Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Mini-Review Article

Recent Advances in the Synthesis of the Antidepressant Paroxetine

Author(s): Joana Santos, Maria Fernanda Proença*, Ana Joao Rodrigues, Patricia Patrício and Helena Sofia Domingues

Volume 28, Issue 15, 2021

Published on: 26 October, 2020

Page: [2960 - 2973] Pages: 14

DOI: 10.2174/0929867327666201026144848

Price: $65

Abstract

Paroxetine is a potent inhibitor of serotonin reuptake and is widely prescribed for the treatment of depression and other neurological disorders. The synthesis of paroxetine and the possibility to prepare derivatives with a specific substitution pattern that may allow their use as biological probes is an attractive topic especially for medicinal chemists engaged in neurosciences research. Considering the extensive work that was developed in the last decade on the total synthesis of paroxetine, this review summarizes the most important contributions in this field, organized according to the reagent that was used as a starting material. Most of the methods allowed to prepare paroxetine in 4-9 steps with an overall yield of 9-66%. Despite the progress made in this area, there is still room for improvement, searching for new eco-friendly and sustainable synthetic alternatives.

Keywords: Paroxetine, synthetic methods, N-substituted piperidones, 4-fluorobenzaldehyde, substituted pyridines, α, β-unsaturated carbonyl compounds, 1, 3-dicarbonyl compounds.

[1]
GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159), 1736-1788.
[http://dx.doi.org/10.1016/S0140-6736(18)32203-7] [PMID: 30496103]
[2]
Practice guideline for the treatment of patients with major depressive disorder (revision). Am. J. Psychiatry, 2000, 157(4)(Suppl.), 1-45.
[PMID: 10767867]
[3]
Al-Harbi, K.S. Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Prefer. Adherence, 2012, 6, 369-388.
[http://dx.doi.org/10.2147/PPA.S29716] [PMID: 22654508]
[4]
Steiner, J.P.; Bachani, M.; Wolfson-Stofko, B.; Lee, M.H.; Wang, T.; Li, G.; Li, W.; Strayer, D.; Haughey, N.J.; Nath, A. Interaction of paroxetine with mitochondrial proteins mediates neuroprotection. Neurotherapeutics, 2015, 12(1), 200-216.
[http://dx.doi.org/10.1007/s13311-014-0315-9] [PMID: 25404050]
[5]
Davis, B.A.; Nagarajan, A.; Forrest, L.R.; Singh, S.K. Mechanism of paroxetine (paxil) inhibition of the serotonin transporter. Sci. Rep., 2016, 6, 23789.
[http://dx.doi.org/10.1038/srep23789] [PMID: 27032980]
[6]
Sangkuhl, K.; Klein, T.E.; Altman, R.B. Selective serotonin reuptake inhibitors pathway. Pharmacogenet. Genomics, 2009, 19(11), 907-909.
[http://dx.doi.org/10.1097/FPC.0b013e32833132cb] [PMID: 19741567]
[7]
Han, J.; Wang, L.U.; Bian, H.; Zhou, X.; Ruan, C. Effects of paroxetine on spatial memory function and protein kinase C expression in a rat model of depression. Exp. Ther. Med., 2015, 10(4), 1489-1492.
[http://dx.doi.org/10.3892/etm.2015.2663] [PMID: 26622512]
[8]
Sugi, K.; Itaya, N.; Katsura, T.; Igi, M.; Yamazaki, S.; Ishibashi, T.; Yamaoka, T.; Kawada, Y.; Tagami, Y.; Otsuki, M.; Ohshima, T. Improved synthesis of paroxetine hydrochloride propan-2-ol solvate through one of metabolites in humans, and characterization of the solvate crystals. Chem. Pharm. Bull. (Tokyo), 2000, 48(4), 529-536.
[http://dx.doi.org/10.1248/cpb.48.529] [PMID: 10783073]
[9]
Buxton, P.C.; Lynch, I.R.; Roe, J.M. Solid-state forms of paroxetine hydrochloride. Int. J. Pharm., 1988, 42(1-3), 135-143.
[http://dx.doi.org/10.1016/0378-5173(88)90169-X]
[10]
Singh, A.V.; Ansari, M.H.D.; Rosenkranz, D.; Maharjan, R.S.; Kriegel, F.L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial intelligence and machine learning in computational nanotoxicology: unlocking and empowering nanomedicine. Adv. Healthc. Mater., 2020, 9(17), e1901862.
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]
[11]
Jornil, J.; Jensen, K.G.; Larsen, F.; Linnet, K. Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator. Drug Metab. Dispos., 2010, 38(3), 376-385.
[http://dx.doi.org/10.1124/dmd.109.030551] [PMID: 20007670]
[12]
Hicks, J.K.; Bishop, J.R.; Sangkuhl, K.; Müller, D.J.; Ji, Y.; Leckband, S.G.; Leeder, J.S.; Graham, R.L.; Chiulli, D.L.; LLerena, A.; Skaar, T.C.; Scott, S.A.; Stingl, J.C.; Klein, T.E.; Caudle, K.E.; Gaedigk, A. LLerena, A.; Skaar, T.C.; Scott, S.A.; Stingl, J.C.; Klein, T.E.; Caudle, K.E.; Gaedigk, A. Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin. Pharmacol. Ther., 2015, 98(2), 127-134.
[http://dx.doi.org/10.1002/cpt.147] [PMID: 25974703]
[13]
De Risi, C.; Fanton, G.; Pollini, G.P.; Trapella, C.; Valente, F.; Zanirato, V. Recent advances in the stereoselective synthesis of trans-3,4-disubstituted-piperidines: applications to (−)-paroxetine. Tetrahed. Asymm., 2008, 19(2), 131-155.
[http://dx.doi.org/10.1016/j.tetasy.2008.01.004]
[14]
Chaubey, N.R.; Ghosh, S.K. An enantiodivergent and formal synthesis of paroxetine enantiomers by asymmetric desymmetrization of 3-(4-fluorophenyl)glutaric anhydride with a chiral SuperQuat oxazolidin-2-one. Tetrahed. Asymm., 2012, 23(15-16), 1206-1212.
[http://dx.doi.org/10.1016/j.tetasy.2012.08.001]
[15]
Yu, M.S.; Lantos, I.; Peng, Z.Q.; Yu, J.; Cacchio, T. Asymmetric synthesis of (−)-paroxetine using PLE hydrolysis. Tetrahedron Lett., 2000, 41(30), 5647-5651.
[http://dx.doi.org/10.1016/S0040-4039(00)00942-4]
[16]
Gangula, S.; Kolla, N.K.; Elati, C.; Dongamanti, A.; Bandichhor, R. Improved process for paroxetine hydrochloride substantially free from potential impurities. Synth. Commun., 2012, 42(22), 3344-3360.
[http://dx.doi.org/10.1080/00397911.2011.582216]
[17]
Despiau, C.F.; Dominey, A.P.; Harrowven, D.C.; Linclau, B. Total synthesis of (±)-paroxetine by diastereoconvergent cobalt-catalysed arylation. Eur. J. Org. Chem., 2014, 2014(20), 4335-4341.
[http://dx.doi.org/10.1002/ejoc.201402108] [PMID: 25505371]
[18]
Ding, J.; Rybak, T.; Hall, D.G. Synthesis of chiral heterocycles by ligand-controlled regiodivergent and enantiospecific Suzuki Miyaura cross-coupling. Nat. Commun., 2014, 5, 5474.
[http://dx.doi.org/10.1038/ncomms6474] [PMID: 25403650]
[19]
Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H. Enantioselective synthesis of chiral piperidines via the stepwise dearomatization/borylation of pyridines. J. Am. Chem. Soc., 2016, 138(13), 4338-4341.
[http://dx.doi.org/10.1021/jacs.6b01375] [PMID: 26967578]
[20]
Somaiah, S.; Sashikanth, S.; Raju, V.; Reddy, K.V. An efficient and stereoselective synthesis of (3S,4R)-(−)-trans-4-(4′-fluorophenyl)-3-hydroxymethyl-N-methylpiperidine. Tetrahed. Asymm., 2011, 22(1), 1-3.
[http://dx.doi.org/10.1016/j.tetasy.2010.12.020]
[21]
Faruk, E.A.; Martin, R.T. Process for preparing aryl-piperidine carbinols and novel intermediates used in the process. US Patent 4, 902,801, Ferburary 20, 1990.
[22]
Jensen, K.L.; Poulsen, P.H.; Donslund, B.S.; Morana, F.; Jørgensen, K.A. Asymmetric synthesis of γ-nitroesters by an organocatalytic one-pot strategy. Org. Lett., 2012, 14(6), 1516-1519.
[http://dx.doi.org/10.1021/ol3002514] [PMID: 22376002]
[23]
White, N.A.; Ozboya, K.E.; Flanigan, D.M.; Rovis, T. Rapid Construction of (-)-paroxetine and (-)-femoxetine via n-heterocyclic carbene catalyzed homoenolate addition to nitroalkenes. Asian J. Org. Chem., 2014, 3(4), 442-444.
[http://dx.doi.org/10.1002/ajoc.201402031] [PMID: 25485210]
[24]
Zhang, Y.; Liao, Y.; Liu, X.; Yao, Q.; Zhou, Y.; Lin, L.; Feng, X. Catalytic michael/ring-closure reaction of α,β-unsaturated pyrazoleamides with amidomalonates: asymmetric synthesis of (-)-paroxetine. Chemistry, 2016, 22(42), 15119-15124.
[http://dx.doi.org/10.1002/chem.201603056] [PMID: 27576747]
[25]
Kim, M.H.; Park, Y.; Jeong, B.S.; Park, H.G.; Jew, S.S. Synthesis of (-)-paroxetine via enantioselective phase-transfer catalytic monoalkylation of malonamide ester. Org. Lett., 2010, 12(12), 2826-2829.
[http://dx.doi.org/10.1021/ol100928v] [PMID: 20499863]
[26]
Devalankar, D.A.; Karabal, P.U.; Sudalai, A. Optically pure γ-butyrolactones and epoxy esters via two stereocentered HKR of 3-substituted epoxy esters: a formal synthesis of (-)-paroxetine, Ro 67-8867 and (+)-eldanolide. Org. Biomol. Chem., 2013, 11(8), 1280-1285.
[http://dx.doi.org/10.1039/c3ob27321k] [PMID: 23334653]
[27]
Tokunaga, M.; Larrow, J.F.; Kakiuchi, F.; Jacobsen, E.N. Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science, 1997, 277(5328), 936-938.
[http://dx.doi.org/10.1126/science.277.5328.936] [PMID: 9252321]
[28]
Singh, A.V.; Ansari, M.H.D.; Laux, P.; Luch, A. Micro-nanorobots: important considerations when developing novel drug delivery platforms. Expert Opin. Drug Deliv., 2019, 16(11), 1259-1275.
[http://dx.doi.org/10.1080/17425247.2019.1676228] [PMID: 31580731]
[29]
Singh, A.V.; Ansari, M.H.D.; Mahajan, M.; Srivastava, S.; Kashyap, S.; Dwivedi, P.; Pandit, V.; Katha, U. Sperm cell driven microrobots-emerging opportunities and challenges for biologically inspired robotic design. Micromachines (Basel), 2020, 11(4), 448-465.
[http://dx.doi.org/10.3390/mi11040448] [PMID: 32340402]
[30]
Singh, A.V.; Ansari, M.H.D.; Rosenkranz, D.; Maharjan, R.S.; Kriegel, F.L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial intelligence and machine learning in computational nanotoxicology: unlocking and empowering nanomedicine. Adv. Healthc. Mater., 2020, 9(17), e1901862.
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy