Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Marine Natural Products as a Source of Drug Leads against Respiratory Viruses: Structural and Bioactive Diversity

Author(s): Tian-Tian Sun, Hua-Jie Zhu and Fei Cao*

Volume 28, Issue 18, 2021

Published on: 26 October, 2020

Page: [3568 - 3594] Pages: 27

DOI: 10.2174/0929867327666201026150105

Price: $65

Abstract

Respiratory viruses, including influenza virus, respiratory syncytial virus, coronavirus, etc., have seriously threatened the human health. For example, the outbreak of severe acute respiratory syndrome coronavirus, SARS, affected a large number of countries around the world. Marine organisms, which could produce secondary metabolites with novel structures and abundant biological activities, are an important source for seeking effective drugs against respiratory viruses. This report reviews marine natural products with activities against respiratory viruses, the emphasis of which was put on structures and antiviral activities of these natural products. This review has described 167 marinederived secondary metabolites with activities against respiratory viruses published from 1981 to 2019. Altogether 102 references are cited in this review article.

Keywords: Marine-derived fungi, marine-derived bacteria, polyketides, alkaloids, respiratory virus, activities against respiratory viruses.

[1]
Becker, K.; Hu, Y.; Biller-Andorno, N. Infectious diseases - a global challenge. Int. J. Med. Microbiol., 2006, 296(4-5), 179-185.
[http://dx.doi.org/10.1016/j.ijmm.2005.12.015] [PMID: 16446113]
[2]
Zumla, A.; Hui, D.S.; Al-Tawfiq, J.A.; Gautret, P.; McCloskey, B.; Memish, Z.A. Emerging respiratory tract infections. Lancet Infect. Dis., 2014, 14(10), 910-911.
[http://dx.doi.org/10.1016/S1473-3099(14)70899-0] [PMID: 25189348]
[3]
Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; Alvarado, M.; Anderson, H.R.; Anderson, L.M.; Andrews, K.G.; Atkinson, C.; Baddour, L.M.; Barker-Collo, S.; Bartels, D.H.; Bell, M.L.; Benjamin, E.J.; Bennett, D.; Bhalla, K.; Bikbov, B.; Bin Abdulhak, A.; Birbeck, G.; Blyth, F.; Bolliger, I.; Boufous, S.; Bucello, C.; Burch, M.; Burney, P.; Carapetis, J.; Chen, H.; Chou, D.; Chugh, S.S.; Coffeng, L.E.; Colan, S.D.; Colquhoun, S.; Colson, K.E.; Condon, J.; Connor, M.D.; Cooper, L.T.; Corriere, M.; Cortinovis, M.; de Vaccaro, K.C.; Couser, W.; Cowie, B.C.; Criqui, M.H.; Cross, M.; Dabhadkar, K.C.; Dahodwala, N.; De Leo, D.; Degenhardt, L.; Delossantos, A.; Denenberg, J.; Des Jarlais, D.C.; Dharmaratne, S.D.; Dorsey, E.R.; Driscoll, T.; Duber, H.; Ebel, B.; Erwin, P.J.; Espindola, P.; Ezzati, M.; Feigin, V.; Flaxman, A.D.; Forouzanfar, M.H.; Fowkes, F.G.; Franklin, R.; Fransen, M.; Freeman, M.K.; Gabriel, S.E.; Gakidou, E.; Gaspari, F.; Gillum, R.F.; Gonzalez-Medina, D.; Halasa, Y.A.; Haring, D.; Harrison, J.E.; Havmoeller, R.; Hay, R.J.; Hoen, B.; Hotez, P.J.; Hoy, D.; Jacobsen, K.H.; James, S.L.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Karthikeyan, G.; Kassebaum, N.; Keren, A.; Khoo, J.P.; Knowlton, L.M.; Kobusingye, O.; Koranteng, A.; Krishnamurthi, R.; Lipnick, M.; Lipshultz, S.E.; Ohno, S.L.; Mabweijano, J.; MacIntyre, M.F.; Mallinger, L.; March, L.; Marks, G.B.; Marks, R.; Matsumori, A.; Matzopoulos, R.; Mayosi, B.M.; McAnulty, J.H.; McDermott, M.M.; McGrath, J.; Mensah, G.A.; Merriman, T.R.; Michaud, C.; Miller, M.; Miller, T.R.; Mock, C.; Mocumbi, A.O.; Mokdad, A.A.; Moran, A.; Mulholland, K.; Nair, M.N.; Naldi, L.; Narayan, K.M.; Nasseri, K.; Norman, P.; O’Donnell, M.; Omer, S.B.; Ortblad, K.; Osborne, R.; Ozgediz, D.; Pahari, B.; Pandian, J.D.; Rivero, A.P.; Padilla, R.P.; Perez-Ruiz, F.; Perico, N.; Phillips, D.; Pierce, K.; Pope, C.A., III; Porrini, E.; Pourmalek, F.; Raju, M.; Ranganathan, D.; Rehm, J.T.; Rein, D.B.; Remuzzi, G.; Rivara, F.P.; Roberts, T.; De León, F.R.; Rosenfeld, L.C.; Rushton, L.; Sacco, R.L.; Salomon, J.A.; Sampson, U.; Sanman, E.; Schwebel, D.C.; Segui-Gomez, M.; Shepard, D.S.; Singh, D.; Singleton, J.; Sliwa, K.; Smith, E.; Steer, A.; Taylor, J.A.; Thomas, B.; Tleyjeh, I.M.; Towbin, J.A.; Truelsen, T.; Undurraga, E.A.; Venketasubramanian, N.; Vijayakumar, L.; Vos, T.; Wagner, G.R.; Wang, M.; Wang, W.; Watt, K.; Weinstock, M.A.; Weintraub, R.; Wilkinson, J.D.; Woolf, A.D.; Wulf, S.; Yeh, P.H.; Yip, P.; Zabetian, A.; Zheng, Z.J.; Lopez, A.D.; Murray, C.J.; AlMazroa, M.A.; Memish, Z.A. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859), 2095-2128.
[http://dx.doi.org/10.1016/S0140-6736(12)61728-0] [PMID: 23245604]
[4]
GBD 2017 Influenza Collaborators. Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: An analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med., 2019, 7(1), 69-89.
[http://dx.doi.org/10.1016/S2213-2600(18)30496-X] [PMID: 30553848]
[5]
Park, S.J.; Park, B.K.; Song, D.S.; Poo, H. Complete genome sequence of a mammalian species-infectious and -pathogenic H6N5 avian influenza virus without evidence of adaptation. J. Virol., 2012, 86(22), 12459-12460.
[http://dx.doi.org/10.1128/JVI.02301-12] [PMID: 23087119]
[6]
Taubenberger, J.K.; Kash, J.C. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe, 2010, 7(6), 440-451.
[http://dx.doi.org/10.1016/j.chom.2010.05.009] [PMID: 20542248]
[7]
Taubenberger, J.K.; Reid, A.H.; Krafft, A.E.; Bijwaard, K.E.; Fanning, T.G. Initial genetic characterization of the 1918 “Spanish” influenza virus. Science, 1997, 275(5307), 1793-1796.
[http://dx.doi.org/10.1126/science.275.5307.1793] [PMID: 9065404]
[8]
Uyeki, T.M.; Zane, S.B.; Bodnar, U.R.; Fielding, K.L.; Buxton, J.A.; Miller, J.M.; Beller, M.; Butler, J.C.; Fukuda, K.; Maloney, S.A.; Cetron, M.S. Alaska/Yukon Territory Respiratory Outbreak Investigation Team. Large summertime influenza A outbreak among tourists in Alaska and the Yukon Territory. Clin. Infect. Dis., 2003, 36(9), 1095-1102.
[http://dx.doi.org/10.1086/374053] [PMID: 12715302]
[9]
Fraser, C.; Donnelly, C.A.; Cauchemez, S.; Hanage, W.P.; Van Kerkhove, M.D.; Hollingsworth, T.D.; Griffin, J.; Baggaley, R.F.; Jenkins, H.E.; Lyons, E.J.; Jombart, T.; Hinsley, W.R.; Grassly, N.C.; Balloux, F.; Ghani, A.C.; Ferguson, N.M.; Rambaut, A.; Pybus, O.G.; Lopez-Gatell, H.; Alpuche-Aranda, C.M.; Chapela, I.B.; Zavala, E.P.; Guevara, D.M.; Checchi, F.; Garcia, E.; Hugonnet, S.; Roth, C. WHO Rapid Pandemic Assessment Collaboration. Pandemic potential of a strain of influenza A (H1N1): Early findings. Science, 2009, 324(5934), 1557-1561.
[http://dx.doi.org/10.1126/science.1176062] [PMID: 19433588]
[10]
Zhao, L.; Peng, Y.; Zhou, K.; Cao, M.; Wang, J.; Wang, X.; Jiang, T.; Deng, T. New insights into the nonconserved noncoding region of the subtype-determinant hemagglutinin and neuraminidase segments of influenza A viruses. J. Virol., 2014, 88(19), 11493-11503.
[http://dx.doi.org/10.1128/JVI.01337-14] [PMID: 25056889]
[11]
Hay, A.J.; Wolstenholme, A.J.; Skehel, J.J.; Smith, M.H. The molecular basis of the specific anti-influenza action of amantadine. EMBO J., 1985, 4(11), 3021-3024.
[http://dx.doi.org/10.1002/j.1460-2075.1985.tb04038.x] [PMID: 4065098]
[12]
Bouvier, N.M.; Palese, P. The biology of influenza viruses. Vaccine, 2008, 26(Suppl. 4), D49-D53.
[http://dx.doi.org/10.1016/j.vaccine.2008.07.039] [PMID: 19230160]
[13]
Takashita, E.; Daniels, R.S.; Fujisaki, S.; Gregory, V.; Gubareva, L.V.; Huang, W.; Hurt, A.C.; Lackenby, A.; Nguyen, H.T.; Pereyaslov, D.; Roe, M.; Samaan, M.; Subbarao, K.; Tse, H.; Wang, D.; Yen, H.L.; Zhang, W.; Meijer, A. Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2017-2018. Antiviral Res., 2020, 175, 104718.
[http://dx.doi.org/10.1016/j.antiviral.2020.104718] [PMID: 32004620]
[14]
Martinelli, M.; Frati, E.R.; Zappa, A.; Ebranati, E.; Bianchi, S.; Pariani, E.; Amendola, A.; Zehender, G.; Tanzi, E. Phylogeny and population dynamics of respiratory syncytial virus (Rsv) A and B. Virus Res., 2014, 189, 293-302.
[http://dx.doi.org/10.1016/j.virusres.2014.06.006] [PMID: 24954788]
[15]
Hu, J.; Robinson, J.L. Treatment of respiratory syncytial virus with palivizumab: A systematic review. World J. Pediatr., 2010, 6(4), 296-300.
[http://dx.doi.org/10.1007/s12519-010-0230-z] [PMID: 21080142]
[16]
Piedra, P.A. Long term healthcare costs associated with respiratory syncytial virus infection in children: The domino effect. J. Infect. Dis., 2020, 221(8), 1205-1207.
[http://dx.doi.org/10.1093/infdis/jiz161] [PMID: 30982897]
[17]
Kneyber, M.C.J.; Moll, H.A.; de Groot, R. Treatment and prevention of respiratory syncytial virus infection. Eur. J. Pediatr., 2000, 159(6), 399-411.
[http://dx.doi.org/10.1007/s004310051296] [PMID: 10867843]
[18]
Simões, E.A.F.; Bont, L.; Manzoni, P.; Fauroux, B.; Paes, B.; Figueras-Aloy, J.; Checchia, P.A.; Carbonell-Estrany, X. Past, present and future approaches to the prevention and treatment of respiratory syncytial virus infection in children. Infect. Dis. Ther., 2018, 7(1), 87-120.
[http://dx.doi.org/10.1007/s40121-018-0188-z] [PMID: 29470837]
[19]
Bonfanti, J.F.; Meyer, C.; Doublet, F.; Fortin, J.; Muller, P.; Queguiner, L.; Gevers, T.; Janssens, P.; Szel, H.; Willebrords, R.; Timmerman, P.; Wuyts, K.; van Remoortere, P.; Janssens, F.; Wigerinck, P.; Andries, K. Selection of a respiratory syncytial virus fusion inhibitor clinical candidate. 2. Discovery of a morpholinopropylaminobenzimidazole derivative (TMC353121). J. Med. Chem., 2008, 51(4), 875-896.
[http://dx.doi.org/10.1021/jm701284j] [PMID: 18254606]
[20]
Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[21]
Simmons, G.; Zmora, P.; Gierer, S.; Heurich, A.; Pöhlmann, S. Proteolytic activation of the SARS-coronavirus spike protein: Cutting enzymes at the cutting edge of antiviral research. Antiviral Res., 2013, 100(3), 605-614.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.028] [PMID: 24121034]
[22]
Zhou, P.; Fan, H.; Lan, T.; Yang, X.L.; Shi, W.F.; Zhang, W.; Zhu, Y.; Zhang, Y.W.; Xie, Q.M.; Mani, S.; Zheng, X.S.; Li, B.; Li, J.M.; Guo, H.; Pei, G.Q.; An, X.P.; Chen, J.W.; Zhou, L.; Mai, K.J.; Wu, Z.X.; Li, D.; Anderson, D.E.; Zhang, L.B.; Li, S.Y.; Mi, Z.Q.; He, T.T.; Cong, F.; Guo, P.J.; Huang, R.; Luo, Y.; Liu, X.L.; Chen, J.; Huang, Y.; Sun, Q.; Zhang, X.L.; Wang, Y.Y.; Xing, S.Z.; Chen, Y.S.; Sun, Y.; Li, J.; Daszak, P.; Wang, L.F.; Shi, Z.L.; Tong, Y.G.; Ma, J.Y. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature, 2018, 556(7700), 255-258.
[http://dx.doi.org/10.1038/s41586-018-0010-9] [PMID: 29618817]
[23]
Puthucheary, J.; Lim, D.; Chan, I.; Chay, O.M.; Choo, P. Severe acute respiratory syndrome in Singapore. Arch. Dis. Child., 2004, 89(6), 551-556.
[http://dx.doi.org/10.1136/adc.2003.039420] [PMID: 15155402]
[24]
de Groot, R.J.; Baker, S.C.; Baric, R.S.; Brown, C.S.; Drosten, C.; Enjuanes, L.; Fouchier, R.A.; Galiano, M.; Gorbalenya, A.E.; Memish, Z.A.; Perlman, S.; Poon, L.L.; Snijder, E.J.; Stephens, G.M.; Woo, P.C.; Zaki, A.M.; Zambon, M.; Ziebuhr, J. Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. J. Virol., 2013, 87(14), 7790-7792.
[http://dx.doi.org/10.1128/JVI.01244-13] [PMID: 23678167]
[25]
Woo, P.C.Y.; Lau, S.K.P.; Lam, C.S.F.; Lau, C.C.Y.; Tsang, A.K.L.; Lau, J.H.N.; Bai, R.; Teng, J.L.L.; Tsang, C.C.C.; Wang, M.; Zheng, B.J.; Chan, K.H.; Yuen, K.Y. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol., 2012, 86(7), 3995-4008.
[http://dx.doi.org/10.1128/JVI.06540-11] [PMID: 22278237]
[26]
Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol., 2020, 92(4), 418-423.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[27]
Jobran, S.; Kattan, R.; Shamaa, J.; Marzouqa, H.; Hindiyeh, M. Adenovirus respiratory tract infections in infants: A retrospective chart-review study. Lancet, 2018, 391(Suppl. 2), S43.
[http://dx.doi.org/10.1016/S0140-6736(18)30409-4] [PMID: 29553443]
[28]
Hamelin, M.E.; Abed, Y.; Boivin, G. Human metapneumovirus: A new player among respiratory viruses. Clin. Infect. Dis., 2004, 38(7), 983-990.
[http://dx.doi.org/10.1086/382536] [PMID: 15034830]
[29]
Ruuskanen, O.; Lahti, E.; Jennings, L.C.; Murdoch, D.R. Viral pneumonia. Lancet, 2011, 377(9773), 1264-1275.
[http://dx.doi.org/10.1016/S0140-6736(10)61459-6] [PMID: 21435708]
[30]
Li, Y.; Reeves, R.M.; Wang, X.; Bassat, Q.; Brooks, W.A.; Cohen, C.; Moore, D.P.; Nunes, M.; Rath, B.; Campbell, H.; Nair, H. RSV Global Epidemiology Network; RESCEU investigators. Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: A systematic analysis. Lancet Glob. Health, 2019, 7(8), e1031-e1045.
[http://dx.doi.org/10.1016/S2214-109X(19)30264-5] [PMID: 31303294]
[31]
Wohl, S.; Metsky, H.C.; Schaffner, S.F.; Piantadosi, A.; Burns, M.; Lewnard, J.A.; Chak, B.; Krasilnikova, L.A.; Siddle, K.J.; Matranga, C.B.; Bankamp, B.; Hennigan, S.; Sabina, B.; Byrne, E.H.; McNall, R.J.; Shah, R.R.; Qu, J.; Park, D.J.; Gharib, S.; Fitzgerald, S.; Barreira, P.; Fleming, S.; Lett, S.; Rota, P.A.; Madoff, L.C.; Yozwiak, N.L.; MacInnis, B.L.; Smole, S.; Grad, Y.H.; Sabeti, P.C. Combining genomics and epidemiology to track mumps virus transmission in the United States. PLoS Biol., 2020, 18(2), e3000611.
[http://dx.doi.org/10.1371/journal.pbio.3000611] [PMID: 32045407]
[32]
Cao, F.; Meng, Z.H.; Wang, P.; Luo, D.Q.; Zhu, H.J. Dipleosporalones A and B, dimeric azaphilones from a marine-derived Pleosporales sp. fungus. J. Nat. Prod., 2020, 83(4), 1283-1287.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00132] [PMID: 32243144]
[33]
Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.F.; Moustafa, M.S.; Abd El-Wahed, A.; Al-Mousawi, S.M.; Musharraf, S.G.; Chang, F.R.; Iwasaki, A.; Suenaga, K.; Alajlani, M.; Göransson, U.; El-Seedi, H.R. Marine natural products: A source of novel anticancer drugs. Mar. Drugs, 2019, 17(9), 491.
[http://dx.doi.org/10.3390/md17090491] [PMID: 31443597]
[34]
Gogineni, V.; Schinazi, R.F.; Hamann, M.T. Role of marine natural products in the genesis of antiviral agents. Chem. Rev., 2015, 115(18), 9655-9706.
[http://dx.doi.org/10.1021/cr4006318] [PMID: 26317854]
[35]
Moghadamtousi, S.Z.; Nikzad, S.; Kadir, H.A.; Abubakar, S.; Zandi, K. Potential antiviral agents from marine fungi: An overview. Mar. Drugs, 2015, 13(7), 4520-4538.
[http://dx.doi.org/10.3390/md13074520] [PMID: 26204947]
[36]
Whitley, R.; Alford, C.; Hess, F.; Buchanan, R. Vidarabine: A preliminary review of its pharmacological properties and therapeutic use. Drugs, 1980, 20(4), 267-282.
[http://dx.doi.org/10.2165/00003495-198020040-00002] [PMID: 6998693]
[37]
Peng, J.; Jiao, J.; Li, J.; Wang, W.; Gu, Q.; Zhu, T.; Li, D. Pyronepolyene C-glucosides with NF-κB inhibitory and anti-influenza A viral (H1N1) activities from the sponge-associated fungus Epicoccum sp. JJY40. Bioorg. Med. Chem. Lett., 2012, 22(9), 3188-3190.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.044] [PMID: 22487178]
[38]
Tian, Y.Q.; Lin, X.P.; Wang, Z.; Zhou, X.F.; Qin, X.C.; Kaliyaperumal, K.; Zhang, T.Y.; Tu, Z.C.; Liu, Y. Asteltoxins with antiviral activities from the marine sponge-derived fungus Aspergillus sp. SCSIO XWS02F40. Molecules, 2015, 21(1), E34.
[http://dx.doi.org/10.3390/molecules21010034] [PMID: 26712735]
[39]
Liu, F.A.; Lin, X.; Zhou, X.; Chen, M.; Huang, X.; Yang, B.; Tao, H. Xanthones and quinolones derivatives produced by the deep-sea-derived fungus Penicillium sp. SCSIO Ind16F01. Molecules, 2017, 22(12), 1999.
[http://dx.doi.org/10.3390/molecules22121999] [PMID: 29215585]
[40]
Yang, S.Q.; Li, X.M.; Li, X.; Li, H.L.; Meng, L.H.; Wang, B.G. New citrinin analogues produced by coculture of the marine algal-derived endophytic fungal strains Aspergillus sydowii EN-534 and Penicillium citrinum EN-535. Phytochem. Lett., 2018, 25, 191-195.
[http://dx.doi.org/10.1016/j.phytol.2018.04.023]
[41]
Kang, H.H.; Zhang, H.B.; Zhong, M.J.; Ma, L.Y.; Liu, D.S.; Liu, W.Z.; Ren, H. Potential antiviral xanthones from a coastal saline soil fungus Aspergillus iizukae. Mar. Drugs, 2018, 16(11), 449.
[http://dx.doi.org/10.3390/md16110449] [PMID: 30445748]
[42]
Kong, F.D.; Ma, Q.Y.; Huang, S.Z.; Wang, P.; Wang, J.F.; Zhou, L.M.; Yuan, J.Z.; Dai, H.F.; Zhao, Y.X. Chrodrimanins K–N and related meroterpenoids from the fungus Penicillium sp. SCS-KFD09 isolated from a marine worm, Sipunculus nudus. J. Nat. Prod., 2017, 80(4), 1039-1047.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01061] [PMID: 28212032]
[43]
Niu, S.; Si, L.; Liu, D.; Zhou, A.; Zhang, Z.; Shao, Z.; Wang, S.; Zhang, L.; Zhou, D.; Lin, W. Spiromastilactones: A new class of influenza virus inhibitors from deep-sea fungus. Eur. J. Med. Chem., 2016, 108, 229-244.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.037] [PMID: 26686929]
[44]
Pang, X.; Lin, X.; Wang, J.; Liang, R.; Tian, Y.; Salendra, L.; Luo, X.; Zhou, X.; Yang, B.; Tu, Z.; Liu, Y. Three new highly oxygenated sterols and one new dihydroisocoumarin from the marine sponge-derived fungus Cladosporium sp. SCSIO41007. Steroids, 2018, 129, 41-46.
[http://dx.doi.org/10.1016/j.steroids.2017.12.001] [PMID: 29223616]
[45]
Fang, W.; Lin, X.; Zhou, X.; Wan, J.; Lu, X.; Yang, B.; Ai, W.; Lin, J.; Zhang, T.; Tu, Z.; Liu, Y. Cytotoxic and antiviral nitrobenzoyl sesquiterpenoids from the marine-derived fungus Aspergillus ochraceus Jcma1F17. MedChemComm, 2014, 5(6), 701-705.
[http://dx.doi.org/10.1039/C3MD00371J]
[46]
Minagawa, K.; Kouzuki, S.; Yoshimoto, J.; Kawamura, Y.; Tani, H.; Iwata, T.; Terui, Y.; Nakai, H.; Yagi, S.; Hattori, N.; Fujiwara, T.; Kamigauchi, T. Stachyflin and acetylstachyflin, novel anti-influenza A virus substances, produced by Stachybotrys sp. RF-7260. I. Isolation, structure elucidation and biological activities. J. Antibiot. (Tokyo), 2002, 55(2), 155-164.
[http://dx.doi.org/10.7164/antibiotics.55.155] [PMID: 12002997]
[47]
Chen, X.; Si, L.; Liu, D.; Proksch, P.; Zhang, L.; Zhou, D.; Lin, W. Neoechinulin B and its analogues as potential entry inhibitors of influenza viruses, targeting viral hemagglutinin. Eur. J. Med. Chem., 2015, 93, 182-195.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.006] [PMID: 25681711]
[48]
He, F.; Bao, J.; Zhang, X.Y.; Tu, Z.C.; Shi, Y.M.; Qi, S.H. Asperterrestide A, a cytotoxic cyclic tetrapeptide from the marine-derived fungus Aspergillus terreus SCSGAF0162. J. Nat. Prod., 2013, 76(6), 1182-1186.
[http://dx.doi.org/10.1021/np300897v] [PMID: 23806112]
[49]
Wang, J.; Chen, F.; Liu, Y.; Liu, Y.; Li, K.; Yang, X.; Liu, S.; Zhou, X.; Yang, J. Spirostaphylotrichin X from a marine-derived fungus as an anti-influenza agent targeting RNA polymerase PB2. J. Nat. Prod., 2018, 81(12), 2722-2730.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00656] [PMID: 30516983]
[50]
Wu, G.; Sun, X.; Yu, G.; Wang, W.; Zhu, T.; Gu, Q.; Li, D. Cladosins A-E, hybrid polyketides from a deep-sea-derived fungus, Cladosporium sphaerospermum. J. Nat. Prod., 2014, 77(2), 270-275.
[http://dx.doi.org/10.1021/np400833x] [PMID: 24499327]
[51]
Peng, J.; Zhang, X.; Du, L.; Wang, W.; Zhu, T.; Gu, Q.; Li, D. Sorbicatechols A and B, antiviral sorbicillinoids from the marine-derived fungus Penicillium chrysogenum PJX-17. J. Nat. Prod., 2014, 77(2), 424-428.
[http://dx.doi.org/10.1021/np400977e] [PMID: 24495078]
[52]
Wang, J.F.; Lin, X.P.; Qin, C.; Liao, S.R.; Wan, J.T.; Zhang, T.Y.; Liu, J.; Fredimoses, M.; Chen, H.; Yang, B.; Zhou, X.F.; Yang, X.W.; Tu, Z.C.; Liu, Y.H. Antimicrobial and antiviral sesquiterpenoids from sponge-associated fungus, Aspergillus sydowii ZSDS1-F6. J. Antibiot. (Tokyo), 2014, 67(8), 581-583.
[http://dx.doi.org/10.1038/ja.2014.39] [PMID: 24736857]
[53]
Zhu, T.; Chen, Z.; Liu, P.; Wang, Y.; Xin, Z.; Zhu, W. New rubrolides from the marine-derived fungus Aspergillus terreus OUCMDZ-1925. J. Antibiot. (Tokyo), 2014, 67(4), 315-318.
[http://dx.doi.org/10.1038/ja.2013.135] [PMID: 24326339]
[54]
Ma, X.; Zhu, T.; Gu, Q.; Xi, R.; Wang, W.; Li, D. Structures and antiviral activities of butyrolactone derivatives isolated from Aspergillus terreus MXH-23. J. Ocean Univ. China, 2014, 13(6), 1067-1070.
[http://dx.doi.org/10.1007/s11802-014-2324-z]
[55]
Zhao, Y.; Si, L.; Liu, D.; Proksch, P.; Zhou, D.; Lin, W. Truncateols A–N, new isoprenylated cyclohexanols from the sponge-associated fungus Truncatella angustata with anti-H1N1 virus activities. Tetrahedron, 2015, 71(18), 2708-2718.
[http://dx.doi.org/10.1016/j.tet.2015.03.033]
[56]
Zhao, Y.; Liu, D.; Proksch, P.; Zhou, D.; Lin, W. Truncateols O-V, further isoprenylated cyclohexanols from the sponge-associated fungus Truncatella angustata with antiviral activities. Phytochemistry, 2018, 155, 61-68.
[http://dx.doi.org/10.1016/j.phytochem.2018.07.017] [PMID: 30077121]
[57]
Jia, Q.; Du, Y.; Wang, C.; Wang, Y.; Zhu, T.; Zhu, W. Azaphilones from the marine sponge-derived fungus Penicillium sclerotiorum OUCMDZ-3839. Mar. Drugs, 2019, 17(5), 260.
[http://dx.doi.org/10.3390/md17050260] [PMID: 31052279]
[58]
Zhang, G.; Sun, S.; Zhu, T.; Lin, Z.; Gu, J.; Li, D.; Gu, Q. Antiviral isoindolone derivatives from an endophytic fungus Emericella sp. associated with Aegiceras corniculatum. Phytochemistry, 2011, 72(11-12), 1436-1442.
[http://dx.doi.org/10.1016/j.phytochem.2011.04.014] [PMID: 21601895]
[59]
Peng, J.; Lin, T.; Wang, W.; Xin, Z.; Zhu, T.; Gu, Q.; Li, D. Antiviral alkaloids produced by the mangrove-derived fungus Cladosporium sp. PJX-41. J. Nat. Prod., 2013, 76(6), 1133-1140.
[http://dx.doi.org/10.1021/np400200k] [PMID: 23758051]
[60]
Yu, G.; Zhou, G.; Zhu, M.; Wang, W.; Zhu, T.; Gu, Q.; Li, D. Neosartoryadins A and B, fumiquinazoline alkaloids from a mangrove-derived fungus Neosartorya udagawae HDN13-313. Org. Lett., 2016, 18(2), 244-247.
[http://dx.doi.org/10.1021/acs.orglett.5b02964] [PMID: 26713369]
[61]
Sun, J.F.; Lin, X.; Zhou, X.F.; Wan, J.; Zhang, T.; Yang, B.; Yang, X.W.; Tu, Z.; Liu, Y. Pestalols A-E, new alkenyl phenol and benzaldehyde derivatives from endophytic fungus Pestalotiopsis sp. AcBC2 isolated from the Chinese mangrove plant Aegiceras corniculatum. J. Antibiot. (Tokyo), 2014, 67(6), 451-457.
[http://dx.doi.org/10.1038/ja.2014.24] [PMID: 24690916]
[62]
Gao, H.; Guo, W.; Wang, Q.; Zhang, L.; Zhu, M.; Zhu, T.; Gu, Q.; Wang, W.; Li, D. Aspulvinones from a mangrove rhizosphere soil-derived fungus Aspergillus terreus Gwq-48 with anti-influenza A viral (H1N1) activity. Bioorg. Med. Chem. Lett., 2013, 23(6), 1776-1778.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.051] [PMID: 23411074]
[63]
Luo, X.; Yang, J.; Chen, F.; Lin, X.; Chen, C.; Zhou, X.; Liu, S.; Liu, Y. Structurally diverse polyketides from the mangrove-derived fungus Diaporthe sp. SCSIO 41011 with their anti-influenza A virus activities. Front Chem., 2018, 6, 282.
[http://dx.doi.org/10.3389/fchem.2018.00282] [PMID: 30050898]
[64]
Yang, A.; Si, L.; Shi, Z.; Tian, L.; Liu, D.; Zhou, D.; Proksch, P.; Lin, W. Nitrosporeusines A and B, unprecedented thioester-bearing alkaloids from the Arctic Streptomyces nitrosporeus. Org. Lett., 2013, 15(20), 5366-5369.
[http://dx.doi.org/10.1021/ol4026809] [PMID: 24090410]
[65]
Wang, P.; Xi, L.; Liu, P.; Wang, Y.; Wang, W.; Huang, Y.; Zhu, W. Diketopiperazine derivatives from the marine-derived actinomycete Streptomyces sp. FXJ7.328. Mar. Drugs, 2013, 11(4), 1035-1049.
[http://dx.doi.org/10.3390/md11041035] [PMID: 23538868]
[66]
Che, Q.; Qiao, L.; Han, X.; Liu, Y.; Wang, W.; Gu, Q.; Zhu, T.; Li, D. Anthranosides A–C, anthranilate derivatives from a sponge-derived Streptomyces sp. CMN-62. Org. Lett., 2018, 20(17), 5466-5469.
[http://dx.doi.org/10.1021/acs.orglett.8b02382] [PMID: 30106304]
[67]
Liu, H.; Chen, Z.; Zhu, G.; Wang, L.; Du, Y.; Wang, Y.; Zhu, W. Phenolic polyketides from the marine alga-derived Streptomyces sp. OUCMDZ-3434. Tetrahedron, 2017, 73(36), 5451-5455.
[http://dx.doi.org/10.1016/j.tet.2017.07.052]
[68]
Li, W.; Jiang, Z.; Shen, L.; Pedpradab, P.; Bruhn, T.; Wu, J.; Bringmann, G. Antiviral limonoids including khayanolides from the Trang mangrove plant Xylocarpus moluccensis. J. Nat. Prod., 2015, 78(7), 1570-1578.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00151] [PMID: 26114936]
[69]
Ren, J.L.; Zou, X.P.; Li, W.S.; Shen, L.; Wu, J. Wu. J. Limonoids containing a C1–O–C29 moiety: Isolation, structural modification, and antiviral activity. Mar. Drugs, 2018, 16(11), 434.
[http://dx.doi.org/10.3390/md16110434] [PMID: 30400349]
[70]
Gong, K.K.; Li, P.L.; Qiao, D.; Zhang, X.W.; Chu, M.J.; Qin, G.F.; Tang, X.L.; Li, G.Q. Cytotoxic and antiviral triterpenoids from the mangrove plant Sonneratia paracaseolaris. Molecules, 2017, 22(8), 1319.
[http://dx.doi.org/10.3390/molecules22081319] [PMID: 28792469]
[71]
Wright, A.E.; Rueth, S.A.; Cross, S.S. An antiviral sesquiterpene hydroquinone from the marine sponge Strongylophora hartmani. J. Nat. Prod., 1991, 54(4), 1108-1111.
[http://dx.doi.org/10.1021/np50076a032] [PMID: 1791476]
[72]
Koehn, F.E.; Gunasekera, M.; Cross, S.S. New antiviral sterol disulfate ortho esters from the marine sponge Petrosia weinbergi. J. Org. Chem., 1991, 56(3), 1322-1325.
[http://dx.doi.org/10.1021/jo00003a080]
[73]
Gong, K.K.; Tang, X.L.; Liu, Y.S.; Li, P.L.; Li, G.Q. Imidazole alkaloids from the South China sea sponge Pericharax heteroraphis and their cytotoxic and antiviral activities. Molecules, 2016, 21(2), 150.
[http://dx.doi.org/10.3390/molecules21020150] [PMID: 26821008]
[74]
Cheng, W.; Ren, J.; Huang, Q.; Long, H.; Jin, H.; Zhang, L.; Liu, H.; van Ofwegen, L.; Lin, W. Pregnane steroids from a gorgonian coral Subergorgia suberosa with anti-flu virus effects. Steroids, 2016, 108, 99-104.
[http://dx.doi.org/10.1016/j.steroids.2016.02.003] [PMID: 26853156]
[75]
Ahmed, S.; Ibrahim, A.; Arafa, A.S. Anti-H5N1 virus metabolites from the Red Sea soft coral, Sinularia candidula. Tetrahedron Lett., 2013, 54(19), 2377-2381.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.088]
[76]
Ivanova, V.; Rouseva, R.; Kolarova, M.; Serkedjieva, J.; Rachev, R.; Manolova, N. Isolation of a polysaccharide with antiviral effect from Ulva lactuca. Prep. Biochem., 1994, 24(2), 83-97.
[http://dx.doi.org/10.1080/10826069408010084] [PMID: 8072958]
[77]
Iwashima, M.; Mori, J.; Ting, X.; Matsunaga, T.; Hayashi, K.; Shinoda, D.; Saito, H.; Sankawa, U.; Hayashi, T. Antioxidant and antiviral activities of plastoquinones from the brown alga Sargassum micracanthum , and a new chromene derivative converted from the plastoquinones. Biol. Pharm. Bull., 2005, 28(2), 374-377.
[http://dx.doi.org/10.1248/bpb.28.374] [PMID: 15684504]
[78]
Zhang, J.; Li, B.; Qin, Y.; Karthik, L.; Zhu, G.; Hou, C.; Jiang, L.; Liu, M.; Ye, X.; Liu, M.; Hsiang, T.; Dai, H.; Zhang, L.; Liu, X. A new abyssomicin polyketide with anti-influenza A virus activity from a marine-derived Verrucosispora sp. MS100137. Appl. Microbiol. Biotechnol., 2020, 104(4), 1533-1543.
[http://dx.doi.org/10.1007/s00253-019-10217-2] [PMID: 31894364]
[79]
Mohammed, M.M.D.; Hamdy, A.H.A.; El-Fiky, N.M.; Mettwally, W.S.; El-Beih, A.A.; Kobayashi, N. Anti-influenza A virus activity of a new dihydrochalcone diglycoside isolated from the Egyptian seagrass Thalassodendron ciliatum (Forsk.) den Hartog. Nat. Prod. Res., 2014, 28(6), 377-382.
[http://dx.doi.org/10.1080/14786419.2013.869694] [PMID: 24443884]
[80]
Zheng, C.J.; Shao, C.L.; Guo, Z.Y.; Chen, J.F.; Deng, D.S.; Yang, K.L.; Chen, Y.Y.; Fu, X.M.; She, Z.G.; Lin, Y.C.; Wang, C.Y. Bioactive hydroanthraquinones and anthraquinone dimers from a soft coral-derived Alternaria sp. fungus. J. Nat. Prod., 2012, 75(2), 189-197.
[http://dx.doi.org/10.1021/np200766d] [PMID: 22276679]
[81]
Yu, M.L.; Guan, F.F.; Cao, F.; Jia, Y.L.; Wang, C.Y. A new antiviral pregnane from a gorgonian-derived Cladosporium sp. fungus. Nat. Prod. Res., 2018, 32(11), 1260-1266.
[http://dx.doi.org/10.1080/14786419.2017.1342086] [PMID: 28641456]
[82]
Liao, H.X.; Sun, D.W.; Zheng, C.J.; Wang, C.Y. A new hexahydrobenzopyran derivative from the gorgonian-derived Fungus Eutypella sp. Nat. Prod. Res., 2017, 31(14), 1640-1646.
[http://dx.doi.org/10.1080/14786419.2017.1285301] [PMID: 28278631]
[83]
Jia, Y.L.; Guan, F.F.; Ma, J.; Wang, C.Y.; Shao, C.L. Pestalotiolide A, a new antiviral phthalide derivative from a soft coral-derived fungus Pestalotiopsis sp. Nat. Prod. Sci., 2015, 21(4), 227-230.
[http://dx.doi.org/10.20307/nps.2015.21.4.227]
[84]
Chen, M.; Shao, C.L.; Meng, H.; She, Z.G.; Wang, C.Y. Anti-respiratory syncytial virus prenylated dihydroquinolone derivatives from the gorgonian-derived fungus Aspergillus sp. XS-20090B15. J. Nat. Prod., 2014, 77(12), 2720-2724.
[http://dx.doi.org/10.1021/np500650t] [PMID: 25420212]
[85]
Hermawan, I.; Higa, M.; Hutabarat, P.U.B.; Fujiwara, T.; Akiyama, K.; Kanamoto, A.; Haruyama, T.; Kobayashi, N.; Higashi, M.; Suda, S.; Tanaka, J. Kabirimine, a new cyclic imine from an Okinawan dinoflagellate. Mar. Drugs, 2019, 17(6), 353.
[http://dx.doi.org/10.3390/md17060353] [PMID: 31200525]
[86]
Cao, F.; Shao, C.L.; Chen, M.; Zhang, M.Q.; Xu, K.X.; Meng, H.; Wang, C.Y. Antiviral C-25 epimers of 26-acetoxy steroids from the South China Sea gorgonian Echinogorgia rebekka. J. Nat. Prod., 2014, 77(6), 1488-1493.
[http://dx.doi.org/10.1021/np500252q] [PMID: 24882250]
[87]
Roccatagliata, A.J.; Maier, M.S.; Seldes, A.M.; Pujol, C.A.; Damonte, E.B. Antiviral sulfated steroids from the ophiuroid Ophioplocus januarii. J. Nat. Prod., 1996, 59(9), 887-889.
[http://dx.doi.org/10.1021/np960171a] [PMID: 8864241]
[88]
Sakemi, S.; Ichiba, T.; Kohmoto, S.; Saucy, G.; Higa, T. Isolation and structure elucidation of onnamide A, a new bioactive metabolite of a marine sponge, Theonella sp. J. Am. Chem. Soc., 1988, 110(14), 4851-4853.
[http://dx.doi.org/10.1021/ja00222a068]
[89]
Perry, N.B.; Blunt, J.W.; Munro, M.H.G.; Pannell, L.K. Mycalamide A, an antiviral compound from a New Zealand sponge of the genus Mycale. J. Am. Chem. Soc., 1988, 110(14), 4850-4851.
[http://dx.doi.org/10.1021/ja00222a067]
[90]
Tsujii, S.; Rinehart, K.L.; Gunasekera, S.P.; Kashman, Y.; Cross, S.S.; Lui, M.S.; Pomponi, S.A.; Diaz, M.C. Topsentin, bromotopsentin, and dihydrodeoxybromotopsentin: Antiviral and antitumor bis (indolyl) imidazoles from Caribbean deep-sea sponges of the family Halichondriidae. Structural and synthetic studies. J. Org. Chem., 1988, 53(23), 5446-5453.
[http://dx.doi.org/10.1021/jo00258a009]
[91]
Gunawardana, G.P.; Kohmoto, S.; Gunasekera, S.P.; McConnell, O.J.; Koehn, F.E. Dercitine, a new biologically active acridine alkaloid from a deep water marine sponge, Dercitus sp. J. Am. Chem. Soc., 1988, 110(14), 4856-4858.
[http://dx.doi.org/10.1021/ja00222a071]
[92]
Kashman, Y.; Hirsch, S.; Koehn, F.; Cross, S. Reiswigins A and B, novel antiviral diterpenes from a deepwater sponge. Tetrahedron Lett., 1987, 28(45), 5461-5464.
[http://dx.doi.org/10.1016/S0040-4039(00)96754-6] [PMID: 32287434]
[93]
Lira, S.P.; Seleghim, M.H.R.; Williams, D.E.; Marion, F.; Hamill, P.; Jean, F.; Andersen, R.J.; Hajdud, E.; Berlinck, R.G.S. A SARS-coronovirus 3CL protease inhibitor isolated from the marine sponge Axinella cf. corrugata: Structure elucidation and synthesis. J. Braz. Chem. Soc., 2007, 18(2), 440-443.
[http://dx.doi.org/10.1590/S0103-50532007000200030]
[94]
Kim, S.H.; Ha, T.K.Q.; Oh, W.K.; Shin, J.; Oh, D.C. Antiviral indolosesquiterpenoid xiamycins C-E from a halophilic actinomycete. J. Nat. Prod., 2016, 79(1), 51-58.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00634] [PMID: 26698879]
[95]
Coval, S.J.; Cross, S.; Bernardinelli, G.; Jefford, C.W. Brianthein V, a new cytotoxic and antiviral diterpene isolated from Briareum asbestinum. J. Nat. Prod., 1988, 51(5), 981-984.
[http://dx.doi.org/10.1021/np50059a031]
[96]
Koehn, F.E.; Sarath, G.P.; Neil, D.N.; Cross, S.S. Halitunal, an unusual diterpene aldehyde from the marine alga Halimeda tuna. Tetrahedron Lett., 1991, 32(2), 169-172.
[http://dx.doi.org/10.1016/0040-4039(91)80845-W] [PMID: 32287435]
[97]
Park, S.H.; Song, J.H.; Kim, T.; Shin, W.S.; Park, G.M.; Lee, S.; Kim, Y.J.; Choi, P.; Kim, H.; Kim, H.S.; Kwon, D.H.; Choi, H.J.; Ham, J. Anti-human rhinoviral activity of polybromocatechol compounds isolated from the rhodophyta, Neorhodomela aculeata. Mar. Drugs, 2012, 10(10), 2222-2233.
[http://dx.doi.org/10.3390/md10102222] [PMID: 23170079]
[98]
Mendes, G.; Soares, A.R.; Sigiliano, L.; Machado, F.; Kaiser, C.; Romeiro, N.; Gestinari, L.; Santos, N.; Romanos, M.T.V. In vitro anti-HMPV activity of meroditerpenoids from marine alga Stypopodium zonale (Dictyotales). Molecules, 2011, 16(10), 8437-8450.
[http://dx.doi.org/10.3390/molecules16108437] [PMID: 21986522]
[99]
Rinehart, K.L., Jr; Kobayashi, J.; Harbour, G.C.; Gilmore, J.; Mascal, M.; Holt, T.G.; Shield, L.S.; Lafargue, F. Eudistomins A-Q, β-carbolines from the antiviral Caribbean tunicate Eudistoma olivaceum. J. Am. Chem. Soc., 1987, 109(11), 3378-3387.
[http://dx.doi.org/10.1021/ja00245a031]
[100]
Rinehart, K.L., Jr; Gloer, J.B.; Hughes, R.G., Jr; Renis, H.E.; McGovren, J.P.; Swynenberg, E.B.; Stringfellow, D.A.; Kuentzel, S.L.; Li, L.H. Didemnins: Antiviral and antitumor depsipeptides from a caribbean tunicate. Science, 1981, 212(4497), 933-935.
[http://dx.doi.org/10.1126/science.7233187] [PMID: 7233187]
[101]
Groweiss, A.; Look, S.A.; Fenical, W. Solenolides, new antiinflammatory and antiviral diterpenoids from a marine Octocoral of the genus Solenopodium. J. Org. Chem., 1988, 53(11), 2401-2406.
[http://dx.doi.org/10.1021/jo00246a001]
[102]
Strand, M.; Carlsson, M.; Uvell, H.; Islam, K.; Edlund, K.; Cullman, I.; Altermark, B.; Mei, Y.F.; Elofsson, M.; Willassen, N.P.; Wadell, G.; Almqvist, F. Isolation and characterization of anti-adenoviral secondary metabolites from marine actinobacteria. Mar. Drugs, 2014, 12(2), 799-821.
[http://dx.doi.org/10.3390/md12020799] [PMID: 24477283]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy