Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Development of Aldose Reductase Inhibitors for the Treatment of Inflammatory Disorders and Cancer: Current Drug Design Strategies and Future Directions

Author(s): Himangshu Sonowal and Kota V. Ramana*

Volume 28, Issue 19, 2021

Published on: 27 October, 2020

Page: [3683 - 3712] Pages: 30

DOI: 10.2174/0929867327666201027152737

Price: $65

Abstract

Aldose Reductase (AR) is an enzyme that converts glucose to sorbitol during the polyol pathway of glucose metabolism. AR has been shown to be involved in the development of secondary diabetic complications due to its involvement in causing osmotic as well as oxidative stress. Various AR inhibitors have been tested for their use to treat secondary diabetic complications, such as retinopathy, neuropathy, and nephropathy in clinical studies. Recent studies also suggest the potential role of AR in mediating various inflammatory complications. Therefore, the studies on the development and potential use of AR inhibitors to treat inflammatory complications and cancer besides diabetes are currently on the rise. Further, genetic mutagenesis studies, computer modeling, and molecular dynamics studies have helped design novel and potent AR inhibitors. This review discussed the potential new therapeutic use of AR inhibitors in targeting inflammatory disorders and cancer besides diabetic complications. Further, we summarized studies on how AR inhibitors have been designed and developed for therapeutic purposes in the last few decades.

Keywords: Aldose reductase, aldose reductase inhibitors, diabetes, drug discovery, inflammation, cancer.

[1]
Penning, T.M. The aldo-keto reductases (AKRs): overview. Chem. Biol. Interact., 2015, 234, 236-246.
[http://dx.doi.org/10.1016/j.cbi.2014.09.024] [PMID: 25304492]
[2]
Petrash, J.M. All in the family: aldose reductase and closely related aldo-keto reductases. Cell. Mol. Life Sci., 2004, 61(7-8), 737-749.
[http://dx.doi.org/10.1007/s00018-003-3402-3] [PMID: 15094999]
[3]
Barski, O.A.; Tipparaju, S.M.; Bhatnagar, A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab. Rev., 2008, 40(4), 553-624.
[http://dx.doi.org/10.1080/03602530802431439] [PMID: 18949601]
[4]
Schade, S.Z.; Early, S.L.; Williams, T.R.; Kézdy, F.J.; Heinrikson, R.L.; Grimshaw, C.E.; Doughty, C.C. Sequence analysis of bovine lens aldose reductase. J. Biol. Chem., 1990, 265(7), 3628-3635.
[http://dx.doi.org/10.1016/S0021-9258(19)39639-5] [PMID: 2105951]
[5]
Wilson, D.K.; Bohren, K.M.; Gabbay, K.H.; Quiocho, F.A. An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications. Science, 1992, 257(5066), 81-84.
[http://dx.doi.org/10.1126/science.1621098] [PMID: 1621098]
[6]
Rondeau, J.M.; Tête-Favier, F.; Podjarny, A.; Reymann, J.M.; Barth, P.; Biellmann, J.F.; Moras, D. Novel NADPH-binding domain revealed by the crystal structure of aldose reductase. Nature, 1992, 355(6359), 469-472.
[http://dx.doi.org/10.1038/355469a0] [PMID: 1734286]
[7]
Urzhumtsev, A.; Tête-Favier, F.; Mitschler, A.; Barbanton, J.; Barth, P.; Urzhumtseva, L.; Biellmann, J.F.; Podjarny, A.; Moras, D. A ‘specificity’ pocket inferred from the crystal structures of the complexes of aldose reductase with the pharmaceutically important inhibitors tolrestat and sorbinil. Structure, 1997, 5(5), 601-612.
[http://dx.doi.org/10.1016/S0969-2126(97)00216-5] [PMID: 9195881]
[8]
El-Kabbani, O.; Ramsland, P.; Darmanin, C.; Chung, R.P.; Podjarny, A. Structure of human aldose reductase holoenzyme in complex with statil: an approach to structure-based inhibitor design of the enzyme. Proteins, 2003, 50(2), 230-238.
[http://dx.doi.org/10.1002/prot.10278] [PMID: 12486717]
[9]
Howard, E.I.; Sanishvili, R.; Cachau, R.E.; Mitschler, A.; Chevrier, B.; Barth, P.; Lamour, V.; Van Zandt, M.; Sibley, E.; Bon, C.; Moras, D.; Schneider, T.R.; Joachimiak, A.; Podjarny, A. Ultrahigh resolution drug design I: details of interactions in human aldose reductase-inhibitor complex at 0.66 A. Proteins, 2004, 55(4), 792-804.
[http://dx.doi.org/10.1002/prot.20015] [PMID: 15146478]
[10]
Borhani, D.W.; Harter, T.M.; Petrash, J.M. The crystal structure of the aldose reductase. NADPH binary complex. J. Biol. Chem., 1992, 267(34), 24841-24847.
[http://dx.doi.org/10.1016/S0021-9258(18)35840-X] [PMID: 1447221]
[11]
El-Kabbani, O.; Darmanin, C.; Schneider, T.R.; Hazemann, I.; Ruiz, F.; Oka, M.; Joachimiak, A.; Schulze-Briese, C.; Tomizaki, T.; Mitschler, A.; Podjarny, A. Ultrahigh resolution drug design. II. Atomic resolution structures of human aldose reductase holoenzyme complexed with fidarestat and minalrestat: implications for the binding of cyclic imide inhibitors. Proteins, 2004, 55(4), 805-813.
[http://dx.doi.org/10.1002/prot.20001] [PMID: 15146479]
[12]
Vander Jagt, D.L.; Kolb, N.S.; Jagt, T.J.V.; Chino, J.; Martinez, F.J.; Hunsaker, L.A.; Royer, R.E. Substrate specificity of human aldose reductase: identification of 4-hydroxynonenal as an endogenous substrate. Biochim. Biophys. Acta, 1995, 1249(2), 117-126.
[http://dx.doi.org/10.1016/0167-4838(95)00021-L] [PMID: 7599164]
[13]
Wermuth, B.; Monder, C. Aldose and aldehyde reductase exhibit isocorticosteroid reductase activity. Eur. J. Biochem., 1983, 131(2), 423-426.
[http://dx.doi.org/10.1111/j.1432-1033.1983.tb07280.x] [PMID: 6403351]
[14]
Shen, Y.; Zhong, L.; Johnson, S.; Cao, D. Human aldo-keto reductases 1B1 and 1B10: a comparative study on their enzyme activity toward electrophilic carbonyl compounds. Chem. Biol. Interact., 2011, 191(1-3), 192-198.
[http://dx.doi.org/10.1016/j.cbi.2011.02.004] [PMID: 21329684]
[15]
Del Corso, A.; Dal Monte, M.; Vilardo, P.G.; Cecconi, I.; Moschini, R.; Banditelli, S.; Cappiello, M.; Tsai, L.; Mura, U. Site-specific inactivation of aldose reductase by 4-hydroxynonenal. Arch. Biochem. Biophys., 1998, 350(2), 245-248.
[http://dx.doi.org/10.1006/abbi.1997.0488] [PMID: 9473298]
[16]
Kaiserova, K.; Tang, X.-L.; Srivastava, S.; Bhatnagar, A. Role of nitric oxide in regulating aldose reductase activation in the ischemic heart. J. Biol. Chem., 2008, 283(14), 9101-9112.
[http://dx.doi.org/10.1074/jbc.M709671200] [PMID: 18223294]
[17]
Srivastava, S.K.; Ramana, K.V.; Bhatnagar, A. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr. Rev., 2005, 26(3), 380-392.
[http://dx.doi.org/10.1210/er.2004-0028] [PMID: 15814847]
[18]
Tang, W.H.; Martin, K.A.; Hwa, J. Aldose reductase, oxidative stress, and diabetic mellitus. Front. Pharmacol., 2012, 3, 87.
[http://dx.doi.org/10.3389/fphar.2012.00087] [PMID: 22582044]
[19]
Ramana, K.V. Aldose reductase: new insights for an old enzyme. Biomol. Concepts, 2011, 2(1-2), 103-114.
[http://dx.doi.org/10.1515/bmc.2011.002] [PMID: 21547010]
[20]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865), 813-820.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[21]
Volpe, C.M.O.; Villar-Delfino, P.H.; Dos Anjos, P.M.F.; Nogueira-Machado, J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis., 2018, 9(2), 119.
[http://dx.doi.org/10.1038/s41419-017-0135-z] [PMID: 29371661]
[22]
Johansen, J.S.; Harris, A.K.; Rychly, D.J.; Ergul, A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc. Diabetol., 2005, 4, 5.
[http://dx.doi.org/10.1186/1475-2840-4-5] [PMID: 15862133]
[23]
Cheng, H.M.; González, R.G. The effect of high glucose and oxidative stress on lens metabolism, aldose reductase, and senile cataractogenesis. Metabolism, 1986, 35(4 Suppl 1), 10-14.
[http://dx.doi.org/10.1016/0026-0495(86)90180-0] [PMID: 3083198]
[24]
Lorenzi, M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp. Diabetes Res., 2007, 2007, 61038.
[http://dx.doi.org/10.1155/2007/61038] [PMID: 18224243]
[25]
Abhary, S.; Burdon, K.P.; Laurie, K.J.; Thorpe, S.; Landers, J.; Goold, L.; Lake, S.; Petrovsky, N.; Craig, J.E. Aldose reductase gene polymorphisms and diabetic retinopathy susceptibility. Diabetes Care, 2010, 33(8), 1834-1836.
[http://dx.doi.org/10.2337/dc09-1893] [PMID: 20424224]
[26]
Lin, S.; Peng, Y.; Cao, M.; Chen, R.; Hu, J.; Pu, Z.; Cai, Z.; Mou, L. Association between aldose reductase gene C(-106)T polymorphism and diabetic retinopathy: a systematic review and meta-analysis. Ophthalmic Res., 2020, 63(3), 224-233.
[http://dx.doi.org/10.1159/000503972] [PMID: 31962334]
[27]
Zhou, M.; Zhang, P.; Xu, X.; Sun, X. The relationship between aldose reductase C106T polymorphism and diabetic retinopathy: an updated meta-analysis. Invest. Ophthalmol. Vis. Sci., 2015, 56(4), 2279-2289.
[http://dx.doi.org/10.1167/iovs.14-16279] [PMID: 25722213]
[28]
Ansari, N.H.; Bhatnagar, A.; Fulep, E.; Khanna, P.; Srivastava, S.K. Trolox protects hyperglycemia-induced cataractogenesis in cultured rat lens. Res. Commun. Chem. Pathol. Pharmacol., 1994, 84(1), 93-104.
[PMID: 8042013]
[29]
Obrosova, I.G.; Minchenko, A.G.; Vasupuram, R.; White, L.; Abatan, O.I.; Kumagai, A.K.; Frank, R.N.; Stevens, M.J. Aldose reductase inhibitor fidarestat prevents retinal oxidative stress and vascular endothelial growth factor overexpression in streptozotocin-diabetic rats. Diabetes, 2003, 52(3), 864-871.
[http://dx.doi.org/10.2337/diabetes.52.3.864] [PMID: 12606532]
[30]
Engerman, R.L.; Kern, T.S. Aldose reductase inhibition fails to prevent retinopathy in diabetic and galactosemic dogs. Diabetes, 1993, 42(6), 820-825.
[http://dx.doi.org/10.2337/diab.42.6.820] [PMID: 8495805]
[31]
Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules, 2015, 5(1), 194-222.
[http://dx.doi.org/10.3390/biom5010194] [PMID: 25786107]
[32]
Morgan, P.E.; Dean, R.T.; Davies, M.J. Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products. Arch. Biochem. Biophys., 2002, 403(2), 259-269.
[http://dx.doi.org/10.1016/S0003-9861(02)00222-9] [PMID: 12139975]
[33]
Szwergold, B.S.; Kappler, F.; Brown, T.R. Identification of fructose 3-phosphate in the lens of diabetic rats. Science, 1990, 247(4941), 451-454.
[http://dx.doi.org/10.1126/science.2300805] [PMID: 2300805]
[34]
Cammarata, P.R.; Chen, H.Q.; Yang, J.; Yorio, T. Modulation of myo-[3H]inositol uptake by glucose and sorbitol in cultured bovine lens epithelial cells. II. Characterization of high- and low-affinity myo-inositol transport sites. Invest. Ophthalmol. Vis. Sci., 1992, 33(13), 3572-3580.
[PMID: 1464503]
[35]
Greene, D.A.; Lattimer, S.A.; Sima, A.A. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N. Engl. J. Med., 1987, 316(10), 599-606.
[http://dx.doi.org/10.1056/NEJM198703053161007] [PMID: 3027558]
[36]
Chalk, C.; Benstead, T.J.; Moore, F. Aldose reductase inhibitors for the treatment of diabetic polyneuropathy. Cochrane Database Syst. Rev., 2007, (4), CD004572.
[http://dx.doi.org/10.1002/14651858.CD004572.pub2] [PMID: 17943821]
[37]
Ramana, K.V.; Dixit, B.L.; Srivastava, S.; Balendiran, G.K.; Srivastava, S.K.; Bhatnagar, A. Selective recognition of glutathiolated aldehydes by aldose reductase. Biochemistry, 2000, 39(40), 12172-12180.
[http://dx.doi.org/10.1021/bi000796e] [PMID: 11015195]
[38]
Singh, R.; White, M.A.; Ramana, K.V.; Petrash, J.M.; Watowich, S.J.; Bhatnagar, A.; Srivastava, S.K. Structure of a glutathione conjugate bound to the active site of aldose reductase. Proteins, 2006, 64(1), 101-110.
[http://dx.doi.org/10.1002/prot.20988] [PMID: 16639747]
[39]
Vikramadithyan, R.K.; Hu, Y.; Noh, H.L.; Liang, C.P.; Hallam, K.; Tall, A.R.; Ramasamy, R.; Goldberg, I.J. Human aldose reductase expression accelerates diabetic atherosclerosis in transgenic mice. J. Clin. Invest., 2005, 115(9), 2434-2443.
[http://dx.doi.org/10.1172/JCI24819] [PMID: 16127462]
[40]
Gleissner, C.A.; Sanders, J.M.; Nadler, J.; Ley, K. Upregulation of aldose reductase during foam cell formation as possible link among diabetes, hyperlipidemia, and atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2008, 28(6), 1137-1143.
[http://dx.doi.org/10.1161/ATVBAHA.107.158295] [PMID: 18451330]
[41]
Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol., 2013, 13(10), 709-721.
[http://dx.doi.org/10.1038/nri3520] [PMID: 23995626]
[42]
Erbel, C.; Rupp, G.; Domschke, G.; Linden, F.; Akhavanpoor, M.; Doesch, A.O.; Katus, H.A.; Gleissner, C.A. Differential regulation of aldose reductase expression during macrophage polarization depends on hyperglycemia. Innate Immun., 2016, 22(3), 230-237.
[http://dx.doi.org/10.1177/1753425916632053] [PMID: 26873505]
[43]
Joshi, M.B.; Ahamed, R.; Hegde, M.; Nair, A.S.; Ramachandra, L.; Satyamoorthy, K. Glucose induces metabolic reprogramming in neutrophils during type 2 diabetes to form constitutive extracellular traps and decreased responsiveness to lipopolysaccharides. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(12), 165940.
[http://dx.doi.org/10.1016/j.bbadis.2020.165940] [PMID: 32827651]
[44]
Vedantham, S.; Noh, H.; Ananthakrishnan, R.; Son, N.; Hallam, K.; Hu, Y.; Yu, S.; Shen, X.; Rosario, R.; Lu, Y.; Ravindranath, T.; Drosatos, K.; Huggins, L.A.; Schmidt, A.M.; Goldberg, I.J.; Ramasamy, R. Human aldose reductase expression accelerates atherosclerosis in diabetic apolipoprotein E-/- mice. Arterioscler. Thromb. Vasc. Biol., 2011, 31(8), 1805-1813.
[http://dx.doi.org/10.1161/ATVBAHA.111.226902] [PMID: 21636809]
[45]
Yuan, C.; Hu, J.; Parathath, S.; Grauer, L.; Cassella, C.B.; Bagdasarov, S.; Goldberg, I.J.; Ramasamy, R.; Fisher, E.A. Human aldose reductase expression prevents atherosclerosis regression in diabetic mice. Diabetes, 2018, 67(9), 1880-1891.
[http://dx.doi.org/10.2337/db18-0156] [PMID: 29891593]
[46]
Ramana, K.V.; Friedrich, B.; Tammali, R.; West, M.B.; Bhatnagar, A.; Srivastava, S.K. Requirement of aldose reductase for the hyperglycemic activation of protein kinase C and formation of diacylglycerol in vascular smooth muscle cells. Diabetes, 2005, 54(3), 818-829.
[http://dx.doi.org/10.2337/diabetes.54.3.818] [PMID: 15734861]
[47]
Srivastava, S.; Ramana, K.V.; Tammali, R.; Srivastava, S.K.; Bhatnagar, A. Contribution of aldose reductase to diabetic hyperproliferation of vascular smooth muscle cells. Diabetes, 2006, 55(4), 901-910.
[http://dx.doi.org/10.2337/diabetes.55.04.06.db05-0932] [PMID: 16567509]
[48]
Reddy, A.B.; Ramana, K.V.; Srivastava, S.; Bhatnagar, A.; Srivastava, S.K. Aldose reductase regulates high glucose-induced ectodomain shedding of tumor necrosis factor (TNF)-alpha via protein kinase C-delta and TNF-alpha converting enzyme in vascular smooth muscle cells. Endocrinology, 2009, 150(1), 63-74.
[http://dx.doi.org/10.1210/en.2008-0677] [PMID: 18772236]
[49]
Pal, P.B.; Sonowal, H.; Shukla, K.; Srivastava, S.K.; Ramana, K.V. Aldose reductase regulates hyperglycemia-induced HUVEC death via SIRT1/AMPK-α1/mTOR pathway. J. Mol. Endocrinol., 2019, 63(1), 11-25.
[http://dx.doi.org/10.1530/JME-19-0080] [PMID: 30986766]
[50]
Roy, T.M.; Broadstone, V.L.; Peterson, H.R.; Snider, H.L.; Cyrus, J.; Fell, R.; Rothchild, A.H.; Samols, E.; Pfeifer, M.A. The effect of an aldose reductase inhibitor on cardiovascular performance in patients with diabetes mellitus. Diabetes Res. Clin. Pract., 1990, 10(1), 91-97.
[http://dx.doi.org/10.1016/0168-8227(90)90086-9] [PMID: 2123430]
[51]
Johnson, B.F.; Nesto, R.W.; Pfeifer, M.A.; Slater, W.R.; Vinik, A.I.; Chyun, D.A.; Law, G.; Wackers, F.J.; Young, L.H. Cardiac abnormalities in diabetic patients with neuropathy: effects of aldose reductase inhibitor administration. Diabetes Care, 2004, 27(2), 448-454.
[http://dx.doi.org/10.2337/diacare.27.2.448] [PMID: 14747227]
[52]
Dong, F.; Ren, J. Fidarestat improves cardiomyocyte contractile function in db/db diabetic obese mice through a histone deacetylase Sir2-dependent mechanism. J. Hypertens., 2007, 25(10), 2138-2147.
[http://dx.doi.org/10.1097/HJH.0b013e32828626d1] [PMID: 17885559]
[53]
Son, N.H.; Ananthakrishnan, R.; Yu, S.; Khan, R.S.; Jiang, H.; Ji, R.; Akashi, H.; Li, Q.; O’Shea, K.; Homma, S.; Goldberg, I.J.; Ramasamy, R. Cardiomyocyte aldose reductase causes heart failure and impairs recovery from ischemia. PLoS One, 2012, 7(9), e46549.
[http://dx.doi.org/10.1371/journal.pone.0046549] [PMID: 23029549]
[54]
Vedantham, S.; Thiagarajan, D.; Ananthakrishnan, R.; Wang, L.; Rosario, R.; Zou, Y.S.; Goldberg, I.; Yan, S.F.; Schmidt, A.M.; Ramasamy, R. Aldose reductase drives hyperacetylation of Egr-1 in hyperglycemia and consequent upregulation of proinflammatory and prothrombotic signals. Diabetes, 2014, 63(2), 761-774.
[http://dx.doi.org/10.2337/db13-0032] [PMID: 24186862]
[55]
Timucin, A.C.; Bodur, C.; Basaga, H. SIRT1 contributes to aldose reductase expression through modulating NFAT5 under osmotic stress: in vitro and in silico insights. Cell. Signal., 2015, 27(11), 2160-2172.
[http://dx.doi.org/10.1016/j.cellsig.2015.08.013] [PMID: 26297866]
[56]
Cantó, C.; Auwerx, J. Targeting sirtuin 1 to improve metabolism: all you need is NAD(+)? Pharmacol. Rev., 2012, 64(1), 166-187.
[http://dx.doi.org/10.1124/pr.110.003905] [PMID: 22106091]
[57]
Kauppinen, A.; Suuronen, T.; Ojala, J.; Kaarniranta, K.; Salminen, A. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell. Signal., 2013, 25(10), 1939-1948.
[http://dx.doi.org/10.1016/j.cellsig.2013.06.007] [PMID: 23770291]
[58]
Yeung, F.; Hoberg, J.E.; Ramsey, C.S.; Keller, M.D.; Jones, D.R.; Frye, R.A.; Mayo, M.W. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J., 2004, 23(12), 2369-2380.
[http://dx.doi.org/10.1038/sj.emboj.7600244] [PMID: 15152190]
[59]
Srivastava, S.K.; Yadav, U.C.; Reddy, A.B.; Saxena, A.; Tammali, R.; Shoeb, M.; Ansari, N.H.; Bhatnagar, A.; Petrash, M.J.; Srivastava, S.; Ramana, K.V. Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders. Chem. Biol. Interact., 2011, 191(1-3), 330-338.
[http://dx.doi.org/10.1016/j.cbi.2011.02.023] [PMID: 21354119]
[60]
Herzig, S.; Shaw, R.J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol., 2018, 19(2), 121-135.
[http://dx.doi.org/10.1038/nrm.2017.95] [PMID: 28974774]
[61]
Kim, J.; Yang, G.; Kim, Y.; Kim, J.; Ha, J. AMPK activators: mechanisms of action and physiological activities. Exp. Mol. Med., 2016, 48, e224.
[http://dx.doi.org/10.1038/emm.2016.16] [PMID: 27034026]
[62]
Shi, C.; Wang, Y.; Gao, J.; Chen, S.; Zhao, X.; Cai, C.; Guo, C.; Qiu, L. Inhibition of aldose reductase ameliorates alcoholic liver disease by activating AMPK and modulating oxidative stress and inflammatory cytokines. Mol. Med. Rep., 2017, 16(3), 2767-2772.
[http://dx.doi.org/10.3892/mmr.2017.6895] [PMID: 28677809]
[63]
Shukla, K.; Sonowal, H.; Saxena, A.; Ramana, K.V.; Srivastava, S.K. Aldose reductase inhibitor, fidarestat regulates mitochondrial biogenesis via Nrf2/HO-1/AMPK pathway in colon cancer cells. Cancer Lett., 2017, 411, 57-63.
[http://dx.doi.org/10.1016/j.canlet.2017.09.031] [PMID: 28986187]
[64]
Zhang, D.; Bhatnagar, A.; Baba, S.P. Inhibition of aldose reductase activity stimulates starvation induced autophagy and clears aldehyde protein adducts. Chem. Biol. Interact., 2019, 306, 104-109.
[http://dx.doi.org/10.1016/j.cbi.2019.04.014] [PMID: 30998906]
[65]
Ramana, K.V.; Yadav, U.C.; Calhoun, W.J.; Srivastava, S.K. Current prospective of aldose reductase inhibition in the therapy of allergic airway inflammation in asthma. Curr. Mol. Med., 2011, 11(7), 599-608.
[http://dx.doi.org/10.2174/156652411800615135] [PMID: 21707512]
[66]
Yadav, U.C.; Ramana, K.V.; Aguilera-Aguirre, L.; Boldogh, I.; Boulares, H.A.; Srivastava, S.K. Inhibition of aldose reductase prevents experimental allergic airway inflammation in mice. PLoS One, 2009, 4(8), e6535.
[http://dx.doi.org/10.1371/journal.pone.0006535] [PMID: 19657391]
[67]
Yadav, U.C.; Aguilera-Aguirre, L.; Boldogh, I.; Ramana, K.V.; Srivastava, S.K. Aldose reductase deficiency in mice protects from ragweed pollen extract (RWE)-induced allergic asthma. Respir. Res., 2011, 12(1), 145.
[http://dx.doi.org/10.1186/1465-9921-12-145] [PMID: 22054012]
[68]
Yadav, U.C.; Naura, A.S.; Aguilera-Aguirre, L.; Ramana, K.V.; Boldogh, I.; Sur, S.; Boulares, H.A.; Srivastava, S.K. Aldose reductase inhibition suppresses the expression of Th2 cytokines and airway inflammation in ovalbumin-induced asthma in mice. J. Immunol., 2009, 183(7), 4723-4732.
[http://dx.doi.org/10.4049/jimmunol.0901177] [PMID: 19752229]
[69]
Yadav, U.C.; Ramana, K.V.; Srivastava, S.K. Aldose reductase inhibition suppresses airway inflammation. Chem. Biol. Interact., 2011, 191(1-3), 339-345.
[http://dx.doi.org/10.1016/j.cbi.2011.02.014] [PMID: 21334316]
[70]
Yadav, U.C.; Naura, A.S.; Aguilera-Aguirre, L.; Boldogh, I.; Boulares, H.A.; Calhoun, W.J.; Ramana, K.V.; Srivastava, S.K. Aldose reductase inhibition prevents allergic airway remodeling through PI3K/AKT/GSK3β pathway in mice. PLoS One, 2013, 8(2), e57442.
[http://dx.doi.org/10.1371/journal.pone.0057442] [PMID: 23460857]
[71]
Li, X.; Shen, Y.; Lu, Y.; Yang, J. Amelioration of bleomycin-induced pulmonary fibrosis of rats by an aldose reductase inhibitor, epalrestat. Korean J. Physiol. Pharmacol., 2015, 19(5), 401-411.
[http://dx.doi.org/10.4196/kjpp.2015.19.5.401] [PMID: 26330752]
[72]
Rovina, N.; Koutsoukou, A.; Koulouris, N.G. Inflammation and immune response in COPD: where do we stand? Mediators Inflamm., 2013, 2013, 413735.
[http://dx.doi.org/10.1155/2013/413735] [PMID: 23956502]
[73]
Yadav, U.C.S.; Ramana, K.V.; Srivastava, S.K. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells. Free Radic. Biol. Med., 2013, 65, 15-25.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.06.008] [PMID: 23770200]
[74]
Feng, Z.; Hu, W.; Hu, Y.; Tang, M.S. Acrolein is a major cigarette-related lung cancer agent: preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc. Natl. Acad. Sci. USA, 2006, 103(42), 15404-15409.
[http://dx.doi.org/10.1073/pnas.0607031103] [PMID: 17030796]
[75]
Comer, D.M.; Elborn, J.S.; Ennis, M. Inflammatory and cytotoxic effects of acrolein, nicotine, acetylaldehyde and cigarette smoke extract on human nasal epithelial cells. BMC Pulm. Med., 2014, 14, 32.
[http://dx.doi.org/10.1186/1471-2466-14-32] [PMID: 24581246]
[76]
Aghapour, M.; Raee, P.; Moghaddam, S.J.; Hiemstra, P.S.; Heijink, I.H. Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease: role of cigarette smoke exposure. Am. J. Respir. Cell Mol. Biol., 2018, 58(2), 157-169.
[http://dx.doi.org/10.1165/rcmb.2017-0200TR] [PMID: 28933915]
[77]
Curran, D.R.; Cohn, L. Advances in mucous cell metaplasia: a plug for mucus as a therapeutic focus in chronic airway disease. Am. J. Respir. Cell Mol. Biol., 2010, 42(3), 268-275.
[http://dx.doi.org/10.1165/rcmb.2009-0151TR] [PMID: 19520914]
[78]
Brightling, C.E.; Saha, S.; Hollins, F. Interleukin-13: prospects for new treatments. Clin. Exp. Allergy, 2010, 40(1), 42-49.
[http://dx.doi.org/10.1111/j.1365-2222.2009.03383.x] [PMID: 19878194]
[79]
Yadav, U.C.; Aguilera-Aguirre, L.; Ramana, K.V.; Boldogh, I.; Srivastava, S.K. Aldose reductase inhibition prevents metaplasia of airway epithelial cells. PLoS One, 2010, 5(12), e14440.
[http://dx.doi.org/10.1371/journal.pone.0014440] [PMID: 21203431]
[80]
Jiang, D.; Li, Q.; Kolosov, V.P.; Zhou, X. The inhibition of aldose reductase on mucus production induced by interleukin-13 in the human bronchial epithelial cells. Int. Immunopharmacol., 2012, 12(4), 588-593.
[http://dx.doi.org/10.1016/j.intimp.2012.02.007] [PMID: 22386909]
[81]
Freeman, B.D.; Natanson, C. Anti-inflammatory therapies in sepsis and septic shock. Expert Opin. Investig. Drugs, 2000, 9(7), 1651-1663.
[http://dx.doi.org/10.1517/13543784.9.7.1651] [PMID: 11060768]
[82]
Nedeva, C.; Menassa, J.; Puthalakath, H. Sepsis: inflammation is a necessary evil. Front. Cell Dev. Biol., 2019, 7, 108.
[http://dx.doi.org/10.3389/fcell.2019.00108] [PMID: 31281814]
[83]
Shoeb, M.; Yadav, U.C.S.; Srivastava, S.K.; Ramana, K.V. Inhibition of aldose reductase prevents endotoxin-induced inflammation by regulating the arachidonic acid pathway in murine macrophages. Free Radic. Biol. Med., 2011, 51(9), 1686-1696.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.07.024] [PMID: 21856412]
[84]
Ramana, K.V.; Reddy, A.B.M.; Tammali, R.; Srivastava, S.K. Aldose reductase mediates endotoxin-induced production of nitric oxide and cytotoxicity in murine macrophages. Free Radic. Biol. Med., 2007, 42(8), 1290-1302.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.01.033] [PMID: 17382209]
[85]
Ramana, K.V.; Willis, M.S.; White, M.D.; Horton, J.W.; DiMaio, J.M.; Srivastava, D.; Bhatnagar, A.; Srivastava, S.K. Endotoxin-induced cardiomyopathy and systemic inflammation in mice is prevented by aldose reductase inhibition. Circulation, 2006, 114(17), 1838-1846.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.630830] [PMID: 17030682]
[86]
Ravindranath, T.M.; Mong, P.Y.; Ananthakrishnan, R.; Li, Q.; Quadri, N.; Schmidt, A.M.; Ramasamy, R.; Wang, Q. Novel role for aldose reductase in mediating acute inflammatory responses in the lung. J. Immunol., 2009, 183(12), 8128-8137.
[http://dx.doi.org/10.4049/jimmunol.0900720] [PMID: 20007578]
[87]
Takahashi, K.; Mizukami, H.; Kamata, K.; Inaba, W.; Kato, N.; Hibi, C.; Yagihashi, S. Amelioration of acute kidney injury in lipopolysaccharide-induced systemic inflammatory response syndrome by an aldose reductase inhibitor, fidarestat. PLoS One, 2012, 7(1), e30134.
[http://dx.doi.org/10.1371/journal.pone.0030134] [PMID: 22253906]
[88]
Lee, R.W.; Nicholson, L.B.; Sen, H.N.; Chan, C-C.; Wei, L.; Nussenblatt, R.B.; Dick, A.D. Autoimmune and autoinflammatory mechanisms in uveitis. Semin. Immunopathol., 2014, 36(5), 581-594.
[http://dx.doi.org/10.1007/s00281-014-0433-9] [PMID: 24858699]
[89]
Yadav, U.C.S.; Srivastava, S.K.; Ramana, K.V. Understanding the role of aldose reductase in ocular inflammation. Curr. Mol. Med., 2010, 10(6), 540-549.
[http://dx.doi.org/10.2174/1566524011009060540] [PMID: 20642441]
[90]
Yadav, U.C.; Srivastava, S.K.; Ramana, K.V. Inhibition of aldose reductase attenuates endotoxin signals in human non-pigmented ciliary epithelial cells. Exp. Eye Res., 2010, 90(5), 555-563.
[http://dx.doi.org/10.1016/j.exer.2010.01.012] [PMID: 20138035]
[91]
Bansal, S.; Barathi, V.A.; Iwata, D.; Agrawal, R. Experimental autoimmune uveitis and other animal models of uveitis: an update. Indian J. Ophthalmol., 2015, 63(3), 211-218.
[http://dx.doi.org/10.4103/0301-4738.156914] [PMID: 25971165]
[92]
Yadav, U.C.; Shoeb, M.; Srivastava, S.K.; Ramana, K.V. Aldose reductase deficiency protects from autoimmune- and endotoxin-induced uveitis in mice. Invest. Ophthalmol. Vis. Sci., 2011, 52(11), 8076-8085.
[http://dx.doi.org/10.1167/iovs.11-7830] [PMID: 21911582]
[93]
Yadav, U.C.; Shoeb, M.; Srivastava, S.K.; Ramana, K.V. Amelioration of experimental autoimmune uveoretinitis by aldose reductase inhibition in Lewis rats. Invest. Ophthalmol. Vis. Sci., 2011, 52(11), 8033-8041.
[http://dx.doi.org/10.1167/iovs.11-7485] [PMID: 21900376]
[94]
Khayami, R.; Hashemi, S.R.; Kerachian, M.A. Role of aldo-keto reductase family 1 member B1 (AKR1B1) in the cancer process and its therapeutic potential. J. Cell. Mol. Med., 2020, 24(16), 8890-8902.
[http://dx.doi.org/10.1111/jcmm.15581] [PMID: 32633024]
[95]
Torres-Mena, J.E.; Salazar-Villegas, K.N.; Sánchez-Rodríguez, R.; López-Gabiño, B.; Del Pozo-Yauner, L.; Arellanes-Robledo, J.; Villa-Treviño, S.; Gutiérrez-Nava, M.A.; Pérez-Carreón, J.I. Aldo-keto reductases as early biomarkers of hepatocellular carcinoma: a comparison between animal models and human HCC. Dig. Dis. Sci., 2018, 63(4), 934-944.
[http://dx.doi.org/10.1007/s10620-018-4943-5] [PMID: 29383608]
[96]
Reddy, K.A.; Kumar, P.U.; Srinivasulu, M.; Triveni, B.; Sharada, K.; Ismail, A.; Reddy, G.B. Overexpression and enhanced specific activity of aldoketo reductases (AKR1B1 & AKR1B10) in human breast cancers. Breast, 2017, 31, 137-143.
[http://dx.doi.org/10.1016/j.breast.2016.11.003] [PMID: 27855345]
[97]
Schwab, A.; Siddiqui, A.; Vazakidou, M.E.; Napoli, F.; Böttcher, M.; Menchicchi, B.; Raza, U.; Saatci, Ö.; Krebs, A.M.; Ferrazzi, F.; Rapa, I.; Dettmer-Wilde, K.; Waldner, M.J.; Ekici, A.B.; Rasheed, S.A.K.; Mougiakakos, D.; Oefner, P.J.; Sahin, O.; Volante, M.; Greten, F.R.; Brabletz, T.; Ceppi, P. Polyol pathway links glucose metabolism to the aggressiveness of cancer cells. Cancer Res., 2018, 78(7), 1604-1618.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2834] [PMID: 29343522]
[98]
Li, X.; Yang, J.; Gu, X.; Xu, J.; Li, H.; Qian, J.; Chen, L. The expression and clinical significance of aldo-keto reductase 1 member B1 in gastric carcinoma. DNA Cell Biol., 2020, 39(7), 1322-1327.
[http://dx.doi.org/10.1089/dna.2020.5550] [PMID: 32412859]
[99]
Wu, X.; Li, X.; Fu, Q.; Cao, Q.; Chen, X.; Wang, M.; Yu, J.; Long, J.; Yao, J.; Liu, H.; Wang, D.; Liao, R.; Dong, C. AKR1B1 promotes basal-like breast cancer progression by a positive feedback loop that activates the EMT program. J. Exp. Med., 2017, 214(4), 1065-1079.
[http://dx.doi.org/10.1084/jem.20160903] [PMID: 28270406]
[100]
Ji, J.; Xu, M.-X.; Qian, T.-Y.; Zhu, S.-Z.; Jiang, F.; Liu, Z.-X.; Xu, W.-S.; Zhou, J.; Xiao, M.-B. The AKR1B1 inhibitor epalrestat suppresses the progression of cervical cancer. Mol. Biol. Rep., 2020, 47(8), 6091-6103.
[http://dx.doi.org/10.1007/s11033-020-05685-z] [PMID: 32761301]
[101]
Janakiram, N.B.; Rao, C.V. The role of inflammation in colon cancer. Adv. Exp. Med. Biol., 2014, 816, 25-52.
[http://dx.doi.org/10.1007/978-3-0348-0837-8_2] [PMID: 24818718]
[102]
McConnell, B.B.; Yang, V.W. The role of inflammation in the pathogenesis of colorectal cancer. Curr. Colorectal Cancer Rep., 2009, 5(2), 69-74.
[http://dx.doi.org/10.1007/s11888-009-0011-z] [PMID: 19756239]
[103]
Terzić, J.; Grivennikov, S.; Karin, E.; Karin, M. Inflammation and colon cancer. Gastroenterology, 2010, 138(6), 2101-2114.e5.
[http://dx.doi.org/10.1053/j.gastro.2010.01.058] [PMID: 20420949]
[104]
Todoric, J.; Antonucci, L.; Karin, M. Targeting inflammation in cancer prevention and therapy. Cancer Prev. Res. (Phila.), 2016, 9(12), 895-905.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0209] [PMID: 27913448]
[105]
Tammali, R.; Ramana, K.V.; Singhal, S.S.; Awasthi, S.; Srivastava, S.K. Aldose reductase regulates growth factor-induced cyclooxygenase-2 expression and prostaglandin E2 production in human colon cancer cells. Cancer Res., 2006, 66(19), 9705-9713.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2105] [PMID: 17018629]
[106]
Tammali, R.; Ramana, K.V.; Srivastava, S.K. Aldose reductase regulates TNF-alpha-induced PGE2 production in human colon cancer cells. Cancer Lett., 2007, 252(2), 299-306.
[http://dx.doi.org/10.1016/j.canlet.2007.01.001] [PMID: 17300864]
[107]
Tammali, R.; Reddy, A.B.; Ramana, K.V.; Petrash, J.M.; Srivastava, S.K. Aldose reductase deficiency in mice prevents azoxymethane-induced colonic preneoplastic aberrant crypt foci formation. Carcinogenesis, 2009, 30(5), 799-807.
[http://dx.doi.org/10.1093/carcin/bgn246] [PMID: 19028703]
[108]
Tammali, R.; Reddy, A.B.; Saxena, A.; Rychahou, P.G.; Evers, B.M.; Qiu, S.; Awasthi, S.; Ramana, K.V.; Srivastava, S.K. Inhibition of aldose reductase prevents colon cancer metastasis. Carcinogenesis, 2011, 32(8), 1259-1267.
[http://dx.doi.org/10.1093/carcin/bgr102] [PMID: 21642355]
[109]
Sonowal, H.; Pal, P.; Shukla, K.; Saxena, A.; Srivastava, S.K.; Ramana, K.V. Aldose reductase inhibitor, fidarestat prevents doxorubicin-induced endothelial cell death and dysfunction. Biochem. Pharmacol., 2018, 150, 181-190.
[http://dx.doi.org/10.1016/j.bcp.2018.02.018] [PMID: 29458045]
[110]
Sonowal, H.; Pal, P.B.; Wen, J.J.; Awasthi, S.; Ramana, K.V.; Srivastava, S.K. Aldose reductase inhibitor increases doxorubicin-sensitivity of colon cancer cells and decreases cardiotoxicity. Sci. Rep., 2017, 7(1), 3182.
[http://dx.doi.org/10.1038/s41598-017-03284-w] [PMID: 28600556]
[111]
Demirkol Canlı, S.; Seza, E.G.; Sheraj, I.; Gömçeli, I.; Turhan, N.; Carberry, S.; Prehn, J.H.M.; Güre, A.O.; Banerjee, S. Evaluation of an aldo-keto reductase gene signature with prognostic significance in colon cancer via activation of epithelial to mesenchymal transition and the p70S6K pathway. Carcinogenesis, 2020, 41(9), 1219- 1228.
[http://dx.doi.org/10.1093/carcin/bgaa072] [PMID: 32628753]
[112]
Carper, D.; Nishimura, C.; Shinohara, T.; Dietzchold, B.; Wistow, G.; Craft, C.; Kador, P.; Kinoshita, J.H. Aldose reductase and p-crystallin belong to the same protein superfamily as aldehyde reductase. FEBS Lett., 1987, 220(1), 209-213.
[http://dx.doi.org/10.1016/0014-5793(87)80905-5] [PMID: 3111886]
[113]
Srivastava, S.; Chandra, A.; Wang, L.F.; Seifert, W.E.Jr.; DaGue, B.B.; Ansari, N.H.; Srivastava, S.K.; Bhatnagar, A. Metabolism of the lipid peroxidation product, 4-hydroxy-trans-2-nonenal, in isolated perfused rat heart. J. Biol. Chem., 1998, 273(18), 10893-10900.
[http://dx.doi.org/10.1074/jbc.273.18.10893] [PMID: 9556565]
[114]
Srivastava, S.; Watowich, S.J.; Petrash, J.M.; Srivastava, S.K.; Bhatnagar, A. Structural and kinetic determinants of aldehyde reduction by aldose reductase. Biochemistry, 1999, 38(1), 42-54.
[http://dx.doi.org/10.1021/bi981794l] [PMID: 9890881]
[115]
Srivastava, S.K.; Ramana, K.V.; Srivastava, S.; Bhatnagar, A. Chapter 37 - Aldose reductase detoxifies lipid aldehydes and their glutathione conjugates. In: Aldo-Keto Reductases and Toxicant Metabolism; American Chemical Society, 2003; vol. 865, pp. 37-48.
[116]
Dixit, B.L.; Balendiran, G.K.; Watowich, S.J.; Srivastava, S.; Ramana, K.V.; Petrash, J.M.; Bhatnagar, A.; Srivastava, S.K. Kinetic and structural characterization of the glutathione-binding site of aldose reductase. J. Biol. Chem., 2000, 275(28), 21587-21595.
[http://dx.doi.org/10.1074/jbc.M909235199] [PMID: 10764810]
[117]
Ramana, K.V.; Dixit, B.L.; Srivastava, S.; Bhatnagar, A.; Balendiran, G.K.; Watowich, S.J.; Petrash, J.M.; Srivastava, S.K. Characterization of the glutathione binding site of aldose reductase. Chem. Biol. Interact., 2001, 130-132 (1-3), 537-548.
[http://dx.doi.org/10.1016/S0009-2797(00)00297-0] [PMID: 11306073]
[118]
Ramana, K.V.; Srivastava, S.K. Aldose reductase: a novel therapeutic target for inflammatory pathologies. Int. J. Biochem. Cell Biol., 2010, 42(1), 17-20.
[http://dx.doi.org/10.1016/j.biocel.2009.09.009] [PMID: 19778627]
[119]
ElGamal, H.; Munusamy, S. Aldose reductase as a drug target for treatment of diabetic nephropathy: promises and challenges. Protein Pept. Lett., 2017, 24(1), 71-77.
[http://dx.doi.org/10.2174/0929866523666161128153548] [PMID: 27894247]
[120]
Hayman, S.; Kinoshita, J.H. Isolation and properties of lens aldose reductase. J. Biol. Chem., 1965, 240, 877-882.
[http://dx.doi.org/10.1016/S0021-9258(17)45256-2] [PMID: 14275148]
[121]
Jedziniak, J.A.; Kinoshita, J.H. Activators and inhibitors of lens aldose reductase. Invest. Ophthalmol., 1971, 10(5), 357-366.
[PMID: 4397412]
[122]
Hutton, J.C.; Schofield, P.J.; Williams, J.F.; Hollows, F.C. The failure of aldose reductase inhibitor 3,3′-tetramethylene glutaric acid to inhibit in vivo sorbitol accumulation in lens and retina in diabetes. Biochem. Pharmacol., 1974, 23(21), 2991-2998.
[http://dx.doi.org/10.1016/0006-2952(74)90274-3] [PMID: 4279667]
[123]
Gabbay, K.H.; Spack, N.; Loo, S.; Hirsch, H.J.; Ackil, A.A. Aldose reductase inhibition: studies with alrestatin. Metabolism, 1979, 28(4 Suppl 1), 471-476.
[http://dx.doi.org/10.1016/0026-0495(79)90059-3] [PMID: 122298]
[124]
Sestanj, K.; Bellini, F.; Fung, S.; Abraham, N.; Treasurywala, A.; Humber, L.; Simard-Duquesne, N.; Dvornik, D. N-[5-(trifluoromethyl)-6-methoxy-1-naphthalenyl]thioxomethyl]- N-methylglycine (Tolrestat), a potent, orally active aldose reductase inhibitor. J. Med. Chem., 1984, 27(3), 255-256.
[http://dx.doi.org/10.1021/jm00369a003] [PMID: 6422042]
[125]
Ward, W.H.; Sennitt, C.M.; Ross, H.; Dingle, A.; Timms, D.; Mirrlees, D.J.; Tuffin, D.P. Ponalrestat: a potent and specific inhibitor of aldose reductase. Biochem. Pharmacol., 1990, 39(2), 337-346.
[http://dx.doi.org/10.1016/0006-2952(90)90033-H] [PMID: 2105733]
[126]
Tanaka, Y.; Sawamoto, T.; Suzuki, A.; Kimura, T. Pharmacokinetics of zenarestat, an aldose reductase inhibitor, in male and female diabetic rats. Drug Metab. Dispos., 1993, 21(4), 677-681.
[PMID: 8104128]
[127]
Inskeep, P.B.; Reed, A.E.; Ronfeld, R.A. Pharmacokinetics of zopolrestat, a carboxylic acid aldose reductase inhibitor, in normal and diabetic rats. Pharm. Res., 1991, 8(12), 1511-1515.
[http://dx.doi.org/10.1023/A:1015894300247] [PMID: 1808615]
[128]
Foppiano, M.; Lombardo, G. Worldwide pharmacovigilance systems and tolrestat withdrawal. Lancet, 1997, 349(9049), 399-400.
[http://dx.doi.org/10.1016/S0140-6736(97)80018-9] [PMID: 9033472]
[129]
Brown, M.J.; Bird, S.J.; Watling, S.; Kaleta, H.; Hayes, L.; Eckert, S.; Foyt, H.L. Zenarest study. Natural progression of diabetic peripheral neuropathy in the Zenarestat study population. Diabetes Care, 2004, 27(5), 1153-1159.
[http://dx.doi.org/10.2337/diacare.27.5.1153] [PMID: 15111537]
[130]
Ziegler, D.; Mayer, P.; Rathmann, W.; Gries, F.A. One year treatment with the aldose reductase inhibitor, ponalrestat, in diabetic neuropathy. Diabetes Res. Clin. Pract., 1991, 14(1), 63-73.
[http://dx.doi.org/10.1016/0168-8227(91)90054-H] [PMID: 1748064]
[131]
Kikkawa, R.; Hatanaka, I.; Yasuda, H.; Kobayashi, N.; Shigeta, Y.; Terashima, H.; Morimura, T.; Tsuboshima, M. Effect of a new aldose reductase inhibitor, (E)-3-carboxymethyl-5-[(2E)-methyl-3-phenylpropenylidene]rhodanine (ONO-2235) on peripheral nerve disorders in streptozotocin-diabetic rats. Diabetologia, 1983, 24(4), 290-292.
[http://dx.doi.org/10.1007/BF00282716] [PMID: 6407887]
[132]
Terashima, H.; Hama, K.; Yamamoto, R.; Tsuboshima, M.; Kikkawa, R.; Hatanaka, I.; Shigeta, Y. Effects of a new aldose reductase inhibitor on various tissues in vitro. J. Pharmacol. Exp. Ther., 1984, 229(1), 226-230.
[PMID: 6423811]
[133]
Hotta, N.; Akanuma, Y.; Kawamori, R.; Matsuoka, K.; Oka, Y.; Shichiri, M.; Toyota, T.; Nakashima, M.; Yoshimura, I.; Sakamoto, N.; Shigeta, Y. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: the 3-year, multicenter, comparative aldose reductase inhibitor-diabetes complications trial. Diabetes Care, 2006, 29(7), 1538-1544.
[http://dx.doi.org/10.2337/dc05-2370] [PMID: 16801576]
[134]
Hotta, N.; Sakamoto, N.; Shigeta, Y.; Kikkawa, R.; Goto, Y. Diabetic Neuropathy Study Group in Japan. Clinical investigation of epalrestat, an aldose reductase inhibitor, on diabetic neuropathy in Japan: multicenter study. J. Diabetes Complications, 1996, 10(3), 168-172.
[http://dx.doi.org/10.1016/1056-8727(96)00113-4] [PMID: 8807467]
[135]
Uchida, K.; Kigoshi, T.; Nakano, S.; Ishii, T.; Kitazawa, M.; Morimoto, S. Effect of 24 weeks of treatment with epalrestat, an aldose reductase inhibitor, on peripheral neuropathy in patients with non-insulin-dependent diabetes mellitus. Clin. Ther., 1995, 17(3), 460-466.
[http://dx.doi.org/10.1016/0149-2918(95)80111-1] [PMID: 7585850]
[136]
Liu, M.; Li, F.; Liang, M.; Rao, X. Effects of aldose reductase inhibitors on renal blood flow parameters in patients with early diabetic nephropathy. J. Diabetes Complications, 2020, 34(9), 107620.
[http://dx.doi.org/10.1016/j.jdiacomp.2020.107620] [PMID: 32444327]
[137]
Sato, K.; Yama, K.; Murao, Y.; Tatsunami, R.; Tampo, Y. Epalrestat increases intracellular glutathione levels in Schwann cells through transcription regulation. Redox Biol., 2013, 2, 15-21.
[http://dx.doi.org/10.1016/j.redox.2013.11.003] [PMID: 24363998]
[138]
Yama, K.; Sato, K.; Abe, N.; Murao, Y.; Tatsunami, R.; Tampo, Y. Epalrestat increases glutathione, thioredoxin, and heme oxygenase-1 by stimulating Nrf2 pathway in endothelial cells. Redox Biol., 2015, 4, 87-96.
[http://dx.doi.org/10.1016/j.redox.2014.12.002] [PMID: 25529839]
[139]
Le, Y.; Chen, L.; Zhang, Y.; Bu, P.; Dai, G.; Cheng, X. Epalrestat stimulated oxidative stress, inflammation, and fibrogenesis in mouse liver. Toxicol. Sci., 2018, 163(2), 397-408.
[http://dx.doi.org/10.1093/toxsci/kfx038] [PMID: 28204799]
[140]
Reddy, T.N.; Ravinder, M.; Bagul, P.; Ravikanti, K.; Bagul, C.; Nanubolu, J.B.; Srinivas, K.; Banerjee, S.K.; Rao, V.J. Synthesis and biological evaluation of new epalrestat analogues as aldose reductase inhibitors (ARIs). Eur. J. Med. Chem., 2014, 71, 53-66.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.043] [PMID: 24275248]
[141]
Van Zandt, M.C.; Jones, M.L.; Gunn, D.E.; Geraci, L.S.; Jones, J.H.; Sawicki, D.R.; Sredy, J.; Jacot, J.L.; Dicioccio, A.T.; Petrova, T.; Mitschler, A.; Podjarny, A.D. Discovery of 3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]indole-N- acetic acid (lidorestat) and congeners as highly potent and selective inhibitors of aldose reductase for treatment of chronic diabetic complications. J. Med. Chem., 2005, 48(9), 3141-3152.
[http://dx.doi.org/10.1021/jm0492094] [PMID: 15857120]
[142]
La Motta, C.; Sartini, S.; Salerno, S.; Simorini, F.; Taliani, S.; Marini, A.M.; Da Settimo, F.; Marinelli, L.; Limongelli, V.; Novellino, E. Acetic acid aldose reductase inhibitors bearing a five-membered heterocyclic core with potent topical activity in a visual impairment rat model. J. Med. Chem., 2008, 51(11), 3182-3193.
[http://dx.doi.org/10.1021/jm701613h] [PMID: 18452283]
[143]
Yang, Y.; Zhang, S.; Wu, B.; Ma, M.; Chen, X.; Qin, X.; He, M.; Hussain, S.; Jing, C.; Ma, B.; Zhu, C. An efficient synthesis of quinoxalinone derivatives as potent inhibitors of aldose reductase. ChemMedChem, 2012, 7(5), 823-835.
[http://dx.doi.org/10.1002/cmdc.201200054] [PMID: 22416050]
[144]
Huang, W.; Zhang, Y.; Liang, X.; Yang, L. Substituted 2-thioxothiazolidin-4-one derivatives showed protective effects against diabetic cataract via inhibition of aldose reductase. Arch. Pharm. (Weinheim), 2020, 353(6), e1900371.
[http://dx.doi.org/10.1002/ardp.201900371] [PMID: 32237167]
[145]
Sarges, R.; Schnur, R.C.; Belletire, J.L.; Peterson, M.J. Spiro hydantoin aldose reductase inhibitors. J. Med. Chem., 1988, 31(1), 230-243.
[http://dx.doi.org/10.1021/jm00396a037] [PMID: 3121857]
[146]
Gonzalez, A.M.; Sochor, M.; Hothersall, J.S.; McLean, P. Effect of aldose reductase inhibitor (sorbinil) on integration of polyol pathway, pentose phosphate pathway, and glycolytic route in diabetic rat lens. Diabetes, 1986, 35(11), 1200-1205.
[http://dx.doi.org/10.2337/diab.35.11.1200] [PMID: 3093302]
[147]
Gonzalez, A.M.; Sochor, M.; McLean, P. The effect of an aldose reductase inhibitor (sorbinil) on the level of metabolites in lenses of diabetic rats. Diabetes, 1983, 32(5), 482-485.
[http://dx.doi.org/10.2337/diab.32.5.482] [PMID: 6404681]
[148]
Judzewitsch, R.G.; Jaspan, J.B.; Polonsky, K.S.; Weinberg, C.R.; Halter, J.B.; Halar, E.; Pfeifer, M.A.; Vukadinovic, C.; Bernstein, L.; Schneider, M.; Liang, K.-Y.; Gabbay, K.H.; Rubenstein, A.H.; Porte, D.Jr. Aldose reductase inhibition improves nerve conduction velocity in diabetic patients. N. Engl. J. Med., 1983, 308(3), 119-125.
[http://dx.doi.org/10.1056/NEJM198301203080302] [PMID: 6401351]
[149]
Young, R.J.; Ewing, D.J.; Clarke, B.F. A controlled trial of sorbinil, an aldose reductase inhibitor, in chronic painful diabetic neuropathy. Diabetes, 1983, 32(10), 938-942.
[http://dx.doi.org/10.2337/diab.32.10.938] [PMID: 6225686]
[150]
Fagius, J.; Brattberg, A.; Jameson, S.; Berne, C. Limited benefit of treatment of diabetic polyneuropathy with an aldose reductase inhibitor: a 24-week controlled trial. Diabetologia, 1985, 28(6), 323-329.
[http://dx.doi.org/10.1007/BF00283137] [PMID: 3930330]
[151]
Mizuno, K.; Kato, N.; Matsubara, A.; Nakano, K.; Kurono, M. Effects of a new aldose reductase inhibitor, (2S, 4S)-6-fluoro-2′,5′-dioxospiro[chroman-4,4′-imidazolidine]-2-ca rboxamid e (SNK-860), on the slowing of motor nerve conduction velocity and metabolic abnormalities in the peripheral nerve in acute streptozotocin-induced diabetic rats. Metabolism, 1992, 41(10), 1081-1086.
[http://dx.doi.org/10.1016/0026-0495(92)90289-M] [PMID: 1328819]
[152]
Kato, N.; Mizuno, K.; Makino, M.; Suzuki, T.; Yagihashi, S. Effects of 15-month aldose reductase inhibition with fidarestat on the experimental diabetic neuropathy in rats. Diabetes Res. Clin. Pract., 2000, 50(2), 77-85.
[http://dx.doi.org/10.1016/S0168-8227(00)00164-9] [PMID: 10960717]
[153]
Hotta, N.; Toyota, T.; Matsuoka, K.; Shigeta, Y.; Kikkawa, R.; Kaneko, T.; Takahashi, A.; Sugimura, K.; Koike, Y.; Ishii, J.; Sakamoto, N. SNK-860 Diabetic Neuropathy Study Group. Clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy: a 52-week multicenter placebo-controlled double-blind parallel group study. Diabetes Care, 2001, 24(10), 1776-1782.
[http://dx.doi.org/10.2337/diacare.24.10.1776] [PMID: 11574441]
[154]
Sobajima, H.; Aoki, T.; Sassa, H.; Suzuki, T.; Taniko, K.; Makino, M.; Mizuno, K.; Suzuki, T. Pharmacological properties of fidarestat, a potent aldose reductase inhibitor, clarified by using sorbitol in human and rat erythrocytes. Pharmacology, 2001, 62(4), 193-199.
[http://dx.doi.org/10.1159/000056094] [PMID: 11359994]
[155]
Negoro, T.; Murata, M.; Ueda, S.; Fujitani, B.; Ono, Y.; Kuromiya, A.; Komiya, M.; Suzuki, K.; Matsumoto, J-I. Novel, highly potent aldose reductase inhibitors: (R)- (−)-2-(4-Bromo-2-fluorobenzyl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine- 4-spiro-3‘-pyrrolidine-1,2‘, 3,5‘-tetrone (AS-3201) and its congeners. J. Med. Chem., 1998, 41(21), 4118-4129.
[http://dx.doi.org/10.1021/jm9802968] [PMID: 9767647]
[156]
Matsumoto, T.; Ono, Y.; Kurono, M.; Kuromiya, A.; Nakamura, K.; Bril, V. Ranirestat (AS-3201), a potent aldose reductase inhibitor, reduces sorbitol levels and improves motor nerve conduction velocity in streptozotocin-diabetic rats. J. Pharmacol. Sci., 2008, 107(3), 231-237.
[http://dx.doi.org/10.1254/jphs.08061FP] [PMID: 18635918]
[157]
Bril, V.; Buchanan, R.A. Long-term effects of ranirestat (AS-3201) on peripheral nerve function in patients with diabetic sensorimotor polyneuropathy. Diabetes Care, 2006, 29(1), 68-72.
[http://dx.doi.org/10.2337/diacare.29.01.06.dc05-1447] [PMID: 16373898]
[158]
Polydefkis, M.; Arezzo, J.; Nash, M.; Bril, V.; Shaibani, A.; Gordon, R.J.; Bradshaw, K.L.; Junor, R.W.J. Ranirestat Study Group. Safety and efficacy of ranirestat in patients with mild-to-moderate diabetic sensorimotor polyneuropathy. J. Peripher. Nerv. Syst., 2015, 20(4), 363- 371.
[http://dx.doi.org/10.1111/jns.12138] [PMID: 26313450]
[159]
Sekiguchi, K.; Kohara, N.; Baba, M.; Komori, T.; Naito, Y.; Imai, T.; Satoh, J.; Yamaguchi, Y.; Hamatani, T. Ranirestat Group. Aldose reductase inhibitor ranirestat significantly improves nerve conduction velocity in diabetic polyneuropathy: a randomized double-blind placebo-controlled study in Japan. J. Diabetes Investig., 2019, 10(2), 466-474.
[http://dx.doi.org/10.1111/jdi.12890] [PMID: 29975462]
[160]
Satoh, J.; Kohara, N.; Sekiguchi, K.; Yamaguchi, Y. Effect of ranirestat on sensory and motor nerve function in japanese patients with diabetic polyneuropathy: a randomized double-blind placebo-controlled study. J. Diabetes Res., 2016, 2016, 5383797.
[http://dx.doi.org/10.1155/2016/5383797] [PMID: 26881251]
[161]
Itou, M.; Fujita, T.; Inoue, K.; Uchida, N.; Takagaki, T.; Ishii, D.; Kakuyama, H. Pharmacokinetics and safety of ranirestat in patients with hepatic impairment. J. Clin. Pharmacol., 2020, 60(10), 1397-1403.
[http://dx.doi.org/10.1002/jcph.1636] [PMID: 32437025]
[162]
Brazzell, R.K.; Mayer, P.R.; Dobbs, R.; McNamara, P.J.; Teng, R.L.; Slattery, J.T. Dose-dependent pharmacokinetics of the aldose reductase inhibitor imirestat in man. Pharm. Res., 1991, 8(1), 112-118.
[http://dx.doi.org/10.1023/A:1015850911382] [PMID: 1901647]
[163]
Carrington, A.L.; Ettlinger, C.B.; Calcutt, N.A.; Tomlinson, D.R. Aldose reductase inhibition with imirestat-effects on impulse conduction and insulin-stimulation of Na+/K(+)-adenosine triphosphatase activity in sciatic nerves of streptozotocin-diabetic rats. Diabetologia, 1991, 34(6), 397-401.
[http://dx.doi.org/10.1007/BF00403177] [PMID: 1653157]
[164]
Wilson, D.K.; Tarle, I.; Petrash, J.M.; Quiocho, F.A. Refined 1.8 A structure of human aldose reductase complexed with the potent inhibitor zopolrestat. Proc. Natl. Acad. Sci. USA, 1993, 90(21), 9847-9851.
[http://dx.doi.org/10.1073/pnas.90.21.9847] [PMID: 8234324]
[165]
Nakano, T.; Petrash, J.M. Kinetic and spectroscopic evidence for active site inhibition of human aldose reductase. Biochemistry, 1996, 35(34), 11196-11202.
[http://dx.doi.org/10.1021/bi9608121] [PMID: 8780524]
[166]
El-Kabbani, O.; Carbone, V.; Darmanin, C.; Oka, M.; Mitschler, A.; Podjarny, A.; Schulze-Briese, C.; Chung, R.P. Structure of aldehyde reductase holoenzyme in complex with the potent aldose reductase inhibitor fidarestat: implications for inhibitor binding and selectivity. J. Med. Chem., 2005, 48(17), 5536-5542.
[http://dx.doi.org/10.1021/jm050412o] [PMID: 16107153]
[167]
Costantino, L.; Rastelli, G.; Gamberini, M.C.; Vinson, J.A.; Bose, P.; Iannone, A.; Staffieri, M.; Antolini, L.; Del Corso, A.; Mura, U.; Albasini, A. 1-Benzopyran-4-one antioxidants as aldose reductase inhibitors. J. Med. Chem., 1999, 42(11), 1881-1893.
[http://dx.doi.org/10.1021/jm980441h] [PMID: 10354396]
[168]
Metwally, K.; Pratsinis, H.; Kletsas, D.; Quattrini, L.; Coviello, V.; Motta, C.; El-Rashedy, A.A.; Soliman, M.E. Novel quinazolinone-based 2,4-thiazolidinedione-3-acetic acid derivatives as potent aldose reductase inhibitors. Future Med. Chem., 2017, 9(18), 2147-2166.
[http://dx.doi.org/10.4155/fmc-2017-0149] [PMID: 29098865]
[169]
Antony, P.; Vijayan, R. Identification of novel aldose reductase inhibitors from spices: a molecular docking and simulation study. PLoS One, 2015, 10(9), e0138186.
[http://dx.doi.org/10.1371/journal.pone.0138186] [PMID: 26384019]
[170]
Zhou, D.; Chen, J.; Xu, Y. Identification of potential quinoxalinone-based aldose reductase inhibitors by 3D-QSAR, molecular docking and molecular dynamics. RSC Advances, 2016, 6(57), 51716-51724.
[http://dx.doi.org/10.1039/C6RA05649K]
[171]
Masand, V.H.; Elsayed, N.N.; Thakur, S.D.; Gawhale, N.; Rathore, M.M. Quinoxalinones based aldose reductase inhibitors: 2D and 3D-QSAR analysis. Mol. Inform., 2019, 38(8-9), e1800149.
[http://dx.doi.org/10.1002/minf.201800149] [PMID: 31131980]
[172]
Caballero, J. 3D-QSAR (CoMFA and CoMSIA) and pharmacophore (GALAHAD) studies on the differential inhibition of aldose reductase by flavonoid compounds. J. Mol. Graph. Model., 2010, 29(3), 363-371.
[http://dx.doi.org/10.1016/j.jmgm.2010.08.005] [PMID: 20863730]
[173]
Mu, Y.; Yang, M.; Li, H.; Wu, F.; Luo, S. 3D-QSARs and molecular dynamics simulation studies on induced fit binding of flavones to human aldose reductase. J. Biomol. Struct. Dyn., 2020, 38(4), 1234-1241.
[http://dx.doi.org/10.1080/07391102.2019.1592023] [PMID: 30880629]
[174]
Qin, X.; Hao, X.; Han, H.; Zhu, S.; Yang, Y.; Wu, B.; Hussain, S.; Parveen, S.; Jing, C.; Ma, B.; Zhu, C. Design and synthesis of potent and multifunctional aldose reductase inhibitors based on quinoxalinones. J. Med. Chem., 2015, 58(3), 1254-1267.
[http://dx.doi.org/10.1021/jm501484b] [PMID: 25602762]
[175]
Stefek, M.; Prnova, M.S.; Majekova, M.; Rechlin, C.; Heine, A.; Klebe, G. Identification of novel aldose reductase inhibitors based on carboxymethylated mercaptotriazinoindole scaffold. J. Med. Chem., 2015, 58(6), 2649-2657.
[http://dx.doi.org/10.1021/jm5015814] [PMID: 25695864]
[176]
Zhan, J-Y.; Ma, K.; Zheng, Q-C.; Yang, G-H.; Zhang, HX. Exploring the interactional details between aldose reductase (AKR1B1) and 3-Mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid through molecular dynamics simulations. J. Biomol. Struct. Dyn., 2019, 37(7), 1724-1735.
[http://dx.doi.org/10.1080/07391102.2018.1465851] [PMID: 29671687]
[177]
Wang, L.; Gu, Q.; Zheng, X.; Ye, J.; Liu, Z.; Li, J.; Hu, X.; Hagler, A.; Xu, J. Discovery of new selective human aldose reductase inhibitors through virtual screening multiple binding pocket conformations. J. Chem. Inf. Model., 2013, 53(9), 2409-2422.
[http://dx.doi.org/10.1021/ci400322j] [PMID: 23901876]
[178]
Sever, B.; Altıntop, M.D.; Demir, Y.; Akalın Çiftçi, G.; Beydemir, Ş.; Özdemir, A. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorg. Chem., 2020, 102, 104110.
[http://dx.doi.org/10.1016/j.bioorg.2020.104110] [PMID: 32739480]
[179]
Hao, X.; Qi, G.; Ma, H.; Zhu, C.; Han, Z. Novel 2-phenoxypyrido[3,2-b]pyrazin-3(4H)-one derivatives as potent and selective aldose reductase inhibitors with antioxidant activity. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1368-1372.
[http://dx.doi.org/10.1080/14756366.2019.1643336] [PMID: 31347930]
[180]
Khan, M.S.; Qais, F.A.; Rehman, M.T.; Ismail, M.H.; Alokail, M.S.; Altwaijry, N.; Alafaleq, N.O.; AlAjmi, M.F.; Salem, N.; Alqhatani, R. Mechanistic inhibition of non-enzymatic glycation and aldose reductase activity by naringenin: binding, enzyme kinetics and molecular docking analysis. Int. J. Biol. Macromol., 2020, 159, 87-97.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.226] [PMID: 32437808]
[181]
Wang, Z.; Ling, B.; Zhang, R.; Liu, Y. Docking and molecular dynamics study on the inhibitory activity of coumarins on aldose reductase. J. Phys. Chem. B, 2008, 112(32), 10033-10040.
[http://dx.doi.org/10.1021/jp8033227] [PMID: 18637681]
[182]
Agrawal, Y.P.; Agrawal, M.Y.; Gupta, A.K. Design, synthesis and evaluation of rhodanine derivatives as aldose reductase inhibitors. Chem. Biol. Drug Des., 2015, 85(2), 172-180.
[http://dx.doi.org/10.1111/cbdd.12369] [PMID: 24903533]
[183]
Celestina, S.K.; Sundaram, K.; Ravi, S. In vitro studies of potent aldose reductase inhibitors: synthesis, characterization, biological evaluation and docking analysis of rhodanine-3-hippuric acid derivatives. Bioorg. Chem., 2020, 97, 103640.
[http://dx.doi.org/10.1016/j.bioorg.2020.103640] [PMID: 32086051]
[184]
Du, Z.Y.; Bao, Y.D.; Liu, Z.; Qiao, W.; Ma, L.; Huang, Z.S.; Gu, L.Q.; Chan, A.S. Curcumin analogs as potent aldose reductase inhibitors. Arch. Pharm. (Weinheim), 2006, 339(3), 123-128.
[http://dx.doi.org/10.1002/ardp.200500205] [PMID: 16528793]
[185]
Chaudhry, P.S.; Cabrera, J.; Juliani, H.R.; Varma, S.D. Inhibition of human lens aldose reductase by flavonoids, sulindac and indomethacin. Biochem. Pharmacol., 1983, 32(13), 1995-1998.
[http://dx.doi.org/10.1016/0006-2952(83)90417-3] [PMID: 6409111]
[186]
Comakli, V.; Adem, S.; Oztekin, A.; Demirdag, R. Screening inhibitory effects of selected flavonoids on human recombinant aldose reductase enzyme: in vitro and in silico study. Arch. Physiol. Biochem., 2020, 1-7.
[http://dx.doi.org/10.1080/13813455.2020.1771377] [PMID: 32463711]
[187]
Da Settimo, F.; Primofiore, G.; La Motta, C.; Sartini, S.; Taliani, S.; Simorini, F.; Marini, A.M.; Lavecchia, A.; Novellino, E.; Boldrini, E. Naphtho[1,2-d]isothiazole acetic acid derivatives as a novel class of selective aldose reductase inhibitors. J. Med. Chem., 2005, 48(22), 6897-6907.
[http://dx.doi.org/10.1021/jm050382p] [PMID: 16250648]
[188]
Sun, W.S.; Park, Y.S.; Yoo, J.; Park, K.D.; Kim, S.H.; Kim, J.-H.; Park, H.-J. Rational design of an indolebutanoic acid derivative as a novel aldose reductase inhibitor based on docking and 3D QSAR studies of phenethylamine derivatives. J. Med. Chem., 2003, 46(26), 5619-5627.
[http://dx.doi.org/10.1021/jm0205346] [PMID: 14667216]
[189]
Costantino, L.; Rastelli, G.; Vescovini, K.; Cignarella, G.; Vianello, P.; Del Corso, A.; Cappiello, M.; Mura, U.; Barlocco, D. Synthesis, activity, and molecular modeling of a new series of tricyclic pyridazinones as selective aldose reductase inhibitors. J. Med. Chem., 1996, 39(22), 4396- 4405.
[http://dx.doi.org/10.1021/jm960124f] [PMID: 8893834]
[190]
Shehzad, M.T.; Imran, A.; Njateng, G.S.S.; Hameed, A.; Islam, M.; Al-Rashida, M.; Uroos, M.; Asari, A.; Shafiq, Z.; Iqbal, J. Benzoxazinone-thiosemicarbazones as antidiabetic leads via aldose reductase inhibition: synthesis, biological screening and molecular docking study. Bioorg. Chem., 2019, 87, 857-866.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.006] [PMID: 30551808]
[191]
Yaseen, R.; Pushpalatha, H.; Reddy, G.B.; Ismael, A.; Ahmed, A.; Dheyaa, A.; Ovais, S.; Rathore, P.; Samim, M.; Akthar, M.; Sharma, K.; Shafi, S.; Singh, S.; Javed, K. Design and synthesis of pyridazinone-substituted benzenesulphonylurea derivatives as anti-hyperglycaemic agents and inhibitors of aldose reductase - an enzyme embroiled in diabetic complications. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1415-1427.
[http://dx.doi.org/10.3109/14756366.2016.1142986] [PMID: 26879420]
[192]
Muthenna, P.; Suryanarayana, P.; Gunda, S.K.; Petrash, J.M.; Reddy, G.B. Inhibition of aldose reductase by dietary antioxidant curcumin: mechanism of inhibition, specificity and significance. FEBS Lett., 2009, 583(22), 3637-3642.
[http://dx.doi.org/10.1016/j.febslet.2009.10.042] [PMID: 19850041]
[193]
Nabavi, S.F.; Thiagarajan, R.; Rastrelli, L.; Daglia, M.; Sobarzo-Sánchez, E.; Alinezhad, H.; Nabavi, S.M. Curcumin: a natural product for diabetes and its complications. Curr. Top. Med. Chem., 2015, 15(23), 2445-2455.
[http://dx.doi.org/10.2174/1568026615666150619142519] [PMID: 26088351]
[194]
Zhang, D.W.; Fu, M.; Gao, S.H.; Liu, J.L. Curcumin and diabetes: a systematic review. Evid. Based Complement. Alternat. Med., 2013, 2013, 636053.
[http://dx.doi.org/10.1155/2013/636053] [PMID: 24348712]
[195]
Rivera-Mancía, S.; Trujillo, J.; Chaverri, J.P. Utility of curcumin for the treatment of diabetes mellitus: evidence from preclinical and clinical studies. J. Nutr. Intermed. Metab., 2018, 14, 29-41.
[http://dx.doi.org/10.1016/j.jnim.2018.05.001]
[196]
Kim, C.S.; Kim, J.; Lee, Y.M.; Sohn, E.; Jo, K.; Kim, J.S. Inhibitory effects of chlorogenic acid on aldose reductase activity in vitro and cataractogenesis in galactose-fed rats. Arch. Pharm. Res., 2011, 34(5), 847-852.
[http://dx.doi.org/10.1007/s12272-011-0519-z] [PMID: 21656371]
[197]
Cunningham, J.J.; Mearkle, P.L.; Brown, R.G. Vitamin C: an aldose reductase inhibitor that normalizes erythrocyte sorbitol in insulin-dependent diabetes mellitus. J. Am. Coll. Nutr., 1994, 13(4), 344-350.
[http://dx.doi.org/10.1080/07315724.1994.10718420] [PMID: 7963139]
[198]
Varma, S.D.; Mikuni, I.; Kinoshita, J.H. Flavonoids as inhibitors of lens aldose reductase. Science, 1975, 188(4194), 1215-1216.
[http://dx.doi.org/10.1126/science.1145193] [PMID: 1145193]
[199]
Matsuda, H.; Morikawa, T.; Toguchida, I.; Yoshikawa, M. Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem. Pharm. Bull. (Tokyo), 2002, 50(6), 788-795.
[http://dx.doi.org/10.1248/cpb.50.788] [PMID: 12045333]
[200]
Okuda, J.; Miwa, I.; Inagaki, K.; Horie, T.; Nakayama, M. Inhibition of aldose reductases from rat and bovine lenses by flavonoids. Biochem. Pharmacol., 1982, 31(23), 3807-3822.
[http://dx.doi.org/10.1016/0006-2952(82)90297-0] [PMID: 6818971]
[201]
Izzi, V.; Masuelli, L.; Tresoldi, I.; Sacchetti, P.; Modesti, A.; Galvano, F.; Bei, R. The effects of dietary flavonoids on the regulation of redox inflammatory networks. Front. Biosci., 2012, 17, 2396-2418.
[http://dx.doi.org/10.2741/4061] [PMID: 22652788]
[202]
Alkhalidy, H.; Wang, Y.; Liu, D. Dietary flavonoids in the prevention of T2D: an overview. Nutrients, 2018, 10(4), E438.
[http://dx.doi.org/10.3390/nu10040438] [PMID: 29614722]
[203]
Karasu, C.; Cumaoğlu, A.; Gürpinar, A.R.; Kartal, M.; Kovacikova, L.; Milackova, I.; Stefek, M. Aldose reductase inhibitory activity and antioxidant capacity of pomegranate extracts. Interdiscip. Toxicol., 2012, 5(1), 15-20.
[http://dx.doi.org/10.2478/v10102-012-0003-8] [PMID: 22783144]
[204]
Irondi, E.A.; Oboh, G.; Akindahunsi, A.A.; Boligon, A.A.; Athayde, M.L. Phenolic composition and inhibitory activity of Mangifera indica and Mucuna urens seeds extracts against key enzymes linked to the pathology and complications of type 2 diabetes. Asian Pac. J. Trop. Biomed., 2014, 4(11), 903-910.
[http://dx.doi.org/10.12980/APJTB.4.201414B364]
[205]
Kato, A.; Higuchi, Y.; Goto, H.; Kizu, H.; Okamoto, T.; Asano, N.; Hollinshead, J.; Nash, R.J.; Adachi, I. Inhibitory effects of Zingiber officinale roscoe derived components on aldose reductase activity in vitro and in vivo. J. Agric. Food Chem., 2006, 54(18), 6640-6644.
[http://dx.doi.org/10.1021/jf061599a] [PMID: 16939321]
[206]
Kang, J.; Tang, Y.; Liu, Q.; Guo, N.; Zhang, J.; Xiao, Z.; Chen, R.; Shen, Z. Isolation, modification, and aldose reductase inhibitory activity of rosmarinic acid derivatives from the roots of Salvia grandifolia. Fitoterapia, 2016, 112, 197-204.
[http://dx.doi.org/10.1016/j.fitote.2016.05.011] [PMID: 27233987]
[207]
Kondhare, D.; Lade, H. Phytochemical profile, aldose reductase inhibitory, and antioxidant activities of Indian traditional medicinal Coccinia grandis (L.) fruit extract. 3 Biotech., 2017, 7(6), 378.
[http://dx.doi.org/10.1007/s13205-017-1013-1] [PMID: 29071175]
[208]
Ueda, H.; Kuroiwa, E.; Tachibana, Y.; Kawanishi, K.; Ayala, F.; Moriyasu, M. Aldose reductase inhibitors from the leaves of Myrciaria dubia (H. B. & K.) McVaugh. Phytomedicine, 2004, 11(7-8), 652-656.
[http://dx.doi.org/10.1016/j.phymed.2003.12.002] [PMID: 15636180]
[209]
Lee, H.S. Rat lens aldose reductase inhibitory activities of Coptis japonica root-derived isoquinoline alkaloids. J. Agric. Food Chem., 2002, 50(24), 7013-7016.
[http://dx.doi.org/10.1021/jf020674o] [PMID: 12428952]
[210]
Jung, H.A.; Yoon, N.Y.; Kang, S.S.; Kim, Y.S.; Choi, J.S. Inhibitory activities of prenylated flavonoids from Sophora flavescens against aldose reductase and generation of advanced glycation endproducts. J. Pharm. Pharmacol., 2008, 60(9), 1227-1236.
[http://dx.doi.org/10.1211/jpp.60.9.0016] [PMID: 18718128]
[211]
Yoo, N.H.; Jang, D.S.; Yoo, J.L.; Lee, Y.M.; Kim, Y.S.; Cho, J.H.; Kim, J.S. Erigeroflavanone, a flavanone derivative from the flowers of Erigeron annuus with protein glycation and aldose reductase inhibitory activity. J. Nat. Prod., 2008, 71(4), 713-715.
[http://dx.doi.org/10.1021/np070489a] [PMID: 18298080]
[212]
Bhatti, H.A.; Tehseen, Y.; Maryam, K.; Uroos, M.; Siddiqui, B.S.; Hameed, A.; Iqbal, J. Identification of new potent inhibitor of aldose reductase from Ocimum basilicum. Bioorg. Chem., 2017, 75, 62-70.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.011] [PMID: 28917123]
[213]
Kim, C.S.; Kim, J.; Lee, Y.M.; Sohn, E.; Kim, J.S. Esculetin, a coumarin derivative, inhibits aldose reductase activity in vivo and cataractogenesis in galactose-fed rats. Biomol. Ther. (Seoul), 2016, 24(2), 178-183.
[http://dx.doi.org/10.4062/biomolther.2015.101] [PMID: 26902086]
[214]
Rao, A.R.; Veeresham, C.; Asres, K. In vitro and in vivo inhibitory activities of four Indian medicinal plant extracts and their major components on rat aldose reductase and generation of advanced glycation endproducts. Phytother. Res., 2013, 27(5), 753-760.
[http://dx.doi.org/10.1002/ptr.4786] [PMID: 22826152]
[215]
Zhang, H.; Xu, C.; Tian, Q.; Zhang, Y.; Zhang, G.; Guan, Y.; Tong, S.; Yan, J. Screening and characterization of aldose reductase inhibitors from Traditional Chinese medicine based on ultrafiltration-liquid chromatography mass spectrometry and in silico molecular docking. J. Ethnopharmacol., 2021, 264, 113282.
[http://dx.doi.org/10.1016/j.jep.2020.113282] [PMID: 32890716]
[216]
Veeresham, C.; Rama Rao, A.; Asres, K. Aldose reductase inhibitors of plant origin. Phytother. Res., 2014, 28(3), 317-333.
[http://dx.doi.org/10.1002/ptr.5000] [PMID: 23674239]
[217]
Tewari, D.; Samoilă, O.; Gocan, D.; Mocan, A.; Moldovan, C.; Devkota, H.P.; Atanasov, A.G.; Zengin, G.; Echeverría, J.; Vodnar, D.; Szabo, B.; Crişan, G. Medicinal plants and natural products used in cataract management. Front. Pharmacol., 2019, 10, 466.
[http://dx.doi.org/10.3389/fphar.2019.00466] [PMID: 31263410]
[218]
de la Fuente, J.Á.; Manzanaro, S. Aldose reductase inhibitors from natural sources. Nat. Prod. Rep., 2003, 20(2), 243-251.
[http://dx.doi.org/10.1039/b204709h] [PMID: 12735699]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy