiofilm potential of meropenem-loaded poly(Ɛ-caprolactone) nanoparticles against Klebsiella pneumoniae. Int J Pharm Clin Res 2016; 8: 1343-50.
[56]
López-López M, Fernández-Delgado A, Moyá ML, et al. Optimized preparation of levofloxacin loaded polymeric nanoparticles. Pharmaceutics 2019; 11(2): 1-13.
[http://dx.doi.org/10.3390/pharmaceutics11020057] [PMID: 30704034]
[57]
Fatima S, Iqbal Z, Panda AK, Samim M, Talegaonkar S, Ahmad FJ. Polymeric nanoparticles as a platform for permeability enhancement of class III drug amikacin. Colloid Surface B 2018; 169: 206-13.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.028] [PMID: 29778036]
[58]
Jiang L, Greene MK, Insua JL, et al. Clearance of intracellular Klebsiella pneumoniae infection using gentamicin-loaded nanoparticles. J Control Release 2018; 279: 316-25.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.040] [PMID: 29704616]
[59]
Moreira MN, Sola CM, Feistel CJ, et al. Os mecanismos de resistência bacteriana da Salmonella sp. frente à utilização de antibióticos. Enciclopédia biosfera- Centro Científico Conhecer 2013; 9: 1131-55.
[60]
Shinohara NKS, Barros VB, Jimenez SM, Machado EdeC, Dutra RA, de Lima Filho JL. Salmonella spp., importante agente patogênico veiculado em alimentos. Cien Saude Colet 2008; 13(5): 1675-83.
[http://dx.doi.org/10.1590/S1413-81232008000500031] [PMID: 18813668]
[61]
Lamas A, Miranda JM, Regal P, Vázquez B, Franco CM, Cepeda A. A comprehensive review of non-enterica subspecies of Salmonella enterica. Microbiol Res 2018; 206: 60-73.
[http://dx.doi.org/10.1016/j.micres.2017.09.010] [PMID: 29146261]
[62]
Martínez-Avilés M, Garrido-Estepa M, Álvarez J, de la Torre A. Salmonella surveillance systems in swine and humans in Spain: A review.S Vet Sci 2019; 6(1): 1-16.
[http://dx.doi.org/10.3390/vetsci6010020] [PMID: 30791671]
[63]
Scilletta NA, Pezzoni M, Desimone MF, Soler-Illia GJAA, Catalano PN, Bellino MG. Transforming an inert nanopolymer into broad-spectrum bactericidal by superstructure tuning. Colloid Surface B 2019; 178: 214-21.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.056] [PMID: 30870788]
[64]
da Silva RL, da Silva JR, Júnior APD, et al. Adsorption of Vi Capsular Antigen of Salmonella Typhi in Chitosan-Poly (Methacrylic Acid) Nanoparticles. Polymers (Basel) 2019; 11(7): 1-10.
[http://dx.doi.org/10.3390/polym11071226] [PMID: 31340432]
[65]
Braz L, Grenha A, Ferreira D, Rosa da Costa AM, Gamazo C, Sarmento B. Chitosan/sulfated locust bean gum nanoparticles: In vitro and in vivo evaluation towards an application in oral immunization. Int J Biol Macromol 2017; 96: 786-97.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.076] [PMID: 28049014]
[66]
Molnár S, Flonta MMM, Almaş A, et al. Dissemination of NDM-1 carbapenemase-producer Providencia stuartii strains in Romanian hospitals: a multicentre study. J Hosp Infect 2019; 103(2): 165-9.
[http://dx.doi.org/10.1016/j.jhin.2019.04.015] [PMID: 31039380]
[67]
Ramkumar R, Ravi M, Jayaseelan C, et al. Description of Providencia vermicola isolated from diseased Indian major carp, Labeorohita (Hamilton, 1822). Aquaculture 2014; 420–421: 193-7.
[http://dx.doi.org/10.1016/j.aquaculture.2013.11.010]
[68]
O’Hara CM, Brenner FW, Miller JM. Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev 2000; 13(4): 534-46.
[http://dx.doi.org/10.1128/CMR.13.4.534] [PMID: 11023955]
[69]
Linhares I, Raposo T, Rodrigues A, Almeida A. Frequency and antimicrobial resistance patterns of bacteria implicated in community urinary tract infections: a ten-year surveillance study (2000-2009). BMC Infect Dis 2013; 13: 19.
[http://dx.doi.org/10.1186/1471-2334-13-19] [PMID: 23327474]
[70]
Barrios H, Garza-Ramos U, Reyna-Flores F, et al. Isolation of carbapenem-resistant NDM-1-positive Providencia rettgeri in Mexico. J Antimicrob Chemother 2013; 68(8): 1934-6.
[http://dx.doi.org/10.1093/jac/dkt124] [PMID: 23620464]
[71]
Shigella bacteria genus. Encyclopædia Britannica, Inc Available from: https://www.britannica.com/science/Shigella
[72]
Koestler BJ, Ward CM, Fisher CR, Rajan A, Maresso AW, Payne SM. Human Intestinal Enteroids as a Model System of Shigella Pathogenesis. Infect Immun 2019; 87(4): 1-12.
[http://dx.doi.org/10.1128/IAI.00733-18] [PMID: 30642906]
[73]
Bhattacharya D, Bhattacharya H, Sayi DS, et al. Changing patterns and widening of antibiotic resistance in Shigella spp. over a decade (2000-2011), Andaman Islands, India. Epidemiol Infect 2015; 143(3): 470-7.
[http://dx.doi.org/10.1017/S0950268814000958] [PMID: 24763083]
[74]
Sotelo-Boyás ME, Correa Pacheco ZN, Bautista-Baños S, et al. Physicochemical characterization of chitosan nanoparticles and nanocapsules incorporated with lime essential oil and their antibacterial activity against food-borne pathogens. Lebensm Wiss Technol 2017; 77: 15-20.
[http://dx.doi.org/10.1016/j.lwt.2016.11.022]
[75]
Karthik CS, Manukumar HM, Ananda AP, et al. Synthesis of novel benzodioxane midst piperazine moiety decorated chitosan silver nanoparticle against biohazard pathogens and as potential anti-inflammatory candidate: A molecular docking studies. Int J Biol Macromol 2018; 108: 489-502.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.045] [PMID: 29225179]
[76]
Mesquita AMRC, Lima NL, Lima AAM. Avaliação da susceptibilidade e resistência antimicrobiana de cepas de Shigella spp. isoladas de pacientes com diarréia nosocomial. Rev Ciênc Méd Biol 2009; 8: 292-300.
[http://dx.doi.org/10.9771/cmbio.v8i3.4469]
[77]
Mukherjee R, Dutta D, Patra M, Chatterjee B, Basu T. Nanonized tetracycline cures deadly diarrheal disease ‘shigellosis’ in mice, caused by multidrug-resistant Shigella flexneri 2a bacterial infection. Nanomedicine (Lond) 2019; 18: 402-13.
[http://dx.doi.org/10.1016/j.nano.2018.11.004] [PMID: 30448527]
[78]
Camacho AI, Irache JM, de Souza J, Sánchez-Gómez S, Gamazo C. Nanoparticle-based vaccine for mucosal protection against Shigella flexneri in mice. Vaccine 2013; 31(32): 3288-94.
[http://dx.doi.org/10.1016/j.vaccine.2013.05.020] [PMID: 23727423]
[79]
Shigella - Shigellosis. Center For Disease Control (CDC). Available from: https://www.cdc.gov/shigella/index.html
[80]
Donnenber M. Infections due to E. coli and other enteric Gram-negative bacilli. ACP Medicine 2010; 1-10.
[81]
Alves DR, Nzakizwanayo J, Dedi C, et al. Genomic and Ecogenomic Characterization of Proteus mirabilis Bacteriophages. Front Microbiol 2019; 10: 1783.
[http://dx.doi.org/10.3389/fmicb.2019.01783] [PMID: 31447809]
[82]
Li X, Lockatell CV, Johnson DE, et al. Development of an intranasal vaccine to prevent urinary tract infection by proteus mirabilis. Infect Immun 2004; 72: 66-75.
[83]
Rennie RP, Jones RN. Effects of breakpoint changes on carbapenem susceptibility rates of Enterobacteriaceae: Results from the SENTRY Antimicrobial Surveillance Program, United States, 2008 to 2012. Can J Infect Dis Med Microbiol 2014; 25(5): 285-7.
[http://dx.doi.org/10.1155/2014/265981] [PMID: 25371693]
[84]
Dhanapal J, Malathy BR, Pradeep PS, et al. Antibacterial activity of anthraquinone encapsulated chitosan/poly(lactic acid) nanoparticles. J Glob Trends Pharm Sci 2014; 5: 20-8.
[85]
Maldonado RF, Sá-Correia I, Valvano MA. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol Rev 2016; 40(4): 480-93.
[http://dx.doi.org/10.1093/femsre/fuw007] [PMID: 27075488]
[86]
Rajesh J, Lakshmi SM, Thamizhvanan K, et al. Formulation, Characterization and Evaluation of Methanolic Extract of Abutilon Indicum Loaded Solid Lipid Nanoparticles Against Microorganisms Causing Diabetic Foot And Urinary Tract Infection. J Glob Trends Pharm Sci 2014; 5: 2093-102.
[87]
McDermott C, Mylotte JM. Morganella morganii: epidemiology of bacteremic disease. Infect Control Hosp Epidemiol 1984; 5(3): 131-7.
[http://dx.doi.org/10.1017/S0195941700059993] [PMID: 6561180]
[88]
Santos GS, Solidônio EG, Costa MCVV, et al. Study of the Enterobacteriaceae Group CESP (Citrobacter, Enterobacter, Serratia, Providencia, Morganella and Hafnia): A Review.The battle against microbial pathogens. Basic Science, Technological advances and educational programs. Formatex 2015.
[89]
Lee IK, Liu JW. Clinical characteristics and risk factors for mortality in Morganella morganii bacteremia. J Microbiol Immunol Infect 2006; 39(4): 328-34.
[PMID: 16926980]
[90]
Power P, Radice M, Barberis C, et al. Cefotaxime-hydrolysing beta lactamases in Morganella morganii. Eur J Clin Microbiol Infect Dis 1999; 18(10): 743-7.
[http://dx.doi.org/10.1007/s100960050391] [PMID: 10584905]
[91]
Ibrahem KH, Salman JAS, Ali FA. Effect of titanium nanoparticles biosynthesis by Lactobacillus crispatus on urease,hemolysin& biofilm forming by some bacteria causing recurrent UTI in iraqi women. Eur J Sci 2014; 10: 324-38.
[92]
Bilal M, Rasheed T, Iqbal HMN, Li C, Hu H, Zhang X. Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. Int J Biol Macromol 2017; 105(Pt 1): 393-400.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.047] [PMID: 28705499]
[93]
Koneman EK. Diagnóstico Microbiológico: Texto e Atlas colorido. 6th ed. São Paulo: Guanabara-Koogan 2008.
[94]
Menezes EA, Cezafar FC, Andrade MdoS, Rocha MV, Cunha FA. Freqüência de Serratia sp em Infecções Urinárias de pacientes internados na Santa Casa de Misericórdia em Fortaleza. Rev Soc Bras Med Trop 2004; 37(1): 70-1.
[http://dx.doi.org/10.1590/S0037-86822004000100020] [PMID: 15042191]
[95]
Medina CG, Morales CS, Navarrete ZM. Resistencia Antibiótica de Enterobacterias Aisladas de Monos (Ateles, Callicebus y Lagothrix) en Semicautiverio en un Centro de Rescate, Perú. Rev Investig Vet Peru 2017; 28: 418-25.
[http://dx.doi.org/10.15381/rivep.v28i2.13073]
[96]
Porras-Gómez M, Madrigal-Carballo S, Vega-Baudrit J. Síntesis de nanoparticulas poliméricas de quitosano funcionalizadas con extractos de la mora (Rubus glaucus) y su evaluación preliminar como agentes antimicrobianos. Rev Científ la USAC 2012; 22: 81-91.
[97]
Syame SM, Mohamed WS, Mahmoud RK, et al. Synthesis of Copper-Chitosan Nanocomposites and its Application in Treatment of Local Pathogenic Isolates Bacteria. Orient J Chem 2017; 33: 2959-69.
[http://dx.doi.org/10.13005/ojc/330632]
[98]
Cheesman MJ, Ilanko A, Blonk B, Cock IE. Developing New Antimicrobial Therapies: Are Synergistic Combinations of Plant Extracts/Compounds with Conventional Antibiotics the Solution? Pharmacogn Rev 2017; 11(22): 57-72.
[http://dx.doi.org/10.4103/phrev.phrev_21_17] [PMID: 28989242]
[99]
Eleraky NE, Allam A, Hassan SB, Omar MM. Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics 2020; 12(2): 1-51.
[http://dx.doi.org/10.3390/pharmaceutics12020142] [PMID: 32046289]
[100]
Lohse SE, Murphy CJ. Applications of colloidal inorganic nanoparticles: from medicine to energy. J Am Chem Soc 2012; 134(38): 15607-20.
[http://dx.doi.org/10.1021/ja307589n] [PMID: 22934680]
[101]
Arzanlou M, Chai WC, Venter H. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem 2017; 61(1): 49-59.
[http://dx.doi.org/10.1042/EBC20160063] [PMID: 28258229]
[102]
Performance standards for antimicrobial susceptibility testing. 2019. Clinical and Laboratory Standard Institute.
[103]
Bamrungsap S, Zhao Z, Chen T, et al. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine (Lond) 2012; 7(8): 1253-71.
[http://dx.doi.org/10.2217/nnm.12.87] [PMID: 22931450]
[104]
Nie S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine (Lond) 2010; 5(4): 523-8.
[http://dx.doi.org/10.2217/nnm.10.23] [PMID: 20528447]
[105]
Choi KY, Min KH, Yoon HY, et al. PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials 2011; 32(7): 1880-9.
[http://dx.doi.org/10.1016/j.biomaterials.2010.11.010] [PMID: 21159377]
[106]
Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Kiafar F, Jelvehgari M. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Res Pharm Sci 2017; 12(1): 1-14.
[http://dx.doi.org/10.4103/1735-5362.199041] [PMID: 28255308]
[107]
Chiari-Andréo BG, Abuçafy MP, Manaia EB, Da Silva BL. Rissi nc, Oshiro-Júnior JA, Chiavacci LA. Drug Delivery Using Theranostics: An Overview of Its Use, Advantages and Safety Assessment. Curr Nanosci 2020; 16: 3.
[http://dx.doi.org/10.2174/1573413715666190618162321]
[108]
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 2018; 9: 1050-74.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[109]
Begines B, Ortiz T, Pérez-Aranda M, et al. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials (Basel) 2020; 10(7): E1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[111]
Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update. Bioeng Transl Med 2019; 4(3): e10143.
[http://dx.doi.org/10.1002/btm2.10143] [PMID: 31572799]
[112]
Dong F, Li S. Wound Dressings Based on Chitosan-Dialdehyde Cellulose Nanocrystals-Silver Nanoparticles: Mechanical Strength, Antibacterial Activity and Cytotoxicity. Polymers (Basel) 2018; 10(6): 673.
[http://dx.doi.org/10.3390/polym10060673] [PMID: 30966707]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy