摘要
呼吸道病毒,包括流感病毒、呼吸道合胞病毒、冠状病毒等,严重威胁着人类健康。例如,严重急性呼吸系统综合症冠状病毒(SARS)的爆发影响了世界上许多国家。海洋生物具有结构新颖、生物活性丰富的次生代谢物,是寻找有效抗呼吸道病毒药物的重要来源。本文综述了具有抗呼吸道病毒活性的海洋天然产物,重点介绍了这些天然产物的结构和抗病毒活性。这篇综述描述了1981年至2019年发表的167种具有抗呼吸道病毒活性的海洋次生代谢物。本文共引用了102篇文献。
关键词: 海洋真菌,海洋细菌,多酮类,生物碱,呼吸道病毒,对抗呼吸道病毒的活性
[1]
Becker, K.; Hu, Y.; Biller-Andorno, N. Infectious diseases - a global challenge. Int. J. Med. Microbiol., 2006, 296(4-5), 179-185.
[http://dx.doi.org/10.1016/j.ijmm.2005.12.015] [PMID: 16446113]
[http://dx.doi.org/10.1016/j.ijmm.2005.12.015] [PMID: 16446113]
[2]
Zumla, A.; Hui, D.S.; Al-Tawfiq, J.A.; Gautret, P.; McCloskey, B.; Memish, Z.A. Emerging respiratory tract infections. Lancet Infect. Dis., 2014, 14(10), 910-911.
[http://dx.doi.org/10.1016/S1473-3099(14)70899-0] [PMID: 25189348]
[http://dx.doi.org/10.1016/S1473-3099(14)70899-0] [PMID: 25189348]
[3]
Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; Alvarado, M.; Anderson, H.R.; Anderson, L.M.; Andrews, K.G.; Atkinson, C.; Baddour, L.M.; Barker-Collo, S.; Bartels, D.H.; Bell, M.L.; Benjamin, E.J.; Bennett, D.; Bhalla, K.; Bikbov, B.; Bin Abdulhak, A.; Birbeck, G.; Blyth, F.; Bolliger, I.; Boufous, S.; Bucello, C.; Burch, M.; Burney, P.; Carapetis, J.; Chen, H.; Chou, D.; Chugh, S.S.; Coffeng, L.E.; Colan, S.D.; Colquhoun, S.; Colson, K.E.; Condon, J.; Connor, M.D.; Cooper, L.T.; Corriere, M.; Cortinovis, M.; de Vaccaro, K.C.; Couser, W.; Cowie, B.C.; Criqui, M.H.; Cross, M.; Dabhadkar, K.C.; Dahodwala, N.; De Leo, D.; Degenhardt, L.; Delossantos, A.; Denenberg, J.; Des Jarlais, D.C.; Dharmaratne, S.D.; Dorsey, E.R.; Driscoll, T.; Duber, H.; Ebel, B.; Erwin, P.J.; Espindola, P.; Ezzati, M.; Feigin, V.; Flaxman, A.D.; Forouzanfar, M.H.; Fowkes, F.G.; Franklin, R.; Fransen, M.; Freeman, M.K.; Gabriel, S.E.; Gakidou, E.; Gaspari, F.; Gillum, R.F.; Gonzalez-Medina, D.; Halasa, Y.A.; Haring, D.; Harrison, J.E.; Havmoeller, R.; Hay, R.J.; Hoen, B.; Hotez, P.J.; Hoy, D.; Jacobsen, K.H.; James, S.L.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Karthikeyan, G.; Kassebaum, N.; Keren, A.; Khoo, J.P.; Knowlton, L.M.; Kobusingye, O.; Koranteng, A.; Krishnamurthi, R.; Lipnick, M.; Lipshultz, S.E.; Ohno, S.L.; Mabweijano, J.; MacIntyre, M.F.; Mallinger, L.; March, L.; Marks, G.B.; Marks, R.; Matsumori, A.; Matzopoulos, R.; Mayosi, B.M.; McAnulty, J.H.; McDermott, M.M.; McGrath, J.; Mensah, G.A.; Merriman, T.R.; Michaud, C.; Miller, M.; Miller, T.R.; Mock, C.; Mocumbi, A.O.; Mokdad, A.A.; Moran, A.; Mulholland, K.; Nair, M.N.; Naldi, L.; Narayan, K.M.; Nasseri, K.; Norman, P.; O’Donnell, M.; Omer, S.B.; Ortblad, K.; Osborne, R.; Ozgediz, D.; Pahari, B.; Pandian, J.D.; Rivero, A.P.; Padilla, R.P.; Perez-Ruiz, F.; Perico, N.; Phillips, D.; Pierce, K.; Pope, C.A., III; Porrini, E.; Pourmalek, F.; Raju, M.; Ranganathan, D.; Rehm, J.T.; Rein, D.B.; Remuzzi, G.; Rivara, F.P.; Roberts, T.; De León, F.R.; Rosenfeld, L.C.; Rushton, L.; Sacco, R.L.; Salomon, J.A.; Sampson, U.; Sanman, E.; Schwebel, D.C.; Segui-Gomez, M.; Shepard, D.S.; Singh, D.; Singleton, J.; Sliwa, K.; Smith, E.; Steer, A.; Taylor, J.A.; Thomas, B.; Tleyjeh, I.M.; Towbin, J.A.; Truelsen, T.; Undurraga, E.A.; Venketasubramanian, N.; Vijayakumar, L.; Vos, T.; Wagner, G.R.; Wang, M.; Wang, W.; Watt, K.; Weinstock, M.A.; Weintraub, R.; Wilkinson, J.D.; Woolf, A.D.; Wulf, S.; Yeh, P.H.; Yip, P.; Zabetian, A.; Zheng, Z.J.; Lopez, A.D.; Murray, C.J.; AlMazroa, M.A.; Memish, Z.A. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859), 2095-2128.
[http://dx.doi.org/10.1016/S0140-6736(12)61728-0] [PMID: 23245604]
[http://dx.doi.org/10.1016/S0140-6736(12)61728-0] [PMID: 23245604]
[4]
GBD 2017 Influenza Collaborators. Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017: An analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med., 2019, 7(1), 69-89.
[http://dx.doi.org/10.1016/S2213-2600(18)30496-X] [PMID: 30553848]
[http://dx.doi.org/10.1016/S2213-2600(18)30496-X] [PMID: 30553848]
[5]
Park, S.J.; Park, B.K.; Song, D.S.; Poo, H. Complete genome sequence of a mammalian species-infectious and -pathogenic H6N5 avian influenza virus without evidence of adaptation. J. Virol., 2012, 86(22), 12459-12460.
[http://dx.doi.org/10.1128/JVI.02301-12] [PMID: 23087119]
[http://dx.doi.org/10.1128/JVI.02301-12] [PMID: 23087119]
[6]
Taubenberger, J.K.; Kash, J.C. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe, 2010, 7(6), 440-451.
[http://dx.doi.org/10.1016/j.chom.2010.05.009] [PMID: 20542248]
[http://dx.doi.org/10.1016/j.chom.2010.05.009] [PMID: 20542248]
[7]
Taubenberger, J.K.; Reid, A.H.; Krafft, A.E.; Bijwaard, K.E.; Fanning, T.G. Initial genetic characterization of the 1918 “Spanish” influenza virus. Science, 1997, 275(5307), 1793-1796.
[http://dx.doi.org/10.1126/science.275.5307.1793] [PMID: 9065404]
[http://dx.doi.org/10.1126/science.275.5307.1793] [PMID: 9065404]
[8]
Uyeki, T.M.; Zane, S.B.; Bodnar, U.R.; Fielding, K.L.; Buxton, J.A.; Miller, J.M.; Beller, M.; Butler, J.C.; Fukuda, K.; Maloney, S.A.; Cetron, M.S. Alaska/Yukon Territory Respiratory Outbreak Investigation Team. Large summertime influenza A outbreak among tourists in Alaska and the Yukon Territory. Clin. Infect. Dis., 2003, 36(9), 1095-1102.
[http://dx.doi.org/10.1086/374053] [PMID: 12715302]
[http://dx.doi.org/10.1086/374053] [PMID: 12715302]
[9]
Fraser, C.; Donnelly, C.A.; Cauchemez, S.; Hanage, W.P.; Van Kerkhove, M.D.; Hollingsworth, T.D.; Griffin, J.; Baggaley, R.F.; Jenkins, H.E.; Lyons, E.J.; Jombart, T.; Hinsley, W.R.; Grassly, N.C.; Balloux, F.; Ghani, A.C.; Ferguson, N.M.; Rambaut, A.; Pybus, O.G.; Lopez-Gatell, H.; Alpuche-Aranda, C.M.; Chapela, I.B.; Zavala, E.P.; Guevara, D.M.; Checchi, F.; Garcia, E.; Hugonnet, S.; Roth, C. WHO Rapid Pandemic Assessment Collaboration. Pandemic potential of a strain of influenza A (H1N1): Early findings. Science, 2009, 324(5934), 1557-1561.
[http://dx.doi.org/10.1126/science.1176062] [PMID: 19433588]
[http://dx.doi.org/10.1126/science.1176062] [PMID: 19433588]
[10]
Zhao, L.; Peng, Y.; Zhou, K.; Cao, M.; Wang, J.; Wang, X.; Jiang, T.; Deng, T. New insights into the nonconserved noncoding region of the subtype-determinant hemagglutinin and neuraminidase segments of influenza A viruses. J. Virol., 2014, 88(19), 11493-11503.
[http://dx.doi.org/10.1128/JVI.01337-14] [PMID: 25056889]
[http://dx.doi.org/10.1128/JVI.01337-14] [PMID: 25056889]
[11]
Hay, A.J.; Wolstenholme, A.J.; Skehel, J.J.; Smith, M.H. The molecular basis of the specific anti-influenza action of amantadine. EMBO J., 1985, 4(11), 3021-3024.
[http://dx.doi.org/10.1002/j.1460-2075.1985.tb04038.x] [PMID: 4065098]
[http://dx.doi.org/10.1002/j.1460-2075.1985.tb04038.x] [PMID: 4065098]
[12]
Bouvier, N.M.; Palese, P. The biology of influenza viruses. Vaccine, 2008, 26(Suppl. 4), D49-D53.
[http://dx.doi.org/10.1016/j.vaccine.2008.07.039] [PMID: 19230160]
[http://dx.doi.org/10.1016/j.vaccine.2008.07.039] [PMID: 19230160]
[13]
Takashita, E.; Daniels, R.S.; Fujisaki, S.; Gregory, V.; Gubareva, L.V.; Huang, W.; Hurt, A.C.; Lackenby, A.; Nguyen, H.T.; Pereyaslov, D.; Roe, M.; Samaan, M.; Subbarao, K.; Tse, H.; Wang, D.; Yen, H.L.; Zhang, W.; Meijer, A. Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2017-2018. Antiviral Res., 2020, 175, 104718.
[http://dx.doi.org/10.1016/j.antiviral.2020.104718] [PMID: 32004620]
[http://dx.doi.org/10.1016/j.antiviral.2020.104718] [PMID: 32004620]
[14]
Martinelli, M.; Frati, E.R.; Zappa, A.; Ebranati, E.; Bianchi, S.; Pariani, E.; Amendola, A.; Zehender, G.; Tanzi, E. Phylogeny and population dynamics of respiratory syncytial virus (Rsv) A and B. Virus Res., 2014, 189, 293-302.
[http://dx.doi.org/10.1016/j.virusres.2014.06.006] [PMID: 24954788]
[http://dx.doi.org/10.1016/j.virusres.2014.06.006] [PMID: 24954788]
[15]
Hu, J.; Robinson, J.L. Treatment of respiratory syncytial virus with palivizumab: A systematic review. World J. Pediatr., 2010, 6(4), 296-300.
[http://dx.doi.org/10.1007/s12519-010-0230-z] [PMID: 21080142]
[http://dx.doi.org/10.1007/s12519-010-0230-z] [PMID: 21080142]
[16]
Piedra, P.A. Long term healthcare costs associated with respiratory syncytial virus infection in children: The domino effect. J. Infect. Dis., 2020, 221(8), 1205-1207.
[http://dx.doi.org/10.1093/infdis/jiz161] [PMID: 30982897]
[http://dx.doi.org/10.1093/infdis/jiz161] [PMID: 30982897]
[17]
Kneyber, M.C.J.; Moll, H.A.; de Groot, R. Treatment and prevention of respiratory syncytial virus infection. Eur. J. Pediatr., 2000, 159(6), 399-411.
[http://dx.doi.org/10.1007/s004310051296] [PMID: 10867843]
[http://dx.doi.org/10.1007/s004310051296] [PMID: 10867843]
[18]
Simões, E.A.F.; Bont, L.; Manzoni, P.; Fauroux, B.; Paes, B.; Figueras-Aloy, J.; Checchia, P.A.; Carbonell-Estrany, X. Past, present and future approaches to the prevention and treatment of respiratory syncytial virus infection in children. Infect. Dis. Ther., 2018, 7(1), 87-120.
[http://dx.doi.org/10.1007/s40121-018-0188-z] [PMID: 29470837]
[http://dx.doi.org/10.1007/s40121-018-0188-z] [PMID: 29470837]
[19]
Bonfanti, J.F.; Meyer, C.; Doublet, F.; Fortin, J.; Muller, P.; Queguiner, L.; Gevers, T.; Janssens, P.; Szel, H.; Willebrords, R.; Timmerman, P.; Wuyts, K.; van Remoortere, P.; Janssens, F.; Wigerinck, P.; Andries, K. Selection of a respiratory syncytial virus fusion inhibitor clinical candidate. 2. Discovery of a morpholinopropylaminobenzimidazole derivative (TMC353121). J. Med. Chem., 2008, 51(4), 875-896.
[http://dx.doi.org/10.1021/jm701284j] [PMID: 18254606]
[http://dx.doi.org/10.1021/jm701284j] [PMID: 18254606]
[20]
Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[21]
Simmons, G.; Zmora, P.; Gierer, S.; Heurich, A.; Pöhlmann, S. Proteolytic activation of the SARS-coronavirus spike protein: Cutting enzymes at the cutting edge of antiviral research. Antiviral Res., 2013, 100(3), 605-614.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.028] [PMID: 24121034]
[http://dx.doi.org/10.1016/j.antiviral.2013.09.028] [PMID: 24121034]
[22]
Zhou, P.; Fan, H.; Lan, T.; Yang, X.L.; Shi, W.F.; Zhang, W.; Zhu, Y.; Zhang, Y.W.; Xie, Q.M.; Mani, S.; Zheng, X.S.; Li, B.; Li, J.M.; Guo, H.; Pei, G.Q.; An, X.P.; Chen, J.W.; Zhou, L.; Mai, K.J.; Wu, Z.X.; Li, D.; Anderson, D.E.; Zhang, L.B.; Li, S.Y.; Mi, Z.Q.; He, T.T.; Cong, F.; Guo, P.J.; Huang, R.; Luo, Y.; Liu, X.L.; Chen, J.; Huang, Y.; Sun, Q.; Zhang, X.L.; Wang, Y.Y.; Xing, S.Z.; Chen, Y.S.; Sun, Y.; Li, J.; Daszak, P.; Wang, L.F.; Shi, Z.L.; Tong, Y.G.; Ma, J.Y. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature, 2018, 556(7700), 255-258.
[http://dx.doi.org/10.1038/s41586-018-0010-9] [PMID: 29618817]
[http://dx.doi.org/10.1038/s41586-018-0010-9] [PMID: 29618817]
[23]
Puthucheary, J.; Lim, D.; Chan, I.; Chay, O.M.; Choo, P. Severe acute respiratory syndrome in Singapore. Arch. Dis. Child., 2004, 89(6), 551-556.
[http://dx.doi.org/10.1136/adc.2003.039420] [PMID: 15155402]
[http://dx.doi.org/10.1136/adc.2003.039420] [PMID: 15155402]
[24]
de Groot, R.J.; Baker, S.C.; Baric, R.S.; Brown, C.S.; Drosten, C.; Enjuanes, L.; Fouchier, R.A.; Galiano, M.; Gorbalenya, A.E.; Memish, Z.A.; Perlman, S.; Poon, L.L.; Snijder, E.J.; Stephens, G.M.; Woo, P.C.; Zaki, A.M.; Zambon, M.; Ziebuhr, J. Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. J. Virol., 2013, 87(14), 7790-7792.
[http://dx.doi.org/10.1128/JVI.01244-13] [PMID: 23678167]
[http://dx.doi.org/10.1128/JVI.01244-13] [PMID: 23678167]
[25]
Woo, P.C.Y.; Lau, S.K.P.; Lam, C.S.F.; Lau, C.C.Y.; Tsang, A.K.L.; Lau, J.H.N.; Bai, R.; Teng, J.L.L.; Tsang, C.C.C.; Wang, M.; Zheng, B.J.; Chan, K.H.; Yuen, K.Y.
Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus
supports bat coronaviruses as the gene source of alphacoronavirus
and betacoronavirus
and avian coronaviruses as the gene source of gammacoronavirus
and deltacoronavirus. J. Virol., 2012, 86(7), 3995-4008.
[http://dx.doi.org/10.1128/JVI.06540-11] [PMID: 22278237]
[http://dx.doi.org/10.1128/JVI.06540-11] [PMID: 22278237]
[26]
Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol., 2020, 92(4), 418-423.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[27]
Jobran, S.; Kattan, R.; Shamaa, J.; Marzouqa, H.; Hindiyeh, M. Adenovirus respiratory tract infections in infants: A retrospective chart-review study. Lancet, 2018, 391(Suppl. 2), S43.
[http://dx.doi.org/10.1016/S0140-6736(18)30409-4] [PMID: 29553443]
[http://dx.doi.org/10.1016/S0140-6736(18)30409-4] [PMID: 29553443]
[28]
Hamelin, M.E.; Abed, Y.; Boivin, G. Human metapneumovirus: A new player among respiratory viruses. Clin. Infect. Dis., 2004, 38(7), 983-990.
[http://dx.doi.org/10.1086/382536] [PMID: 15034830]
[http://dx.doi.org/10.1086/382536] [PMID: 15034830]
[29]
Ruuskanen, O.; Lahti, E.; Jennings, L.C.; Murdoch, D.R. Viral pneumonia. Lancet, 2011, 377(9773), 1264-1275.
[http://dx.doi.org/10.1016/S0140-6736(10)61459-6] [PMID: 21435708]
[http://dx.doi.org/10.1016/S0140-6736(10)61459-6] [PMID: 21435708]
[30]
Li, Y.; Reeves, R.M.; Wang, X.; Bassat, Q.; Brooks, W.A.; Cohen, C.; Moore, D.P.; Nunes, M.; Rath, B.; Campbell, H.; Nair, H. RSV Global Epidemiology Network; RESCEU investigators. Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: A systematic analysis. Lancet Glob. Health, 2019, 7(8), e1031-e1045.
[http://dx.doi.org/10.1016/S2214-109X(19)30264-5] [PMID: 31303294]
[http://dx.doi.org/10.1016/S2214-109X(19)30264-5] [PMID: 31303294]
[31]
Wohl, S.; Metsky, H.C.; Schaffner, S.F.; Piantadosi, A.; Burns, M.; Lewnard, J.A.; Chak, B.; Krasilnikova, L.A.; Siddle, K.J.; Matranga, C.B.; Bankamp, B.; Hennigan, S.; Sabina, B.; Byrne, E.H.; McNall, R.J.; Shah, R.R.; Qu, J.; Park, D.J.; Gharib, S.; Fitzgerald, S.; Barreira, P.; Fleming, S.; Lett, S.; Rota, P.A.; Madoff, L.C.; Yozwiak, N.L.; MacInnis, B.L.; Smole, S.; Grad, Y.H.; Sabeti, P.C. Combining genomics and epidemiology to track mumps virus transmission in the United States. PLoS Biol., 2020, 18(2), e3000611.
[http://dx.doi.org/10.1371/journal.pbio.3000611] [PMID: 32045407]
[http://dx.doi.org/10.1371/journal.pbio.3000611] [PMID: 32045407]
[32]
Cao, F.; Meng, Z.H.; Wang, P.; Luo, D.Q.; Zhu, H.J.
Dipleosporalones A and B, dimeric azaphilones from a marine-derived Pleosporales
sp. fungus. J. Nat. Prod., 2020, 83(4), 1283-1287.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00132] [PMID: 32243144]
[http://dx.doi.org/10.1021/acs.jnatprod.0c00132] [PMID: 32243144]
[33]
Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.F.; Moustafa, M.S.; Abd El-Wahed, A.; Al-Mousawi, S.M.; Musharraf, S.G.; Chang, F.R.; Iwasaki, A.; Suenaga, K.; Alajlani, M.; Göransson, U.; El-Seedi, H.R. Marine natural products: A source of novel anticancer drugs. Mar. Drugs, 2019, 17(9), 491.
[http://dx.doi.org/10.3390/md17090491] [PMID: 31443597]
[http://dx.doi.org/10.3390/md17090491] [PMID: 31443597]
[34]
Gogineni, V.; Schinazi, R.F.; Hamann, M.T. Role of marine natural products in the genesis of antiviral agents. Chem. Rev., 2015, 115(18), 9655-9706.
[http://dx.doi.org/10.1021/cr4006318] [PMID: 26317854]
[http://dx.doi.org/10.1021/cr4006318] [PMID: 26317854]
[35]
Moghadamtousi, S.Z.; Nikzad, S.; Kadir, H.A.; Abubakar, S.; Zandi, K. Potential antiviral agents from marine fungi: An overview. Mar. Drugs, 2015, 13(7), 4520-4538.
[http://dx.doi.org/10.3390/md13074520] [PMID: 26204947]
[http://dx.doi.org/10.3390/md13074520] [PMID: 26204947]
[36]
Whitley, R.; Alford, C.; Hess, F.; Buchanan, R. Vidarabine: A preliminary review of its pharmacological properties and therapeutic use. Drugs, 1980, 20(4), 267-282.
[http://dx.doi.org/10.2165/00003495-198020040-00002] [PMID: 6998693]
[http://dx.doi.org/10.2165/00003495-198020040-00002] [PMID: 6998693]
[37]
Peng, J.; Jiao, J.; Li, J.; Wang, W.; Gu, Q.; Zhu, T.; Li, D.
Pyronepolyene C-glucosides with NF-κB inhibitory and anti-influenza A viral (H1N1) activities from the sponge-associated fungus Epicoccum
sp. JJY40. Bioorg. Med. Chem. Lett., 2012, 22(9), 3188-3190.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.044] [PMID: 22487178]
[http://dx.doi.org/10.1016/j.bmcl.2012.03.044] [PMID: 22487178]
[38]
Tian, Y.Q.; Lin, X.P.; Wang, Z.; Zhou, X.F.; Qin, X.C.; Kaliyaperumal, K.; Zhang, T.Y.; Tu, Z.C.; Liu, Y.
Asteltoxins with antiviral activities from the marine sponge-derived fungus Aspergillus
sp. SCSIO XWS02F40. Molecules, 2015, 21(1), E34.
[http://dx.doi.org/10.3390/molecules21010034] [PMID: 26712735]
[http://dx.doi.org/10.3390/molecules21010034] [PMID: 26712735]
[39]
Liu, F.A.; Lin, X.; Zhou, X.; Chen, M.; Huang, X.; Yang, B.; Tao, H.
Xanthones and quinolones derivatives produced by the deep-sea-derived fungus Penicillium
sp. SCSIO Ind16F01. Molecules, 2017, 22(12), 1999.
[http://dx.doi.org/10.3390/molecules22121999] [PMID: 29215585]
[http://dx.doi.org/10.3390/molecules22121999] [PMID: 29215585]
[40]
Yang, S.Q.; Li, X.M.; Li, X.; Li, H.L.; Meng, L.H.; Wang, B.G.
New citrinin analogues produced by coculture of the marine algal-derived endophytic fungal strains Aspergillus sydowii
EN-534 and Penicillium citrinum
EN-535. Phytochem. Lett., 2018, 25, 191-195.
[http://dx.doi.org/10.1016/j.phytol.2018.04.023]
[http://dx.doi.org/10.1016/j.phytol.2018.04.023]
[41]
Kang, H.H.; Zhang, H.B.; Zhong, M.J.; Ma, L.Y.; Liu, D.S.; Liu, W.Z.; Ren, H.
Potential antiviral xanthones from a coastal saline soil fungus Aspergillus iizukae. Mar. Drugs, 2018, 16(11), 449.
[http://dx.doi.org/10.3390/md16110449] [PMID: 30445748]
[http://dx.doi.org/10.3390/md16110449] [PMID: 30445748]
[42]
Kong, F.D.; Ma, Q.Y.; Huang, S.Z.; Wang, P.; Wang, J.F.; Zhou, L.M.; Yuan, J.Z.; Dai, H.F.; Zhao, Y.X.
Chrodrimanins K–N and related meroterpenoids from the fungus Penicillium
sp. SCS-KFD09 isolated from a marine worm, Sipunculus nudus. J. Nat. Prod., 2017, 80(4), 1039-1047.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01061] [PMID: 28212032]
[http://dx.doi.org/10.1021/acs.jnatprod.6b01061] [PMID: 28212032]
[43]
Niu, S.; Si, L.; Liu, D.; Zhou, A.; Zhang, Z.; Shao, Z.; Wang, S.; Zhang, L.; Zhou, D.; Lin, W. Spiromastilactones: A new class of influenza virus inhibitors from deep-sea fungus. Eur. J. Med. Chem., 2016, 108, 229-244.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.037] [PMID: 26686929]
[http://dx.doi.org/10.1016/j.ejmech.2015.09.037] [PMID: 26686929]
[44]
Pang, X.; Lin, X.; Wang, J.; Liang, R.; Tian, Y.; Salendra, L.; Luo, X.; Zhou, X.; Yang, B.; Tu, Z.; Liu, Y.
Three new highly oxygenated sterols and one new dihydroisocoumarin from the marine sponge-derived fungus Cladosporium
sp. SCSIO41007. Steroids, 2018, 129, 41-46.
[http://dx.doi.org/10.1016/j.steroids.2017.12.001] [PMID: 29223616]
[http://dx.doi.org/10.1016/j.steroids.2017.12.001] [PMID: 29223616]
[45]
Fang, W.; Lin, X.; Zhou, X.; Wan, J.; Lu, X.; Yang, B.; Ai, W.; Lin, J.; Zhang, T.; Tu, Z.; Liu, Y.
Cytotoxic and antiviral nitrobenzoyl sesquiterpenoids from the marine-derived fungus Aspergillus ochraceus
Jcma1F17. MedChemComm, 2014, 5(6), 701-705.
[http://dx.doi.org/10.1039/C3MD00371J]
[http://dx.doi.org/10.1039/C3MD00371J]
[46]
Minagawa, K.; Kouzuki, S.; Yoshimoto, J.; Kawamura, Y.; Tani, H.; Iwata, T.; Terui, Y.; Nakai, H.; Yagi, S.; Hattori, N.; Fujiwara, T.; Kamigauchi, T.
Stachyflin and acetylstachyflin, novel anti-influenza A virus substances, produced by Stachybotrys
sp. RF-7260. I. Isolation, structure elucidation and biological activities. J. Antibiot. (Tokyo), 2002, 55(2), 155-164.
[http://dx.doi.org/10.7164/antibiotics.55.155] [PMID: 12002997]
[http://dx.doi.org/10.7164/antibiotics.55.155] [PMID: 12002997]
[47]
Chen, X.; Si, L.; Liu, D.; Proksch, P.; Zhang, L.; Zhou, D.; Lin, W. Neoechinulin B and its analogues as potential entry inhibitors of influenza viruses, targeting viral hemagglutinin. Eur. J. Med. Chem., 2015, 93, 182-195.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.006] [PMID: 25681711]
[http://dx.doi.org/10.1016/j.ejmech.2015.02.006] [PMID: 25681711]
[48]
He, F.; Bao, J.; Zhang, X.Y.; Tu, Z.C.; Shi, Y.M.; Qi, S.H.
Asperterrestide A, a cytotoxic cyclic tetrapeptide from the marine-derived fungus Aspergillus terreus
SCSGAF0162. J. Nat. Prod., 2013, 76(6), 1182-1186.
[http://dx.doi.org/10.1021/np300897v] [PMID: 23806112]
[http://dx.doi.org/10.1021/np300897v] [PMID: 23806112]
[49]
Wang, J.; Chen, F.; Liu, Y.; Liu, Y.; Li, K.; Yang, X.; Liu, S.; Zhou, X.; Yang, J. Spirostaphylotrichin X from a marine-derived fungus as an anti-influenza agent targeting RNA polymerase PB2. J. Nat. Prod., 2018, 81(12), 2722-2730.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00656] [PMID: 30516983]
[http://dx.doi.org/10.1021/acs.jnatprod.8b00656] [PMID: 30516983]
[50]
Wu, G.; Sun, X.; Yu, G.; Wang, W.; Zhu, T.; Gu, Q.; Li, D.
Cladosins A-E, hybrid polyketides from a deep-sea-derived fungus, Cladosporium sphaerospermum. J. Nat. Prod., 2014, 77(2), 270-275.
[http://dx.doi.org/10.1021/np400833x] [PMID: 24499327]
[http://dx.doi.org/10.1021/np400833x] [PMID: 24499327]
[51]
Peng, J.; Zhang, X.; Du, L.; Wang, W.; Zhu, T.; Gu, Q.; Li, D.
Sorbicatechols A and B, antiviral sorbicillinoids from the marine-derived fungus Penicillium chrysogenum
PJX-17. J. Nat. Prod., 2014, 77(2), 424-428.
[http://dx.doi.org/10.1021/np400977e] [PMID: 24495078]
[http://dx.doi.org/10.1021/np400977e] [PMID: 24495078]
[52]
Wang, J.F.; Lin, X.P.; Qin, C.; Liao, S.R.; Wan, J.T.; Zhang, T.Y.; Liu, J.; Fredimoses, M.; Chen, H.; Yang, B.; Zhou, X.F.; Yang, X.W.; Tu, Z.C.; Liu, Y.H.
Antimicrobial and antiviral sesquiterpenoids from sponge-associated fungus, Aspergillus sydowii
ZSDS1-F6. J. Antibiot. (Tokyo), 2014, 67(8), 581-583.
[http://dx.doi.org/10.1038/ja.2014.39] [PMID: 24736857]
[http://dx.doi.org/10.1038/ja.2014.39] [PMID: 24736857]
[53]
Zhu, T.; Chen, Z.; Liu, P.; Wang, Y.; Xin, Z.; Zhu, W.
New rubrolides from the marine-derived fungus Aspergillus terreus
OUCMDZ-1925. J. Antibiot. (Tokyo), 2014, 67(4), 315-318.
[http://dx.doi.org/10.1038/ja.2013.135] [PMID: 24326339]
[http://dx.doi.org/10.1038/ja.2013.135] [PMID: 24326339]
[54]
Ma, X.; Zhu, T.; Gu, Q.; Xi, R.; Wang, W.; Li, D.
Structures and antiviral activities of butyrolactone derivatives isolated from Aspergillus terreus
MXH-23. J. Ocean Univ. China, 2014, 13(6), 1067-1070.
[http://dx.doi.org/10.1007/s11802-014-2324-z]
[http://dx.doi.org/10.1007/s11802-014-2324-z]
[55]
Zhao, Y.; Si, L.; Liu, D.; Proksch, P.; Zhou, D.; Lin, W.
Truncateols A–N, new isoprenylated cyclohexanols from the sponge-associated fungus Truncatella angustata
with anti-H1N1 virus activities. Tetrahedron, 2015, 71(18), 2708-2718.
[http://dx.doi.org/10.1016/j.tet.2015.03.033]
[http://dx.doi.org/10.1016/j.tet.2015.03.033]
[56]
Zhao, Y.; Liu, D.; Proksch, P.; Zhou, D.; Lin, W.
Truncateols O-V, further isoprenylated cyclohexanols from the sponge-associated fungus Truncatella angustata
with antiviral activities. Phytochemistry, 2018, 155, 61-68.
[http://dx.doi.org/10.1016/j.phytochem.2018.07.017] [PMID: 30077121]
[http://dx.doi.org/10.1016/j.phytochem.2018.07.017] [PMID: 30077121]
[57]
Jia, Q.; Du, Y.; Wang, C.; Wang, Y.; Zhu, T.; Zhu, W.
Azaphilones from the marine sponge-derived fungus Penicillium sclerotiorum
OUCMDZ-3839. Mar. Drugs, 2019, 17(5), 260.
[http://dx.doi.org/10.3390/md17050260] [PMID: 31052279]
[http://dx.doi.org/10.3390/md17050260] [PMID: 31052279]
[58]
Zhang, G.; Sun, S.; Zhu, T.; Lin, Z.; Gu, J.; Li, D.; Gu, Q.
Antiviral isoindolone derivatives from an endophytic fungus Emericella
sp. associated with Aegiceras corniculatum. Phytochemistry, 2011, 72(11-12), 1436-1442.
[http://dx.doi.org/10.1016/j.phytochem.2011.04.014] [PMID: 21601895]
[http://dx.doi.org/10.1016/j.phytochem.2011.04.014] [PMID: 21601895]
[59]
Peng, J.; Lin, T.; Wang, W.; Xin, Z.; Zhu, T.; Gu, Q.; Li, D.
Antiviral alkaloids produced by the mangrove-derived fungus Cladosporium
sp. PJX-41. J. Nat. Prod., 2013, 76(6), 1133-1140.
[http://dx.doi.org/10.1021/np400200k] [PMID: 23758051]
[http://dx.doi.org/10.1021/np400200k] [PMID: 23758051]
[60]
Yu, G.; Zhou, G.; Zhu, M.; Wang, W.; Zhu, T.; Gu, Q.; Li, D.
Neosartoryadins A and B, fumiquinazoline alkaloids from a mangrove-derived fungus Neosartorya udagawae
HDN13-313. Org. Lett., 2016, 18(2), 244-247.
[http://dx.doi.org/10.1021/acs.orglett.5b02964] [PMID: 26713369]
[http://dx.doi.org/10.1021/acs.orglett.5b02964] [PMID: 26713369]
[61]
Sun, J.F.; Lin, X.; Zhou, X.F.; Wan, J.; Zhang, T.; Yang, B.; Yang, X.W.; Tu, Z.; Liu, Y.
Pestalols A-E, new alkenyl phenol and benzaldehyde derivatives from endophytic fungus Pestalotiopsis
sp. AcBC2 isolated from the Chinese mangrove plant Aegiceras corniculatum. J. Antibiot. (Tokyo), 2014, 67(6), 451-457.
[http://dx.doi.org/10.1038/ja.2014.24] [PMID: 24690916]
[http://dx.doi.org/10.1038/ja.2014.24] [PMID: 24690916]
[62]
Gao, H.; Guo, W.; Wang, Q.; Zhang, L.; Zhu, M.; Zhu, T.; Gu, Q.; Wang, W.; Li, D.
Aspulvinones from a mangrove rhizosphere soil-derived fungus Aspergillus terreus
Gwq-48 with anti-influenza A viral (H1N1) activity. Bioorg. Med. Chem. Lett., 2013, 23(6), 1776-1778.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.051] [PMID: 23411074]
[http://dx.doi.org/10.1016/j.bmcl.2013.01.051] [PMID: 23411074]
[63]
Luo, X.; Yang, J.; Chen, F.; Lin, X.; Chen, C.; Zhou, X.; Liu, S.; Liu, Y.
Structurally diverse polyketides from the mangrove-derived fungus Diaporthe
sp. SCSIO 41011 with their anti-influenza A virus activities. Front Chem., 2018, 6, 282.
[http://dx.doi.org/10.3389/fchem.2018.00282] [PMID: 30050898]
[http://dx.doi.org/10.3389/fchem.2018.00282] [PMID: 30050898]
[64]
Yang, A.; Si, L.; Shi, Z.; Tian, L.; Liu, D.; Zhou, D.; Proksch, P.; Lin, W.
Nitrosporeusines A and B, unprecedented thioester-bearing alkaloids from the Arctic Streptomyces nitrosporeus. Org. Lett., 2013, 15(20), 5366-5369.
[http://dx.doi.org/10.1021/ol4026809] [PMID: 24090410]
[http://dx.doi.org/10.1021/ol4026809] [PMID: 24090410]
[65]
Wang, P.; Xi, L.; Liu, P.; Wang, Y.; Wang, W.; Huang, Y.; Zhu, W.
Diketopiperazine derivatives from the marine-derived actinomycete Streptomyces
sp. FXJ7.328. Mar. Drugs, 2013, 11(4), 1035-1049.
[http://dx.doi.org/10.3390/md11041035] [PMID: 23538868]
[http://dx.doi.org/10.3390/md11041035] [PMID: 23538868]
[66]
Che, Q.; Qiao, L.; Han, X.; Liu, Y.; Wang, W.; Gu, Q.; Zhu, T.; Li, D.
Anthranosides A–C, anthranilate derivatives from a sponge-derived Streptomyces
sp. CMN-62. Org. Lett., 2018, 20(17), 5466-5469.
[http://dx.doi.org/10.1021/acs.orglett.8b02382] [PMID: 30106304]
[http://dx.doi.org/10.1021/acs.orglett.8b02382] [PMID: 30106304]
[67]
Liu, H.; Chen, Z.; Zhu, G.; Wang, L.; Du, Y.; Wang, Y.; Zhu, W.
Phenolic polyketides from the marine alga-derived Streptomyces
sp. OUCMDZ-3434. Tetrahedron, 2017, 73(36), 5451-5455.
[http://dx.doi.org/10.1016/j.tet.2017.07.052]
[http://dx.doi.org/10.1016/j.tet.2017.07.052]
[68]
Li, W.; Jiang, Z.; Shen, L.; Pedpradab, P.; Bruhn, T.; Wu, J.; Bringmann, G.
Antiviral limonoids including khayanolides from the Trang mangrove plant Xylocarpus moluccensis. J. Nat. Prod., 2015, 78(7), 1570-1578.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00151] [PMID: 26114936]
[http://dx.doi.org/10.1021/acs.jnatprod.5b00151] [PMID: 26114936]
[69]
Ren, J.L.; Zou, X.P.; Li, W.S.; Shen, L.; Wu, J. Wu. J. Limonoids containing a C1–O–C29 moiety: Isolation, structural modification, and antiviral activity. Mar. Drugs, 2018, 16(11), 434.
[http://dx.doi.org/10.3390/md16110434] [PMID: 30400349]
[http://dx.doi.org/10.3390/md16110434] [PMID: 30400349]
[70]
Gong, K.K.; Li, P.L.; Qiao, D.; Zhang, X.W.; Chu, M.J.; Qin, G.F.; Tang, X.L.; Li, G.Q.
Cytotoxic and antiviral triterpenoids from the mangrove plant Sonneratia paracaseolaris. Molecules, 2017, 22(8), 1319.
[http://dx.doi.org/10.3390/molecules22081319] [PMID: 28792469]
[http://dx.doi.org/10.3390/molecules22081319] [PMID: 28792469]
[71]
Wright, A.E.; Rueth, S.A.; Cross, S.S.
An antiviral sesquiterpene hydroquinone from the marine sponge Strongylophora hartmani. J. Nat. Prod., 1991, 54(4), 1108-1111.
[http://dx.doi.org/10.1021/np50076a032] [PMID: 1791476]
[http://dx.doi.org/10.1021/np50076a032] [PMID: 1791476]
[72]
Koehn, F.E.; Gunasekera, M.; Cross, S.S.
New antiviral sterol disulfate ortho esters from the marine sponge Petrosia weinbergi. J. Org. Chem., 1991, 56(3), 1322-1325.
[http://dx.doi.org/10.1021/jo00003a080]
[http://dx.doi.org/10.1021/jo00003a080]
[73]
Gong, K.K.; Tang, X.L.; Liu, Y.S.; Li, P.L.; Li, G.Q.
Imidazole alkaloids from the South China sea sponge Pericharax heteroraphis
and their cytotoxic and antiviral activities. Molecules, 2016, 21(2), 150.
[http://dx.doi.org/10.3390/molecules21020150] [PMID: 26821008]
[http://dx.doi.org/10.3390/molecules21020150] [PMID: 26821008]
[74]
Cheng, W.; Ren, J.; Huang, Q.; Long, H.; Jin, H.; Zhang, L.; Liu, H.; van Ofwegen, L.; Lin, W.
Pregnane steroids from a gorgonian coral Subergorgia suberosa
with anti-flu virus effects. Steroids, 2016, 108, 99-104.
[http://dx.doi.org/10.1016/j.steroids.2016.02.003] [PMID: 26853156]
[http://dx.doi.org/10.1016/j.steroids.2016.02.003] [PMID: 26853156]
[75]
Ahmed, S.; Ibrahim, A.; Arafa, A.S.
Anti-H5N1 virus metabolites from the Red Sea soft coral, Sinularia candidula. Tetrahedron Lett., 2013, 54(19), 2377-2381.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.088]
[http://dx.doi.org/10.1016/j.tetlet.2013.02.088]
[76]
Ivanova, V.; Rouseva, R.; Kolarova, M.; Serkedjieva, J.; Rachev, R.; Manolova, N.
Isolation of a polysaccharide with antiviral effect from Ulva lactuca. Prep. Biochem., 1994, 24(2), 83-97.
[http://dx.doi.org/10.1080/10826069408010084] [PMID: 8072958]
[http://dx.doi.org/10.1080/10826069408010084] [PMID: 8072958]
[77]
Iwashima, M.; Mori, J.; Ting, X.; Matsunaga, T.; Hayashi, K.; Shinoda, D.; Saito, H.; Sankawa, U.; Hayashi, T.
Antioxidant and antiviral activities of plastoquinones from the brown alga Sargassum micracanthum
, and a new chromene derivative converted from the plastoquinones. Biol. Pharm. Bull., 2005, 28(2), 374-377.
[http://dx.doi.org/10.1248/bpb.28.374] [PMID: 15684504]
[http://dx.doi.org/10.1248/bpb.28.374] [PMID: 15684504]
[78]
Zhang, J.; Li, B.; Qin, Y.; Karthik, L.; Zhu, G.; Hou, C.; Jiang, L.; Liu, M.; Ye, X.; Liu, M.; Hsiang, T.; Dai, H.; Zhang, L.; Liu, X.
A new abyssomicin polyketide with anti-influenza A virus activity from a marine-derived Verrucosispora
sp. MS100137. Appl. Microbiol. Biotechnol., 2020, 104(4), 1533-1543.
[http://dx.doi.org/10.1007/s00253-019-10217-2] [PMID: 31894364]
[http://dx.doi.org/10.1007/s00253-019-10217-2] [PMID: 31894364]
[79]
Mohammed, M.M.D.; Hamdy, A.H.A.; El-Fiky, N.M.; Mettwally, W.S.; El-Beih, A.A.; Kobayashi, N.
Anti-influenza A virus activity of a new dihydrochalcone diglycoside isolated from the Egyptian seagrass Thalassodendron ciliatum
(Forsk.) den Hartog. Nat. Prod. Res., 2014, 28(6), 377-382.
[http://dx.doi.org/10.1080/14786419.2013.869694] [PMID: 24443884]
[http://dx.doi.org/10.1080/14786419.2013.869694] [PMID: 24443884]
[80]
Zheng, C.J.; Shao, C.L.; Guo, Z.Y.; Chen, J.F.; Deng, D.S.; Yang, K.L.; Chen, Y.Y.; Fu, X.M.; She, Z.G.; Lin, Y.C.; Wang, C.Y.
Bioactive hydroanthraquinones and anthraquinone dimers from a soft coral-derived Alternaria
sp. fungus. J. Nat. Prod., 2012, 75(2), 189-197.
[http://dx.doi.org/10.1021/np200766d] [PMID: 22276679]
[http://dx.doi.org/10.1021/np200766d] [PMID: 22276679]
[81]
Yu, M.L.; Guan, F.F.; Cao, F.; Jia, Y.L.; Wang, C.Y.
A new antiviral pregnane from a gorgonian-derived Cladosporium
sp. fungus. Nat. Prod. Res., 2018, 32(11), 1260-1266.
[http://dx.doi.org/10.1080/14786419.2017.1342086] [PMID: 28641456]
[http://dx.doi.org/10.1080/14786419.2017.1342086] [PMID: 28641456]
[82]
Liao, H.X.; Sun, D.W.; Zheng, C.J.; Wang, C.Y.
A new hexahydrobenzopyran derivative from the gorgonian-derived Fungus Eutypella
sp. Nat. Prod. Res., 2017, 31(14), 1640-1646.
[http://dx.doi.org/10.1080/14786419.2017.1285301] [PMID: 28278631]
[http://dx.doi.org/10.1080/14786419.2017.1285301] [PMID: 28278631]
[83]
Jia, Y.L.; Guan, F.F.; Ma, J.; Wang, C.Y.; Shao, C.L.
Pestalotiolide A, a new antiviral phthalide derivative from a soft coral-derived fungus Pestalotiopsis
sp. Nat. Prod. Sci., 2015, 21(4), 227-230.
[http://dx.doi.org/10.20307/nps.2015.21.4.227]
[http://dx.doi.org/10.20307/nps.2015.21.4.227]
[84]
Chen, M.; Shao, C.L.; Meng, H.; She, Z.G.; Wang, C.Y.
Anti-respiratory syncytial virus prenylated dihydroquinolone derivatives from the gorgonian-derived fungus Aspergillus
sp. XS-20090B15. J. Nat. Prod., 2014, 77(12), 2720-2724.
[http://dx.doi.org/10.1021/np500650t] [PMID: 25420212]
[http://dx.doi.org/10.1021/np500650t] [PMID: 25420212]
[85]
Hermawan, I.; Higa, M.; Hutabarat, P.U.B.; Fujiwara, T.; Akiyama, K.; Kanamoto, A.; Haruyama, T.; Kobayashi, N.; Higashi, M.; Suda, S.; Tanaka, J. Kabirimine, a new cyclic imine from an Okinawan dinoflagellate. Mar. Drugs, 2019, 17(6), 353.
[http://dx.doi.org/10.3390/md17060353] [PMID: 31200525]
[http://dx.doi.org/10.3390/md17060353] [PMID: 31200525]
[86]
Cao, F.; Shao, C.L.; Chen, M.; Zhang, M.Q.; Xu, K.X.; Meng, H.; Wang, C.Y.
Antiviral C-25 epimers of 26-acetoxy steroids from the South China Sea gorgonian Echinogorgia rebekka. J. Nat. Prod., 2014, 77(6), 1488-1493.
[http://dx.doi.org/10.1021/np500252q] [PMID: 24882250]
[http://dx.doi.org/10.1021/np500252q] [PMID: 24882250]
[87]
Roccatagliata, A.J.; Maier, M.S.; Seldes, A.M.; Pujol, C.A.; Damonte, E.B.
Antiviral sulfated steroids from the ophiuroid Ophioplocus januarii. J. Nat. Prod., 1996, 59(9), 887-889.
[http://dx.doi.org/10.1021/np960171a] [PMID: 8864241]
[http://dx.doi.org/10.1021/np960171a] [PMID: 8864241]
[88]
Sakemi, S.; Ichiba, T.; Kohmoto, S.; Saucy, G.; Higa, T.
Isolation and structure elucidation of onnamide A, a new bioactive metabolite of a marine sponge, Theonella
sp. J. Am. Chem. Soc., 1988, 110(14), 4851-4853.
[http://dx.doi.org/10.1021/ja00222a068]
[http://dx.doi.org/10.1021/ja00222a068]
[89]
Perry, N.B.; Blunt, J.W.; Munro, M.H.G.; Pannell, L.K.
Mycalamide A, an antiviral compound from a New Zealand sponge of the genus Mycale. J. Am. Chem. Soc., 1988, 110(14), 4850-4851.
[http://dx.doi.org/10.1021/ja00222a067]
[http://dx.doi.org/10.1021/ja00222a067]
[90]
Tsujii, S.; Rinehart, K.L.; Gunasekera, S.P.; Kashman, Y.; Cross, S.S.; Lui, M.S.; Pomponi, S.A.; Diaz, M.C. Topsentin, bromotopsentin, and dihydrodeoxybromotopsentin: Antiviral and antitumor bis (indolyl) imidazoles from Caribbean deep-sea sponges of the family Halichondriidae. Structural and synthetic studies. J. Org. Chem., 1988, 53(23), 5446-5453.
[http://dx.doi.org/10.1021/jo00258a009]
[http://dx.doi.org/10.1021/jo00258a009]
[91]
Gunawardana, G.P.; Kohmoto, S.; Gunasekera, S.P.; McConnell, O.J.; Koehn, F.E.
Dercitine, a new biologically active acridine alkaloid from a deep water marine sponge, Dercitus
sp. J. Am. Chem. Soc., 1988, 110(14), 4856-4858.
[http://dx.doi.org/10.1021/ja00222a071]
[http://dx.doi.org/10.1021/ja00222a071]
[92]
Kashman, Y.; Hirsch, S.; Koehn, F.; Cross, S. Reiswigins A and B, novel antiviral diterpenes from a deepwater sponge. Tetrahedron Lett., 1987, 28(45), 5461-5464.
[http://dx.doi.org/10.1016/S0040-4039(00)96754-6] [PMID: 32287434]
[http://dx.doi.org/10.1016/S0040-4039(00)96754-6] [PMID: 32287434]
[93]
Lira, S.P.; Seleghim, M.H.R.; Williams, D.E.; Marion, F.; Hamill, P.; Jean, F.; Andersen, R.J.; Hajdud, E.; Berlinck, R.G.S.
A SARS-coronovirus 3CL protease inhibitor isolated from the marine sponge Axinella cf. corrugata: Structure elucidation and synthesis.
J. Braz. Chem. Soc., 2007, 18(2), 440-443.
[http://dx.doi.org/10.1590/S0103-50532007000200030]
[http://dx.doi.org/10.1590/S0103-50532007000200030]
[94]
Kim, S.H.; Ha, T.K.Q.; Oh, W.K.; Shin, J.; Oh, D.C. Antiviral indolosesquiterpenoid xiamycins C-E from a halophilic actinomycete. J. Nat. Prod., 2016, 79(1), 51-58.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00634] [PMID: 26698879]
[http://dx.doi.org/10.1021/acs.jnatprod.5b00634] [PMID: 26698879]
[95]
Coval, S.J.; Cross, S.; Bernardinelli, G.; Jefford, C.W.
Brianthein V, a new cytotoxic and antiviral diterpene isolated from Briareum asbestinum. J. Nat. Prod., 1988, 51(5), 981-984.
[http://dx.doi.org/10.1021/np50059a031]
[http://dx.doi.org/10.1021/np50059a031]
[96]
Koehn, F.E.; Sarath, G.P.; Neil, D.N.; Cross, S.S. Halitunal, an unusual diterpene aldehyde from the marine alga Halimeda tuna. Tetrahedron Lett., 1991, 32(2), 169-172.
[http://dx.doi.org/10.1016/0040-4039(91)80845-W] [PMID: 32287435]
[http://dx.doi.org/10.1016/0040-4039(91)80845-W] [PMID: 32287435]
[97]
Park, S.H.; Song, J.H.; Kim, T.; Shin, W.S.; Park, G.M.; Lee, S.; Kim, Y.J.; Choi, P.; Kim, H.; Kim, H.S.; Kwon, D.H.; Choi, H.J.; Ham, J.
Anti-human rhinoviral activity of polybromocatechol compounds isolated from the rhodophyta, Neorhodomela aculeata. Mar. Drugs, 2012, 10(10), 2222-2233.
[http://dx.doi.org/10.3390/md10102222] [PMID: 23170079]
[http://dx.doi.org/10.3390/md10102222] [PMID: 23170079]
[98]
Mendes, G.; Soares, A.R.; Sigiliano, L.; Machado, F.; Kaiser, C.; Romeiro, N.; Gestinari, L.; Santos, N.; Romanos, M.T.V. In vitro
anti-HMPV activity of meroditerpenoids from marine alga Stypopodium zonale
(Dictyotales). Molecules, 2011, 16(10), 8437-8450.
[http://dx.doi.org/10.3390/molecules16108437] [PMID: 21986522]
[http://dx.doi.org/10.3390/molecules16108437] [PMID: 21986522]
[99]
Rinehart, K.L., Jr; Kobayashi, J.; Harbour, G.C.; Gilmore, J.; Mascal, M.; Holt, T.G.; Shield, L.S.; Lafargue, F.
Eudistomins A-Q, β-carbolines from the antiviral Caribbean tunicate Eudistoma olivaceum. J. Am. Chem. Soc., 1987, 109(11), 3378-3387.
[http://dx.doi.org/10.1021/ja00245a031]
[http://dx.doi.org/10.1021/ja00245a031]
[100]
Rinehart, K.L., Jr; Gloer, J.B.; Hughes, R.G., Jr; Renis, H.E.; McGovren, J.P.; Swynenberg, E.B.; Stringfellow, D.A.; Kuentzel, S.L.; Li, L.H.
Didemnins: Antiviral and antitumor depsipeptides from a caribbean tunicate. Science, 1981, 212(4497), 933-935.
[http://dx.doi.org/10.1126/science.7233187] [PMID: 7233187]
[http://dx.doi.org/10.1126/science.7233187] [PMID: 7233187]
[101]
Groweiss, A.; Look, S.A.; Fenical, W.
Solenolides, new antiinflammatory and antiviral diterpenoids from a marine Octocoral of the genus Solenopodium. J. Org. Chem., 1988, 53(11), 2401-2406.
[http://dx.doi.org/10.1021/jo00246a001]
[http://dx.doi.org/10.1021/jo00246a001]
[102]
Strand, M.; Carlsson, M.; Uvell, H.; Islam, K.; Edlund, K.; Cullman, I.; Altermark, B.; Mei, Y.F.; Elofsson, M.; Willassen, N.P.; Wadell, G.; Almqvist, F. Isolation and characterization of anti-adenoviral secondary metabolites from marine actinobacteria. Mar. Drugs, 2014, 12(2), 799-821.
[http://dx.doi.org/10.3390/md12020799] [PMID: 24477283]
[http://dx.doi.org/10.3390/md12020799] [PMID: 24477283]