Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Dual-targeting Approach on Histamine H3 and Sigma-1 Receptor Ligands as Promising Pharmacological Tools in the Treatment of CNS-linked Disorders

Author(s): Katarzyna Szczepańska, Kamil J. Kuder and Katarzyna Kieć-Kononowicz*

Volume 28, Issue 15, 2021

Published on: 06 August, 2020

Page: [2974 - 2995] Pages: 22

DOI: 10.2174/0929867327666200806103144

Price: $65

Abstract

With the recent market approval of Pitolisant (Wakix®), the interest in clinical application for novel multifunctional histamine H3 receptor antagonists has clearly increased. Several combinations of different H3R pharmacophores with pharmacophoric elements of other G-protein coupled receptors, transporters, or enzymes have been synthesized by numerous pharmaceutical companies and academic institutions. Since central nervous system disorders are characterized by diverse physiological dysfunctions and deregulations of a complex network of signaling pathways, optimal multipotent drugs should simultaneously and peculiarly modulate selected groups of biological targets. Interestingly, very recent studies have shown that some clinically evaluated histamine H3 receptor antagonists possess a nanomolar affinity for sigma-1 receptor binding sites, suggesting that this property might play a role in their overall efficacy. The sigma-1 receptor, unusual and yet obscure protein, is supposed to be involved in numerous CNS pathologies through neuroprotection and neuroplasticity. These two different biological structures, histamine H3 and sigma-1 receptors, combined, can represent a potential fruitful target for therapeutic developments in tackling numerous human diseases.

Keywords: Histamine H3 receptors, sigma-1 receptors, dual-targeting ligands, Pitolistant, CNS pathologies, H3R pharmacophores.

[1]
Medina-Franco, J.L.; Giulianotti, M.A.; Welmaker, G.S.; Houghten, R.A. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov. Today, 2013, 18(9-10), 495-501.
[http://dx.doi.org/10.1016/j.drudis.2013.01.008] [PMID: 23340113]
[2]
Proschak, E.; Stark, H.; Merk, D. Polypharmacology by design: a medicinal chemist’s perspective on multitargeting compounds. J. Med. Chem., 2019, 62(2), 420-444.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00760] [PMID: 30035545]
[3]
Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem., 2008, 51(3), 347-372.
[http://dx.doi.org/10.1021/jm7009364] [PMID: 18181565]
[4]
Zimmermann, G.R.; Lehár, J.; Keith, C.T. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov. Today, 2007, 12(1-2), 34-42.
[http://dx.doi.org/10.1016/j.drudis.2006.11.008] [PMID: 17198971]
[5]
Oset-Gasque, M.J.; Marco-Contelles, J. Alzheimer’s disease, the “one-molecule, one-target” paradigm, and the multitarget directed ligand approach. ACS Chem. Neurosci., 2018, 9(3), 401-403.
[http://dx.doi.org/10.1021/acschemneuro.8b00069] [PMID: 29465220]
[6]
Łażewska, D.; Kieć-Kononowicz, K. Progress in the development of histamine H3 receptor antagonists/inverse agonists: a patent review (2013-2017). Expert Opin. Ther. Pat., 2018, 28(3), 175-196.
[http://dx.doi.org/10.1080/13543776.2018.1424135] [PMID: 29334795]
[7]
Khanfar, M.A.; Affini, A.; Lutsenko, K.; Nikolic, K.; Butini, S.; Stark, H. Multiple targeting approaches on histamine H3 receptor antagonists. Front. Neurosci., 2016, 10, 201.
[http://dx.doi.org/10.3389/fnins.2016.00201] [PMID: 27303254]
[8]
Riddy, D.M.; Cook, A.E.; Shackleford, D.M.; Pierce, T.L.; Mocaer, E.; Mannoury la Cour, C.; Sors, A.; Charman, W.N.; Summers, R.J.; Sexton, P.M.; Christopoulos, A.; Langmead, C.J. Drug-receptor kinetics and sigma-1 receptor affinity differentiate clinically evaluated histamine H3 receptor antagonists. Neuropharmacology, 2019, 144, 244-255.
[http://dx.doi.org/10.1016/j.neuropharm.2018.10.028] [PMID: 30359639]
[9]
Maurice, T.; Su, T.P. The pharmacology of sigma-1 receptors. Pharmacol. Ther., 2009, 124(2), 195-206.
[http://dx.doi.org/10.1016/j.pharmthera.2009.07.001] [PMID: 19619582]
[10]
Moreno, E.; Moreno-Delgado, D.; Navarro, G.; Hoffmann, H.M.; Fuentes, S.; Rosell-Vilar, S.; Gasperini, P.; Rodríguez-Ruiz, M.; Medrano, M.; Mallol, J.; Cortés, A.; Casadó, V.; Lluís, C.; Ferré, S.; Ortiz, J.; Canela, E.; McCormick, P.J. Cocaine disrupts histamine H3 receptor modulation of dopamine D1 receptor signaling: σ1-D1-H3 receptor complexes as key targets for reducing cocaine’s effects. J. Neurosci., 2014, 34(10), 3545-3558.
[http://dx.doi.org/10.1523/JNEUROSCI.4147-13.2014] [PMID: 24599455]
[11]
Schwartz, J.C.; Arrang, J.M.; Garbarg, M.; Pollard, H.; Ruat, M. Histaminergic transmission in the mammalian brain. Physiol. Rev., 1991, 71(1), 1-51.
[http://dx.doi.org/10.1152/physrev.1991.71.1.1] [PMID: 1846044]
[12]
Arrang, J.M.; Garbarg, M.; Schwartz, J.C. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature, 1983, 302(5911), 832-837.
[http://dx.doi.org/10.1038/302832a0] [PMID: 6188956]
[13]
Schlicker, E.; Malinowska, B.; Kathmann, M.; Göthert, M. Modulation of neurotransmitter release via histamine H3 heteroreceptors. Fundam. Clin. Pharmacol., 1994, 8(2), 128-137.
[http://dx.doi.org/10.1111/j.1472-8206.1994.tb00789.x] [PMID: 8020871]
[14]
Sadek, B.; Saad, A.; Sadeq, A.; Jalal, F.; Stark, H. Histamine H3 receptor as a potential target for cognitive symptoms in neuropsychiatric diseases. Behav. Brain Res., 2016, 312, 415-430.
[http://dx.doi.org/10.1016/j.bbr.2016.06.051] [PMID: 27363923]
[15]
Łażewska, D.; Kieć-Kononowicz, K. New developments around histamine H3 receptor antagonists/inverse agonists: a patent review (2010 – present). Expert Opin. Ther. Pat., 2014, 24(1), 89-111.
[http://dx.doi.org/10.1517/13543776.2014.848197] [PMID: 24131059]
[16]
Tiligada, E.; Kyriakidis, K.; Chazot, P.L.; Passani, M.B. Histamine pharmacology and new CNS drug targets. CNS Neurosci. Ther., 2011, 17(6), 620-628.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00212.x] [PMID: 22070192]
[17]
Bautista-Aguilera, Ó.M.; Hagenow, S.; Palomino-Antolin, A.; Farré-Alins, V.; Ismaili, L.; Joffrin, P.L.; Jimeno, M.L.; Soukup, O.; Janočková, J.; Kalinowsky, L.; Proschak, E.; Iriepa, I.; Moraleda, I.; Schwed, J.S.; Romero Martínez, A.; López-Muñoz, F.; Chioua, M.; Egea, J.; Ramsay, R.R.; Marco-Contelles, J.; Stark, H. Multitarget-directed ligands combining cholinesterase and monoamine oxidase inhibition with histamine H3 R antagonism for neurodegenerative diseases. Angew. Chem. Int. Ed. Engl., 2017, 56(41), 12765-12769.
[http://dx.doi.org/10.1002/anie.201706072] [PMID: 28861918]
[18]
Bhowmik, M.; Khanam, R.; Vohora, D. Histamine H3 receptor antagonists in relation to epilepsy and neurodegeneration: a systemic consideration of recent progress and perspectives. Br. J. Pharmacol., 2012, 167(7), 1398-1414.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02093.x] [PMID: 22758607]
[19]
Sadek, B.; Łażewska, D.; Hagenow, S.; Kieć-Kononowicz, K.; Stark, H. Histamine H3R antagonists: From scaffold hopping to clinical candidates.Histamine Receptors: The Receptors; Blandina, P.; Passani, M., Eds.; Humana: Totowa, 2016, Vol. 28, pp. 109-155.
[http://dx.doi.org/10.1007/978-3-319-40308-3_5 ]
[20]
Turnaturi, R.; Montenegro, L.; Marrazzo, A.; Parenti, R.; Pasquinucci, L.; Parenti, C. Benzomorphan skeleton, a versatile scaffold for different targets: a comprehensive review. Eur. J. Med. Chem., 2018, 155, 492-502.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.017] [PMID: 29908442]
[21]
Hanner, M.; Moebius, F.F.; Flandorfer, A.; Knaus, H.G.; Striessnig, J.; Kempner, E.; Glossmann, H. Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc. Natl. Acad. Sci. USA, 1996, 93(15), 8072-8077.
[http://dx.doi.org/10.1073/pnas.93.15.8072] [PMID: 8755605]
[22]
Seth, P.; Fei, Y-J.; Li, H.W.; Huang, W.; Leibach, F.H.; Ganapathy, V. Cloning and functional characterization of a sigma receptor from rat brain. J. Neurochem., 1998, 70(3), 922-931.
[http://dx.doi.org/10.1046/j.1471-4159.1998.70030922.x] [PMID: 9489711]
[23]
Pan, Y-X.; Mei, J.; Xu, J.; Wan, B-L.; Zuckerman, A.; Pasternak, G.W. Cloning and characterization of a mouse σ1 receptor. J. Neurochem., 1998, 70(6), 2279-2285.
[http://dx.doi.org/10.1046/j.1471-4159.1998.70062279.x] [PMID: 9603192]
[24]
Hayashi, T.; Su, T-P. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell, 2007, 131(3), 596-610.
[http://dx.doi.org/10.1016/j.cell.2007.08.036] [PMID: 17981125]
[25]
Arena, E.; Dichiara, M.; Floresta, G.; Parenti, C.; Marrazzo, A.; Pittalà, V.; Amata, E.; Prezzavento, O. Novel Sigma-1 receptor antagonists: from opioids to small molecules: what is new? Future Med. Chem., 2018, 10(2), 231-256.
[http://dx.doi.org/10.4155/fmc-2017-0164] [PMID: 29185346]
[26]
Su, T.P.; Hayashi, T.; Maurice, T.; Buch, S.; Ruoho, A.E. The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol. Sci., 2010, 31(12), 557-566.
[http://dx.doi.org/10.1016/j.tips.2010.08.007] [PMID: 20869780]
[27]
Tsai, S-Y.; Hayashi, T.; Harvey, B.K.; Wang, Y.; Wu, W.W.; Shen, R.F.; Zhang, Y.; Becker, K.G.; Hoffer, B.J.; Su, T.P. Sigma-1 receptors regulate hippocampal dendritic spine formation via a free radical-sensitive mechanism involving Rac1xGTP pathway. Proc. Natl. Acad. Sci. USA, 2009, 106(52), 22468-22473.
[http://dx.doi.org/10.1073/pnas.0909089106] [PMID: 20018732]
[28]
Meunier, J.; Hayashi, T. Sigma-1 receptors regulate Bcl-2 expression by reactive oxygen species-dependent transcriptional regulation of nuclear factor kappaB. J. Pharmacol. Exp. Ther., 2010, 332(2), 388-397.
[http://dx.doi.org/10.1124/jpet.109.160960] [PMID: 19855099]
[29]
Schmidt, H.R.; Zheng, S.; Gurpinar, E.; Koehl, A.; Manglik, A.; Kruse, A.C. Crystal structure of the human σ1 receptor. Nature, 2016, 532(7600), 527-530.
[http://dx.doi.org/10.1038/nature17391] [PMID: 27042935]
[30]
Alonso, G.; Phan, V.; Guillemain, I.; Saunier, M.; Legrand, A.; Anoal, M.; Maurice, T. Immunocytochemical localization of the sigma(1) receptor in the adult rat central nervous system. Neuroscience, 2000, 97(1), 155-170.
[http://dx.doi.org/10.1016/S0306-4522(00)00014-2] [PMID: 10771347]
[31]
Sánchez-Fernández, C.; Montilla-García, Á.; González-Cano, R.; Nieto, F.R.; Romero, L.; Artacho-Cordón, A.; Montes, R.; Fernández-Pastor, B.; Merlos, M.; Baeyens, J.M.; Entrena, J.M.; Cobos, E.J. Modulation of peripheral μ-opioid analgesia by σ1 receptors. J. Pharmacol. Exp. Ther., 2014, 348(1), 32-45.
[http://dx.doi.org/10.1124/jpet.113.208272] [PMID: 24155346]
[32]
Bangaru, M.L.; Weihrauch, D.; Tang, Q.B.; Zoga, V.; Hogan, Q. Sigma-1 receptor expression in sensory neurons and the effect of painful peripheral nerve injury. Mol. Pain, 2013, 9, 47.
[http://dx.doi.org/10.1186/1744-8069-9-47] [PMID: 24015960]
[33]
Estrada, M.; Pérez, C.; Soriano, E.; Laurini, E.; Romano, M.; Pricl, S.; Morales-García, J.A.; Pérez-Castillo, A.; Rodríguez-Franco, M.I. New neurogenic lipoic-based hybrids as innovative Alzheimer’s drugs with σ-1 agonism and β-secretase inhibition. Future Med. Chem., 2016, 8(11), 1191-1207.
[http://dx.doi.org/10.4155/fmc-2016-0036] [PMID: 27402296]
[34]
Pal, A.; Fontanilla, D.; Gopalakrishnan, A.; Chae, Y.K.; Markley, J.L.; Ruoho, A.E. The sigma-1 receptor protects against cellular oxidative stress and activates antioxidant response elements. Eur. J. Pharmacol., 2012, 682(1-3), 12-20.
[http://dx.doi.org/10.1016/j.ejphar.2012.01.030] [PMID: 22381068]
[35]
Gonzalez-Alvear, G.M.; Werling, L.L. Sigma receptor regulation of norepinephrine release from rat hippocampal slices. Brain Res., 1995, 673(1), 61-69.
[http://dx.doi.org/10.1016/0006-8993(94)01394-W] [PMID: 7757480]
[36]
Skuza, G.; Rogóz, Z. The synergistic effect of selective sigma receptor agonists and uncompetitive NMDA receptor antagonists in the forced swim test in rats. J. Physiol. Pharmacol., 2006, 57(2), 217-229.
[PMID: 16845227]
[37]
Dhir, A.; Kulkarni, S.K. Possible involvement of sigma-1 receptors in the anti-immobility action of bupropion, a dopamine reuptake inhibitor. Fundam. Clin. Pharmacol., 2008, 22(4), 387-394.
[http://dx.doi.org/10.1111/j.1472-8206.2008.00605.x] [PMID: 18705749]
[38]
Hayashi, T. Sigma-1 receptor: the novel intracellular target of neuropsychotherapeutic drugs. J. Pharmacol. Sci., 2015, 127(1), 2-5.
[http://dx.doi.org/10.1016/j.jphs.2014.07.001] [PMID: 25704011]
[39]
Malik, M.; Rangel-Barajas, C.; Sumien, N.; Su, C.; Singh, M.; Chen, Z.; Huang, R.Q.; Meunier, J.; Maurice, T.; Mach, R.H.; Luedtke, R.R. The effects of sigma (σ1) receptor-selective ligands on muscarinic receptor antagonist-induced cognitive deficits in mice. Br. J. Pharmacol., 2015, 172(10), 2519-2531.
[http://dx.doi.org/10.1111/bph.13076] [PMID: 25573298]
[40]
Almansa, C.; Vela, J.M. Selective sigma-1 receptor antagonists for the treatment of pain. Future Med. Chem., 2014, 6(10), 1179-1199.
[http://dx.doi.org/10.4155/fmc.14.54] [PMID: 25078137]
[41]
Zamanillo, D.; Romero, L.; Merlos, M.; Vela, J.M. Sigma 1 receptor: a new therapeutic target for pain. Eur. J. Pharmacol., 2013, 716(1-3), 78-93.
[http://dx.doi.org/10.1016/j.ejphar.2013.01.068] [PMID: 23500210]
[42]
Gris, G.; Cobos, E.J.; Zamanillo, D.; Portillo-Salido, E. Sigma-1 receptor and inflammatory pain. Inflamm. Res., 2015, 64(6), 377-381.
[http://dx.doi.org/10.1007/s00011-015-0819-8] [PMID: 25902777]
[43]
Navarro, G.; Moreno, E.; Aymerich, M.; Marcellino, D.; McCormick, P.J.; Mallol, J.; Cortés, A.; Casadó, V.; Canela, E.I.; Ortiz, J.; Fuxe, K.; Lluís, C.; Ferré, S.; Franco, R. Direct involvement of sigma-1 receptors in the dopamine D1 receptor-mediated effects of cocaine. Proc. Natl. Acad. Sci. USA, 2010, 107(43), 18676-18681.
[http://dx.doi.org/10.1073/pnas.1008911107] [PMID: 20956312]
[44]
Stark, H.; Kathmann, M.; Schlicker, E.; Schunack, W.; Schlegel, B.; Sippl, W. Medicinal chemical and pharmacological aspects of imidazole-containing histamine H3 receptor antagonists. Mini Rev. Med. Chem., 2004, 4(9), 965-977.
[http://dx.doi.org/10.2174/1389557043403107] [PMID: 15544557]
[45]
Ligneau, X.; Lin, J.; Vanni-Mercier, G.; Jouvet, M.; Muir, J.L.; Ganellin, C.R.; Stark, H.; Elz, S.; Schunack, W.; Schwartz, J. Neurochemical and behavioral effects of ciproxifan, a potent histamine H3-receptor antagonist. J. Pharmacol. Exp. Ther., 1998, 287(2), 658-666.
[PMID: 9808693]
[46]
Passani, M.B.; Blandina, P. Histamine receptors in the CNS as targets for therapeutic intervention. Trends Pharmacol. Sci., 2011, 32(4), 242-249.
[http://dx.doi.org/10.1016/j.tips.2011.01.003] [PMID: 21324537]
[47]
Sander, K.; Kottke, T.; Stark, H. Histamine H3 receptor antagonists go to clinics. Biol. Pharm. Bull., 2008, 31(12), 2163-2181.
[http://dx.doi.org/10.1248/bpb.31.2163] [PMID: 19043195]
[48]
Brioni, J.D.; Esbenshade, T.A.; Garrison, T.R.; Bitner, S.R.; Cowart, M.D. Discovery of histamine H3 antagonists for the treatment of cognitive disorders and Alzheimer’s disease. J. Pharmacol. Exp. Ther., 2011, 336(1), 38-46.
[http://dx.doi.org/10.1124/jpet.110.166876] [PMID: 20864505]
[49]
Nieto-Alamilla, G.; Márquez-Gómez, R.; García-Gálvez, A-M.; Morales-Figueroa, G-E.; Arias-Montaño, J-A. The histamine H3 receptor: structure, pharmacology, and function. Mol. Pharmacol., 2016, 90(5), 649-673.
[http://dx.doi.org/10.1124/mol.116.104752] [PMID: 27563055]
[50]
Nikolic, K.; Filipic, S.; Agbaba, D.; Stark, H. Procognitive properties of drugs with single and multitargeting H3 receptor antagonist activities. CNS Neurosci. Ther., 2014, 20(7), 613-623.
[http://dx.doi.org/10.1111/cns.12279] [PMID: 24836924]
[51]
Gemkow, M.J.; Davenport, A.J.; Harich, S.; Ellenbroek, B.A.; Cesura, A.; Hallett, D. The histamine H3 receptor as a therapeutic drug target for CNS disorders. Drug Discov. Today, 2009, 14(9-10), 509-515.
[http://dx.doi.org/10.1016/j.drudis.2009.02.011] [PMID: 19429511]
[52]
Wingen, K.; Stark, H. Scaffold variations in amine warhead of histamine H3 receptor antagonists. Drug Discov. Today. Technol., 2013, 10(4), e483-e489.
[http://dx.doi.org/10.1016/j.ddtec.2013.07.001] [PMID: 24451638]
[53]
Ablordeppey, S.Y.; Fischer, J.B.; Glennon, R.A. Is a nitrogen atom an important pharmacophoric element in sigma ligand binding? Bioorg. Med. Chem., 2000, 8(8), 2105-2111.
[http://dx.doi.org/10.1016/S0968-0896(00)00148-6] [PMID: 11003156]
[54]
Gund, T.M.; Shukla, K.; Su, T.P. Molecular modeling of sigma receptor ligands: A model of binding based on conformational and electrostatic considerations. J. Math. Chem., 1991, 8, 309-325.
[http://dx.doi.org/10.1007/BF01166945]
[55]
Glennon, R.A. Pharmacophore identification for sigma-1 (sigma1) receptor binding: application of the “deconstruction-reconstruction-elaboration” approach. Mini Rev. Med. Chem., 2005, 5(10), 927-940.
[http://dx.doi.org/10.2174/138955705774329519] [PMID: 16250835]
[56]
Toussaint, M.; Mousset, D.; Foulon, C.; Jacquemard, U.; Vaccher, C.; Melnyk, P. Sigma-1 ligands: Tic-hydantoin as a key pharmacophore. Eur. J. Med. Chem., 2010, 45(1), 256-263.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.004] [PMID: 19875205]
[57]
Yu, Y.; Zhang, L.; Yin, X.; Sun, H.; Uhl, G.R.; Wang, J.B. μ opioid receptor phosphorylation, desensitization, and ligand efficacy. J. Biol. Chem., 1997, 272(46), 28869-28874.
[http://dx.doi.org/10.1074/jbc.272.46.28869] [PMID: 9360954]
[58]
Zhou, J.; Jiang, X.; He, S.; Jiang, H.; Feng, F.; Liu, W.; Qu, W.; Sun, H. Rational design of multitarget-directed ligands: strategies and emerging paradigms. J. Med. Chem., 2019, 62(20), 8881-8914.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00017] [PMID: 31082225]
[59]
Nieto, F.R.; Cendán, C.M.; Sánchez-Fernández, C.; Cobos, E.J.; Entrena, J.M.; Tejada, M.A.; Zamanillo, D.; Vela, J.M.; Baeyens, J.M. Role of sigma-1 receptors in paclitaxel-induced neuropathic pain in mice. J. Pain, 2012, 13(11), 1107-1121.
[http://dx.doi.org/10.1016/j.jpain.2012.08.006] [PMID: 23063344]
[60]
Vidal-Torres, A.; de la Puente, B.; Rocasalbas, M.; Touriño, C.; Bura, S.A.; Fernández-Pastor, B.; Romero, L.; Codony, X.; Zamanillo, D.; Buschmann, H.; Merlos, M.; Baeyens, J.M.; Maldonado, R.; Vela, J.M. Sigma-1 receptor antagonism as opioid adjuvant strategy: enhancement of opioid antinociception without increasing adverse effects. Eur. J. Pharmacol., 2013, 711(1-3), 63-72.
[http://dx.doi.org/10.1016/j.ejphar.2013.04.018] [PMID: 23632394]
[61]
Phan, V.L.; Miyamoto, Y.; Nabeshima, T.; Maurice, T. Age-related expression of σ1 receptors and antidepressant efficacy of a selective agonist in the senescence-accelerated (SAM) mouse. J. Neurosci. Res., 2005, 79(4), 561-572.
[http://dx.doi.org/10.1002/jnr.20390] [PMID: 15635598]
[62]
Guitart, X.; Codony, X.; Monroy, X. Sigma receptors: biology and therapeutic potential. Psychopharmacology (Berl.), 2004, 174(3), 301-319.
[http://dx.doi.org/10.1007/s00213-004-1920-9] [PMID: 15197533]
[63]
Romero, L.; Zamanillo, D.; Nadal, X.; Sánchez-Arroyos, R.; Rivera-Arconada, I.; Dordal, A.; Montero, A.; Muro, A.; Bura, A.; Segalés, C.; Laloya, M.; Hernández, E.; Portillo-Salido, E.; Escriche, M.; Codony, X.; Encina, G.; Burgueño, J.; Merlos, M.; Baeyens, J.M.; Giraldo, J.; López-García, J.A.; Maldonado, R.; Plata-Salamán, C.R.; Vela, J.M. Pharmacological properties of S1RA, a new sigma-1 receptor antagonist that inhibits neuropathic pain and activity-induced spinal sensitization. Br. J. Pharmacol., 2012, 166(8), 2289-2306.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01942.x] [PMID: 22404321]
[64]
Vela, J.M.; Merlos, M.; Almansa, C. Investigational sigma-1 receptor antagonists for the treatment of pain. Expert Opin. Investig. Drugs, 2015, 24(7), 883-896.
[http://dx.doi.org/10.1517/13543784.2015.1048334] [PMID: 26037209]
[65]
Díaz, J.L.; Cuberes, R.; Berrocal, J. Synthesis and biological evaluation of the 1-arylpyrazole class of σ1 receptor antagonists: Identification of 4-{2-[5-methyl-1- (naphthalen-2-yl)-1H-pyrazol-3-yloxy]ethyl}morpholine (S1RA, E-52862). J. Med. Chem., 2012, 55(19), 8211-8224.
[http://dx.doi.org/10.1021/jm3007323] [PMID: 22784008]
[66]
Abadias, M.; Escriche, M.; Vaqué, A.; Sust, M.; Encina, G. Safety, tolerability and pharmacokinetics of single and multiple doses of a novel sigma-1 receptor antagonist in three randomized phase I studies. Br. J. Clin. Pharmacol., 2013, 75(1), 103-117.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04333.x] [PMID: 22607269]
[67]
Paniagua, N.; Girón, R.; Goicoechea, C.; López-Miranda, V.; Vela, J.M.; Merlos, M.; Martín Fontelles, M.I. Blockade of sigma 1 receptors alleviates sensory signs of diabetic neuropathy in rats. Eur. J. Pain, 2017, 21(1), 61-72.
[http://dx.doi.org/10.1002/ejp.897] [PMID: 27341510]
[68]
Tejada, M.A.; Montilla-García, A.; Sánchez-Fernández, C.; Entrena, J.M.; Perazzoli, G.; Baeyens, J.M.; Cobos, E.J. Sigma-1 receptor inhibition reverses acute inflammatory hyperalgesia in mice: role of peripheral sigma-1 receptors. Psychopharmacology (Berl.), 2014, 231(19), 3855-3869.
[http://dx.doi.org/10.1007/s00213-014-3524-3] [PMID: 24639046]
[69]
Gris, G.; Merlos, M.; Vela, J.M.; Zamanillo, D.; Portillo-Salido, E. S1RA, a selective sigma-1 receptor antagonist, inhibits inflammatory pain in the carrageenan and complete Freund’s adjuvant models in mice. Behav. Pharmacol., 2014, 25(3), 226-235.
[http://dx.doi.org/10.1097/FBP.0000000000000038] [PMID: 24776490]
[70]
Kim, F.J.; Kovalyshyn, I.; Burgman, M.; Neilan, C.; Chien, C-C.; Pasternak, G.W. Sigma 1 receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding. Mol. Pharmacol., 2010, 77(4), 695-703.
[http://dx.doi.org/10.1124/mol.109.057083] [PMID: 20089882]
[71]
Sánchez-Fernández, C.; Nieto, F.R.; González-Cano, R.; Artacho-Cordón, A.; Romero, L.; Montilla-García, Á.; Zamanillo, D.; Baeyens, J.M.; Entrena, J.M.; Cobos, E.J. Potentiation of morphine-induced mechanical antinociception by σ1 receptor inhibition: role of peripheral σ1 receptors. Neuropharmacology, 2013, 70, 348-358.
[http://dx.doi.org/10.1016/j.neuropharm.2013.03.002] [PMID: 23524304]
[72]
Díaz, J.L.; Zamanillo, D.; Corbera, J.; Baeyens, J.M.; Maldonado, R.; Pericàs, M.A.; Vela, J.M.; Torrens, A. Selective sigma-1 (sigma1) receptor antagonists: emerging target for the treatment of neuropathic pain. Cent. Nerv. Syst. Agents Med. Chem., 2009, 9(3), 172-183.
[http://dx.doi.org/10.2174/1871524910909030172] [PMID: 20021351]
[73]
Entrena, J.M.; Cobos, E.J.; Nieto, F.R.; Cendán, C.M.; Gris, G.; Del Pozo, E.; Zamanillo, D.; Baeyens, J.M. Sigma-1 receptors are essential for capsaicin-induced mechanical hypersensitivity: studies with selective sigma-1 ligands and sigma-1 knockout mice. Pain, 2009, 143(3), 252-261.
[http://dx.doi.org/10.1016/j.pain.2009.03.011] [PMID: 19375855]
[74]
González-Cano, R.; Merlos, M.; Baeyens, J.M.; Cendán, C.M. σ1 receptors are involved in the visceral pain induced by intracolonic administration of capsaicin in mice. Anesthesiology, 2013, 118(3), 691-700.
[http://dx.doi.org/10.1097/ALN.0b013e318280a60a] [PMID: 23299362]
[75]
Chien, C.C.; Pasternak, G.W. Functional antagonism of morphine analgesia by (+)-pentazocine: evidence for an anti-opioid σ 1 system. Eur. J. Pharmacol., 1993, 250(1), R7-R8.
[http://dx.doi.org/10.1016/0014-2999(93)90650-7] [PMID: 8119306]
[76]
Leppert, W.; Okulicz-Kozaryn, I.; Kaminska, E.; Szulc, M.; Mikolajczak, P. Analgesic effects of morphine in combination with adjuvant drugs in rats. Pharmacology, 2014, 94(5-6), 207-213.
[http://dx.doi.org/10.1159/000365220] [PMID: 25402013]
[77]
Chien, C.C.; Pasternak, G.W. Selective antagonism of opioid analgesia by a sigma system. J. Pharmacol. Exp. Ther., 1994, 271(3), 1583-1590.
[PMID: 7996472]
[78]
Chien, C.C.; Pasternak, G.W. Sigma antagonists potentiate opioid analgesia in rats. Neurosci. Lett., 1995, 190(2), 137-139.
[http://dx.doi.org/10.1016/0304-3940(95)11504-P] [PMID: 7644123]
[79]
King, M.A.; Rossi, G.C.; Chang, A.H.; Williams, L.; Pasternak, G.W. Spinal analgesic activity of orphanin FQ/nociceptin and its fragments. Neurosci. Lett., 1997, 223(2), 113-116.
[http://dx.doi.org/10.1016/S0304-3940(97)13414-0] [PMID: 9089686]
[80]
Hsieh, G.C.; Honore, P.; Pai, M.; Wensink, E.J.; Chandran, P.; Salyers, A.K.; Wetter, J.M.; Zhao, C.; Liu, H.; Decker, M.W.; Esbenshade, T.A.; Cowart, M.D.; Brioni, J.D. Antinociceptive effects of histamine H3 receptor antagonist in the preclinical models of pain in rats and the involvement of central noradrenergic systems. Brain Res., 2010, 1354, 74-84.
[http://dx.doi.org/10.1016/j.brainres.2010.07.083] [PMID: 20682302]
[81]
McGaraughty, S.; Chu, K.L.; Cowart, M.D.; Brioni, J.D. Antagonism of supraspinal histamine H3 receptors modulates spinal neuronal activity in neuropathic rats. J. Pharmacol. Exp. Ther., 2012, 343(1), 13-20.
[http://dx.doi.org/10.1124/jpet.112.194761] [PMID: 22729221]
[82]
Zhang, D.D.; Sisignano, M.; Schuh, C.D.; Sander, K.; Stark, H.; Scholich, K. Overdose of the histamine H3 inverse agonist pitolisant increases thermal pain thresholds. Inflamm. Res., 2012, 61(11), 1283-1291.
[http://dx.doi.org/10.1007/s00011-012-0528-5] [PMID: 22820944]
[83]
Salat, K.; Gryzlo, B.; Kulig, K. Experimental drugs for neuropathic pain. Curr. Neuropharmacol., 2018, 16(8), 1193-1209.
[http://dx.doi.org/10.2174/1570159X16666180510151241] [PMID: 29745335]
[84]
Medhurst, S.J.; Collins, S.D.; Billinton, A.; Bingham, S.; Dalziel, R.G.; Brass, A.; Roberts, J.C.; Medhurst, A.D.; Chessell, I.P. Novel histamine H3 receptor antagonists GSK189254 and GSK334429 are efficacious in surgically-induced and virally-induced rat models of neuropathic pain. Pain, 2008, 138(1), 61-69.
[http://dx.doi.org/10.1016/j.pain.2007.11.006] [PMID: 18164820]
[85]
Chaumette, T.; Chapuy, E.; Berrocoso, E.; Llorca-Torralba, M.; Bravo, L.; Mico, J.A.; Chalus, M.; Eschalier, A.; Ardid, D.; Marchand, F.; Sors, A. Effects of S 38093, an antagonist/inverse agonist of histamine H3 receptors, in models of neuropathic pain in rats. Eur. J. Pain, 2018, 22(1), 127-141.
[http://dx.doi.org/10.1002/ejp.1097] [PMID: 28877402]
[86]
Sors, A.; Panayi, F.; Bert, L.; Favale, D.; Nosjean, O.; Audinot, V.; Arrang, J.M.; Buisson, B.; Steidl, E.; Delbos, J.M.; Huhtala, T.; Kontkanen, O.; Chollet, A.M.; Casara, P.; Lestage, P. Mechanistic characterization of S 38093, a novel inverse agonist at histamine H3 receptors. Eur. J. Pharmacol., 2017, 803, 11-23.
[http://dx.doi.org/10.1016/j.ejphar.2017.03.013] [PMID: 28336400]
[87]
Matsumoto, R.R.; Bowen, W.D.; Su, T.P. Sigma Receptors: Chemistry, Cell Biology and Clinical Implications; Springer US: New York, 2007.
[http://dx.doi.org/10.1007/978-0-387-36514-5 ]
[88]
Nguyen, L.; Kaushal, N.; Robson, M.J.; Matsumoto, R.R. Sigma receptors as potential therapeutic targets for neuroprotection. Eur. J. Pharmacol., 2014, 743, 42-47.
[http://dx.doi.org/10.1016/j.ejphar.2014.09.022] [PMID: 25261035]
[89]
Mishina, M.; Ohyama, M.; Ishii, K.; Kitamura, S.; Kimura, Y.; Oda, K.; Kawamura, K.; Sasaki, T.; Kobayashi, S.; Katayama, Y.; Ishiwata, K. Low density of sigma1 receptors in early Alzheimer’s disease. Ann. Nucl. Med., 2008, 22(3), 151-156.
[http://dx.doi.org/10.1007/s12149-007-0094-z] [PMID: 18498028]
[90]
Fehér, Á.; Juhász, A.; László, A.; Kálmán, J., Jr; Pákáski, M.; Kálmán, J.; Janka, Z. Association between a variant of the sigma-1 receptor gene and Alzheimer’s disease. Neurosci. Lett., 2012, 517(2), 136-139.
[http://dx.doi.org/10.1016/j.neulet.2012.04.046] [PMID: 22561649]
[91]
Meunier, J.; Ieni, J.; Maurice, T. The anti-amnesic and neuroprotective effects of donepezil against amyloid beta25-35 peptide-induced toxicity in mice involve an interaction with the σ1 receptor. Br. J. Pharmacol., 2006, 149(8), 998-1012.
[http://dx.doi.org/10.1038/sj.bjp.0706927] [PMID: 17057756]
[92]
Lahmy, V.; Meunier, J.; Malmström, S.; Naert, G.; Givalois, L.; Kim, S.H.; Villard, V.; Vamvakides, A.; Maurice, T. Blockade of Tau hyperphosphorylation and Aβ1−42 generation by the aminotetrahydrofuran derivative ANAVEX2-73, a mixed muscarinic and σ1 receptor agonist, in a nontransgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology, 2013, 38(9), 1706-1723.
[http://dx.doi.org/10.1038/npp.2013.70] [PMID: 23493042]
[93]
Villard, V.; Espallergues, J.; Keller, E.; Vamvakides, A.; Maurice, T. Anti-amnesic and neuroprotective potentials of the mixed muscarinic receptor/sigma 1 (σ1) ligand ANAVEX2-73, a novel aminotetrahydrofuran derivative. J. Psychopharmacol. (Oxford), 2011, 25(8), 1101-1117.
[http://dx.doi.org/10.1177/0269881110379286] [PMID: 20829307]
[94]
Hedskog, L.; Pinho, C.M.; Filadi, R.; Rönnbäck, A.; Hertwig, L.; Wiehager, B.; Larssen, P.; Gellhaar, S.; Sandebring, A.; Westerlund, M.; Graff, C.; Winblad, B.; Galter, D.; Behbahani, H.; Pizzo, P.; Glaser, E.; Ankarcrona, M. Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proc. Natl. Acad. Sci. USA, 2013, 110(19), 7916-7921.
[http://dx.doi.org/10.1073/pnas.1300677110] [PMID: 23620518]
[95]
Garcés-Ramírez, L.; Green, J.L.; Hiranita, T.; Kopajtic, T.A.; Mereu, M.; Thomas, A.M.; Mesangeau, C.; Narayanan, S.; McCurdy, C.R.; Katz, J.L.; Tanda, G. Sigma receptor agonists: receptor binding and effects on mesolimbic dopamine neurotransmission assessed by microdialysis. Biol. Psychiatry, 2011, 69(3), 208-217.
[http://dx.doi.org/10.1016/j.biopsych.2010.07.026] [PMID: 20950794]
[96]
Villard, V.; Espallergues, J.; Keller, E.; Alkam, T.; Nitta, A.; Yamada, K.; Nabeshima, T.; Vamvakides, A.; Maurice, T. Antiamnesic and neuroprotective effects of the aminotetrahydrofuran derivative ANAVEX1-41 against amyloid beta(25-35)-induced toxicity in mice. Neuropsychopharmacology, 2009, 34(6), 1552-1566.
[http://dx.doi.org/10.1038/npp.2008.212] [PMID: 19052542]
[97]
Antonini, V.; Marrazzo, A.; Kleiner, G.; Coradazzi, M.; Ronsisvalle, S.; Prezzavento, O.; Ronsisvalle, G.; Leanza, G. Anti-amnesic and neuroprotective actions of the sigma-1 receptor agonist (-)-MR22 in rats with selective cholinergic lesion and amyloid infusion. J. Alzheimers Dis., 2011, 24(3), 569-586.
[http://dx.doi.org/10.3233/JAD-2011-101794] [PMID: 21297260]
[98]
Yang, R.; Chen, L.; Wang, H.; Xu, B.; Tomimoto, H.; Chen, L. Anti-amnesic effect of neurosteroid PREGS in Aβ25-35-injected mice through σ1 receptor- and α7nAChR-mediated neuroprotection. Neuropharmacology, 2012, 63(6), 1042-1050.
[http://dx.doi.org/10.1016/j.neuropharm.2012.07.035] [PMID: 22884465]
[99]
Reich, S.G.; Savitt, J.M. Parkinson’s disease. Med. Clin. North Am., 2019, 103(2), 337-350.
[http://dx.doi.org/10.1016/j.mcna.2018.10.014] [PMID: 30704685]
[100]
Dauer, W.; Przedborski, S. Parkinson’s disease: mechanisms and models. Neuron, 2003, 39(6), 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[101]
Mishina, M.; Ishiwata, K.; Ishii, K.; Kitamura, S.; Kimura, Y.; Kawamura, K.; Oda, K.; Sasaki, T.; Sakayori, O.; Hamamoto, M.; Kobayashi, S.; Katayama, Y. Function of sigma1 receptors in Parkinson’s disease. Acta Neurol. Scand., 2005, 112(2), 103-107.
[http://dx.doi.org/10.1111/j.1600-0404.2005.00432.x] [PMID: 16008536]
[102]
Mori, T.; Hayashi, T.; Su, T-P. Compromising σ-1 receptors at the endoplasmic reticulum render cytotoxicity to physiologically relevant concentrations of dopamine in a nuclear factor-κB/Bcl-2-dependent mechanism: potential relevance to Parkinson’s disease. J. Pharmacol. Exp. Ther., 2012, 341(3), 663-671.
[http://dx.doi.org/10.1124/jpet.111.190868] [PMID: 22399814]
[103]
Francardo, V.; Bez, F.; Wieloch, T.; Nissbrandt, H.; Ruscher, K.; Cenci, M.A. Pharmacological stimulation of sigma-1 receptors has neurorestorative effects in experimental parkinsonism. Brain, 2014, 137(Pt 7), 1998-2014.
[http://dx.doi.org/10.1093/brain/awu107] [PMID: 24755275]
[104]
Sadek, B.; Stark, H. Cherry-picked ligands at histamine receptor subtypes. Neuropharmacology, 2016, 106, 56-73.
[http://dx.doi.org/10.1016/j.neuropharm.2015.11.005] [PMID: 26581501]
[105]
Panula, P.; Chazot, P.L.; Cowart, M.; Gutzmer, R.; Leurs, R.; Liu, W.L.; Stark, H.; Thurmond, R.L.; Haas, H.L. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol. Rev., 2015, 67(3), 601-655.
[http://dx.doi.org/10.1124/pr.114.010249] [PMID: 26084539]
[106]
Passani, M.B.; Lin, J.S.; Hancock, A.; Crochet, S.; Blandina, P. The histamine H3 receptor as a novel therapeutic target for cognitive and sleep disorders. Trends Pharmacol. Sci., 2004, 25(12), 618-625.
[http://dx.doi.org/10.1016/j.tips.2004.10.003] [PMID: 15530639]
[107]
Lin, J-S.; Sergeeva, O.A.; Haas, H.L. Histamine H3 receptors and sleep-wake regulation. J. Pharmacol. Exp. Ther., 2011, 336(1), 17-23.
[http://dx.doi.org/10.1124/jpet.110.170134] [PMID: 20864502]
[108]
Dauvilliers, Y.; Bassetti, C.; Lammers, G.J.; Arnulf, I.; Mayer, G.; Rodenbeck, A.; Lehert, P.; Ding, C.L.; Lecomte, J.M.; Schwartz, J.C. HARMONY I study group. Pitolisant versus placebo or modafinil in patients with narcolepsy: a double-blind, randomised trial. Lancet Neurol., 2013, 12(11), 1068-1075.
[http://dx.doi.org/10.1016/S1474-4422(13)70225-4] [PMID: 24107292]
[109]
Medhurst, A.D.; Atkins, A.R.; Beresford, I.J.; Brackenborough, K.; Briggs, M.A.; Calver, A.R.; Cilia, J.; Cluderay, J.E.; Crook, B.; Davis, J.B.; Davis, R.K.; Davis, R.P.; Dawson, L.A.; Foley, A.G.; Gartlon, J.; Gonzalez, M.I.; Heslop, T.; Hirst, W.D.; Jennings, C.; Jones, D.N.; Lacroix, L.P.; Martyn, A.; Ociepka, S.; Ray, A.; Regan, C.M.; Roberts, J.C.; Schogger, J.; Southam, E.; Stean, T.O.; Trail, B.K.; Upton, N.; Wadsworth, G.; Wald, J.A.; White, T.; Witherington, J.; Woolley, M.L.; Worby, A.; Wilson, D.M. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer’s disease brain and improves cognitive performance in preclinical models. J. Pharmacol. Exp. Ther., 2007, 321(3), 1032-1045.
[http://dx.doi.org/10.1124/jpet.107.120311] [PMID: 17327487]
[110]
Fox, G.B.; Esbenshade, T.A.; Pan, J.B.; Radek, R.J.; Krueger, K.M.; Yao, B.B.; Browman, K.E.; Buckley, M.J.; Ballard, M.E.; Komater, V.A.; Miner, H.; Zhang, M.; Faghih, R.; Rueter, L.E.; Bitner, R.S.; Drescher, K.U.; Wetter, J.; Marsh, K.; Lemaire, M.; Porsolt, R.D.; Bennani, Y.L.; Sullivan, J.P.; Cowart, M.D.; Decker, M.W.; Hancock, A.A. Pharmacological properties of ABT-239 [4-(2-2-[(2R)-2-Methylpyrrolidinyl]ethyl-benzofuran-5-yl)benzoni-trile]: II. Neurophysiological characterization and broad preclinical efficacy in cognition and schizophrenia of a potent and selective histamine H3 receptor antagonist. J. Pharmacol. Exp. Ther., 2005, 313(1), 176-190.
[http://dx.doi.org/10.1124/jpet.104.078402] [PMID: 15608077]
[111]
Mochizuki, T.; Okakura-Mochizuki, K.; Horii, A.; Yamamoto, Y.; Yamatodani, A. Histaminergic modulation of hippocampal acetylcholine release in vivo. J. Neurochem., 1994, 62(6), 2275-2282.
[http://dx.doi.org/10.1046/j.1471-4159.1994.62062275.x] [PMID: 7910631]
[112]
Hu, W.; Chen, Z. The roles of histamine and its receptor ligands in central nervous system disorders: an update. Pharmacol. Ther., 2017, 175, 116-132.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.039] [PMID: 28223162]
[113]
Komater, V.A.; Browman, K.E.; Curzon, P.; Hancock, A.A.; Decker, M.W.; Fox, G.B. H3 receptor blockade by thioperamide enhances cognition in rats without inducing locomotor sensitization. Psychopharmacology (Berl.), 2003, 167(4), 363-372.
[http://dx.doi.org/10.1007/s00213-003-1431-0] [PMID: 12682709]
[114]
Miyazaki, S.; Imaizumi, M.; Onodera, K. Effects of thioperamide on the cholinergic system and the step-through passive avoidance test in mice. Methods Find. Exp. Clin. Pharmacol., 1995, 17(10), 653-658.
[PMID: 9053585]
[115]
Ferrada, C.; Ferré, S.; Casadó, V.; Cortés, A.; Justinova, Z.; Barnes, C.; Canela, E.I.; Goldberg, S.R.; Leurs, R.; Lluis, C.; Franco, R. Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function. Neuropharmacology, 2008, 55(2), 190-197.
[http://dx.doi.org/10.1016/j.neuropharm.2008.05.008] [PMID: 18547596]
[116]
Masini, D.; Lopes-Aguiar, C.; Bonito-Oliva, A.; Papadia, D.; Andersson, R.; Fisahn, A.; Fisone, G. The histamine H3 receptor antagonist thioperamide rescues circadian rhythm and memory function in experimental parkinsonism. Transl. Psychiatry, 2017, 7(4)e1088
[http://dx.doi.org/10.1038/tp.2017.58] [PMID: 28398338]
[117]
Stark, H.; Sadek, B.; Krause, M.; Hüls, A.; Ligneau, X.; Ganellin, C.R.; Arrang, J.M.; Schwartz, J.C.; Schunack, W. Novel histamine H(3)-receptor antagonists with carbonyl-substituted 4-(3-(phenoxy)propyl)-1H-imidazole structures like ciproxifan and related compounds. J. Med. Chem., 2000, 43(21), 3987-3994.
[http://dx.doi.org/10.1021/jm000966l] [PMID: 11052804]
[118]
Day, M.; Pan, J.B.; Buckley, M.J.; Cronin, E.; Hollingsworth, P.R.; Hirst, W.D.; Navarra, R.; Sullivan, J.P.; Decker, M.W.; Fox, G.B. Differential effects of ciproxifan and nicotine on impulsivity and attention measures in the 5-choice serial reaction time test. Biochem. Pharmacol., 2007, 73(8), 1123-1134.
[http://dx.doi.org/10.1016/j.bcp.2006.12.004] [PMID: 17214974]
[119]
Komater, V.A.; Buckley, M.J.; Browman, K.E.; Pan, J.B.; Hancock, A.A.; Decker, M.W.; Fox, G.B. Effects of histamine H3 receptor antagonists in two models of spatial learning. Behav. Brain Res., 2005, 159(2), 295-300.
[http://dx.doi.org/10.1016/j.bbr.2004.11.008] [PMID: 15817192]
[120]
Hancock, A.A. The challenge of drug discovery of a GPCR target: analysis of preclinical pharmacology of histamine H3 antagonists/inverse agonists. Biochem. Pharmacol., 2006, 71(8), 1103-1113.
[http://dx.doi.org/10.1016/j.bcp.2005.10.033] [PMID: 16513092]
[121]
Cowart, M.; Faghih, R.; Curtis, M.P.; Gfesser, G.A.; Bennani, Y.L.; Black, L.A.; Pan, L.; Marsh, K.C.; Sullivan, J.P.; Esbenshade, T.A.; Fox, G.B.; Hancock, A.A. 4-(2-[2-(2(R)-methylpyrrolidin-1-yl)ethyl]benzofuran-5-yl)benzonitrile and related 2-aminoethylbenzofuran H3 receptor antagonists potently enhance cognition and attention. J. Med. Chem., 2005, 48(1), 38-55.
[http://dx.doi.org/10.1021/jm040118g] [PMID: 15634000]
[122]
Haig, G.M.; Pritchett, Y.; Meier, A.; Othman, A.A.; Hall, C.; Gault, L.M.; Lenz, R.A. A randomized study of H3 antagonist ABT-288 in mild-to-moderate Alzheimer’s dementia. J. Alzheimers Dis., 2014, 42(3), 959-971.
[http://dx.doi.org/10.3233/JAD-140291] [PMID: 25024314]
[123]
Othman, A.A.; Haig, G.; Florian, H.; Locke, C.; Gertsik, L.; Dutta, S. The H3 antagonist ABT-288 is tolerated at significantly higher exposures in subjects with schizophrenia than in healthy volunteers. Br. J. Clin. Pharmacol., 2014, 77(6), 965-974.
[http://dx.doi.org/10.1111/bcp.12281] [PMID: 24215171]
[124]
Takano, T.; Sakaue, Y.; Sokoda, T.; Sawai, C.; Akabori, S.; Maruo, Y.; Taga, T.; Ohno, M.; Takeuchi, Y. Seizure susceptibility due to antihistamines in febrile seizures. Pediatr. Neurol., 2010, 42(4), 277-279.
[http://dx.doi.org/10.1016/j.pediatrneurol.2009.11.001] [PMID: 20304332]
[125]
Lim, H.D.; van Rijn, R.M.; Ling, P.; Bakker, R.A.; Thurmond, R.L.; Leurs, R. Evaluation of histamine H1-, H2-, and H3-receptor ligands at the human histamine H4 receptor: identification of 4-methylhistamine as the first potent and selective H4 receptor agonist. J. Pharmacol. Exp. Ther., 2005, 314(3), 1310-1321.
[http://dx.doi.org/10.1124/jpet.105.087965] [PMID: 15947036]
[126]
Higuchi, M.; Yanai, K.; Okamura, N.; Meguro, K.; Arai, H.; Itoh, M.; Iwata, R.; Ido, T.; Watanabe, T.; Sasaki, H. Histamine H(1) receptors in patients with Alzheimer’s disease assessed by positron emission tomography. Neuroscience, 2000, 99(4), 721-729.
[http://dx.doi.org/10.1016/S0306-4522(00)00230-X] [PMID: 10974435]
[127]
Guo, R.X.; Anaclet, C.; Roberts, J.C.; Parmentier, R.; Zhang, M.; Guidon, G.; Buda, C.; Sastre, J.P.; Feng, J.Q.; Franco, P.; Brown, S.H.; Upton, N.; Medhurst, A.D.; Lin, J.S. Differential effects of acute and repeat dosing with the H3 antagonist GSK189254 on the sleep-wake cycle and narcoleptic episodes in Ox-/- mice. Br. J. Pharmacol., 2009, 157(1), 104-117.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00205.x] [PMID: 19413575]
[128]
Ashworth, S.; Rabiner, E.A.; Gunn, R.N.; Plisson, C.; Wilson, A.A.; Comley, R.A.; Lai, R.Y.; Gee, A.D.; Laruelle, M.; Cunningham, V.J. Evaluation of 11C-GSK189254 as a novel radioligand for the H3 receptor in humans using PET. J. Nucl. Med., 2010, 51(7), 1021-1029.
[http://dx.doi.org/10.2967/jnumed.109.071753] [PMID: 20554726]
[129]
Wilson, D.M.; Apps, J.; Bailey, N.; Bamford, M.J.; Beresford, I.J.; Brackenborough, K.; Briggs, M.A.; Brough, S.; Calver, A.R.; Crook, B.; Davis, R.K.; Davis, R.P.; Davis, S.; Dean, D.K.; Harris, L.; Heslop, T.; Holland, V.; Jeffrey, P.; Panchal, T.A.; Parr, C.A.; Quashie, N.; Schogger, J.; Sehmi, S.S.; Stean, T.O.; Steadman, J.G.; Trail, B.; Wald, J.; Worby, A.; Takle, A.K.; Witherington, J.; Medhurst, A.D. Identification of clinical candidates from the benzazepine class of histamine H3 receptor antagonists. Bioorg. Med. Chem. Lett., 2013, 23(24), 6890-6896.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.090] [PMID: 24269482]
[130]
Holtz, N.A.; Anker, J.J.; Regier, P.S.; Claxton, A.; Carroll, M.E. Cocaine self-administration punished by i.v. histamine in rat models of high and low drug abuse vulnerability: effects of saccharin preference, impulsivity, and sex. Physiol. Behav., 2013, 122, 32-38.
[http://dx.doi.org/10.1016/j.physbeh.2013.08.004] [PMID: 23948673]
[131]
Grove, R.A.; Harrington, C.M.; Mahler, A.; Beresford, I.; Maruff, P.; Lowy, M.T.; Nicholls, A.P.; Boardley, R.L.; Berges, A.C.; Nathan, P.J.; Horrigan, J.P. A randomized, double-blind, placebo-controlled, 16-week study of the H3 receptor antagonist, GSK239512 as a monotherapy in subjects with mild-to-moderate Alzheimer’s disease. Curr. Alzheimer Res., 2014, 11(1), 47-58.
[http://dx.doi.org/10.2174/1567205010666131212110148] [PMID: 24359500]
[132]
Raddatz, R.; Hudkins, R.L.; Mathiasen, J.R.; Gruner, J.A.; Flood, D.G.; Aimone, L.D.; Le, S.; Schaffhauser, H.; Duzic, E.; Gasior, M.; Bozyczko-Coyne, D.; Marino, M.J.; Ator, M.A.; Bacon, E.R.; Mallamo, J.P.; Williams, M. CEP-26401 (irdabisant), a potent and selective histamine H3 receptor antagonist/inverse agonist with cognition-enhancing and wake-promoting activities. J. Pharmacol. Exp. Ther., 2012, 340(1), 124-133.
[http://dx.doi.org/10.1124/jpet.111.186585] [PMID: 22001260]
[133]
Hudkins, R.L.; Becknell, N.C.; Lyons, J.A.; Aimone, L.D.; Olsen, M.; Haltiwanger, R.C.; Mathiasen, J.R.; Raddatz, R.; Gruner, J.A. 3,4-Diaza-bicyclo[4.1.0]hept-4-en-2-one phenoxypropylamine analogs of irdabisant (CEP-26401) as potent histamine-3 receptor inverse agonists with robust wake-promoting activity. Eur. J. Med. Chem., 2015, 95, 349-356.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.054] [PMID: 25827402]
[134]
Hudkins, R.L.; Raddatz, R.; Tao, M. Discovery and characterization of 6-{4-[3-(R)-2-methylpyrrolidin-1-yl) propoxy]phenyl}-2H-pyridazin-3-one (CEP-26401, irdabisant): a potent, selective histamine H3 receptor inverse agonist. J. Med. Chem., 2011, 54(13), 4781-4792.
[http://dx.doi.org/10.1021/jm200401v] [PMID: 21634396]
[135]
Meier, G.; Apelt, J.; Reichert, U.; Grassmann, S.; Ligneau, X.; Elz, S.; Leurquin, F.; Ganellin, C.R.; Schwartz, J.C.; Schunack, W.; Stark, H. Influence of imidazole replacement in different structural classes of histamine H(3)-receptor antagonists. Eur. J. Pharm. Sci., 2001, 13(3), 249-259.
[http://dx.doi.org/10.1016/S0928-0987(01)00106-3] [PMID: 11384847]
[136]
Esbenshade, T.A.; Browman, K.E.; Bitner, R.S.; Strakhova, M.; Cowart, M.D.; Brioni, J.D. The histamine H3 receptor: an attractive target for the treatment of cognitive disorders. Br. J. Pharmacol., 2008, 154(6), 1166-1181.
[http://dx.doi.org/10.1038/bjp.2008.147] [PMID: 18469850]
[137]
Kasteleijn- Nolst Trenité D. Parain D. Genton P, Masnou P, Schwartz JC, Hirsch E. Efficacy of the histamine H3 receptor (H3R) antagonist pitolisant (formerly known as tiprolisant; BF2.649) in epilepsy: Dose-dependent effects in the human photosensitivity model. Epilepsy Behav., 2013, 28(1), 66-70.
[http://dx.doi.org/10.1016/j.yebeh.2013.03.018] [PMID: 23665640]
[138]
Ligneau, X.; Perrin, D.; Landais, L. BF2.649 [1-{3-[3-(4-Chlorophenyl)propoxy]propyl}piperidine, hydrochloride], a nonimidazole inverse agonist/antagonist at the human histamine H3 receptor: preclinical pharmacology. J. Pharmacol. Exp. Ther., 2007, 320(1), 365-375.
[http://dx.doi.org/10.1124/jpet.106.111039] [PMID: 17005916]
[139]
Swanson, D.M.; Shah, C.R.; Lord, B.; Morton, K.; Dvorak, L.K.; Mazur, C.; Apodaca, R.; Xiao, W.; Boggs, J.D.; Feinstein, M.; Wilson, S.J.; Barbier, A.J.; Bonaventure, P.; Lovenberg, T.W.; Carruthers, N.I. Heterocyclic replacement of the central phenyl core of diamine-based histamine H3 receptor antagonists. Eur. J. Med. Chem., 2009, 44(11), 4413-4425.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.007] [PMID: 19577344]
[140]
Bishara, D. Once-monthly paliperidone injection for the treatment of schizophrenia. Neuropsychiatr. Dis. Treat., 2010, 6, 561-572.
[http://dx.doi.org/10.2147/NDT.S8505] [PMID: 20856919]
[141]
Jia, F.; Kato, M.; Dai, H.; Xu, A.; Okuda, T.; Sakurai, E.; Okamura, N.; Lovenberg, T.W.; Barbier, A.; Carruthers, N.I.; Iinuma, K.; Yanai, K. Effects of histamine H(3) antagonists and donepezil on learning and mnemonic deficits induced by pentylenetetrazol kindling in weanling mice. Neuropharmacology, 2006, 50(4), 404-411.
[http://dx.doi.org/10.1016/j.neuropharm.2005.09.017] [PMID: 16310812]
[142]
Bautista-Aguilera, Ó.M.; Budni, J.; Mina, F.; Medeiros, E.B.; Deuther-Conrad, W.; Entrena, J.M.; Moraleda, I.; Iriepa, I.; López-Muñoz, F.; Marco-Contelles, J. Contilisant, a tetratarget small molecule for alzheimer’s disease therapy combining cholinesterase, monoamine oxidase inhibition, and H3R antagonism with S1R agonism profile. J. Med. Chem., 2018, 61(15), 6937-6943.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00848] [PMID: 29969030]
[143]
Leibel, R.L.; Rosenbaum, M.; Hirsch, J. Changes in energy expenditure resulting from altered body weight. N. Engl. J. Med., 1995, 332(10), 621-628.
[http://dx.doi.org/10.1056/NEJM199503093321001] [PMID: 7632212]
[144]
Jivraj, S. 7.6- Obesity. In: Antenatal Disorders for the MRCOG and Beyond, 2nd Edition. Anumba, D.; Jivraj, S.; Eds.; Cambridge University Press: Cambridge 2016. pp. 130-135.
[http://dx.doi.org/10.1017/CBO9781107585799.013]
[145]
Davis, C. From passive overeating to “food addiction”: a spectrum of compulsion and severity. ISRN Obes., 2013, 2013435027
[http://dx.doi.org/10.1155/2013/435027] [PMID: 24555143]
[146]
Berthoud, H.R. The neurobiology of food intake in an obesogenic environment. Proc. Nutr. Soc., 2012, 71(4), 478-487.
[http://dx.doi.org/10.1017/S0029665112000602] [PMID: 22800810]
[147]
Hofmann, W.; Adriaanse, M.; Vohs, K.D.; Baumeister, R.F. Dieting and the self-control of eating in everyday environments: an experience sampling study. Br. J. Health Psychol., 2014, 19(3), 523-539.
[http://dx.doi.org/10.1111/bjhp.12053] [PMID: 23751109]
[148]
Mela, D.J. Determinants of food choice: relationships with obesity and weight control. Obes. Res., 2001, 9(Suppl. 4), 249S-255S.
[http://dx.doi.org/10.1038/oby.2001.127] [PMID: 11707550]
[149]
Pankevich, D.E.; Teegarden, S.L.; Hedin, A.D.; Jensen, C.L.; Bale, T.L. Caloric restriction experience reprograms stress and orexigenic pathways and promotes binge eating. J. Neurosci., 2010, 30(48), 16399-16407.
[http://dx.doi.org/10.1523/JNEUROSCI.1955-10.2010] [PMID: 21123586]
[150]
Dulloo, A.G.; Montani, J.P. Pathways from dieting to weight regain, to obesity and to the metabolic syndrome: an overview. Obes. Rev., 2015, 16(1)(Suppl. 1), 1-6.
[http://dx.doi.org/10.1111/obr.12250] [PMID: 25614198]
[151]
Lowe, M.R.; Doshi, S.D.; Katterman, S.N.; Feig, E.H. Dieting and restrained eating as prospective predictors of weight gain. Front. Psychol., 2013, 4, 577.
[http://dx.doi.org/10.3389/fpsyg.2013.00577] [PMID: 24032024]
[152]
Passani, M.B.; Blandina, P.; Torrealba, F. The histamine H3 receptor and eating behavior. J. Pharmacol. Exp. Ther., 2011, 336(1), 24-29.
[http://dx.doi.org/10.1124/jpet.110.171306] [PMID: 20864503]
[153]
Plancher, J.M. The histamine H3 receptor as a therapeutic drug target for metabolic disorders: status, challenges and opportunities. Curr. Top. Med. Chem., 2011, 11(12), 1430-1446.
[http://dx.doi.org/10.2174/156802611795860906] [PMID: 21510840]
[154]
Blasio, A.; Steardo, L.; Sabino, V.; Cottone, P. Opioid system in the medial prefrontal cortex mediates binge-like eating. Addict. Biol., 2014, 19(4), 652-662.
[http://dx.doi.org/10.1111/adb.12033] [PMID: 23346966]
[155]
Cottone, P.; Wang, X.; Park, J.W.; Valenza, M.; Blasio, A.; Kwak, J.; Iyer, M.R.; Steardo, L.; Rice, K.C.; Hayashi, T.; Sabino, V. Antagonism of sigma-1 receptors blocks compulsive-like eating. Neuropsychopharmacology, 2012, 37(12), 2593-2604.
[http://dx.doi.org/10.1038/npp.2012.89] [PMID: 22713906]
[156]
Dore, R.; Valenza, M.; Wang, X.; Rice, K.C.; Sabino, V.; Cottone, P. The inverse agonist of CB1 receptor SR141716 blocks compulsive eating of palatable food. Addict. Biol., 2014, 19(5), 849-861.
[http://dx.doi.org/10.1111/adb.12056] [PMID: 23587012]
[157]
Moore, C.F.; Schlain, G.S.; Mancino, S.; Sabino, V.; Cottone, P. A behavioral and pharmacological characterization of palatable diet alternation in mice. Pharmacol. Biochem. Behav., 2017, 163, 1-8.
[http://dx.doi.org/10.1016/j.pbb.2017.10.013] [PMID: 29097161]
[158]
Barbier, A.J.; Berridge, C.; Dugovic, C.; Laposky, A.D.; Wilson, S.J.; Boggs, J.; Aluisio, L.; Lord, B.; Mazur, C.; Pudiak, C.M.; Langlois, X.; Xiao, W.; Apodaca, R.; Carruthers, N.I.; Lovenberg, T.W. Acute wake-promoting actions of JNJ-5207852, a novel, diamine-based H3 antagonist. Br. J. Pharmacol., 2004, 143(5), 649-661.
[http://dx.doi.org/10.1038/sj.bjp.0705964] [PMID: 15466448]
[159]
Yates, S.L.; Tedford, C.E.; Brunden, K.R. Use of histamine H3 receptor inverse agonists for the control of appetite and treatment of obesity, US20040006120A1, January 8th, 2004.
[160]
Hancock, A.A.; Brune, M.E. Assessment of pharmacology and potential anti-obesity properties of H3 receptor antagonists/inverse agonists. Expert Opin. Investig. Drugs, 2005, 14(3), 223-241.
[http://dx.doi.org/10.1517/13543784.14.3.223] [PMID: 15833055]
[161]
Malmlöf, K.; Zaragoza, F.; Golozoubova, V.; Refsgaard, H.H.; Cremers, T.; Raun, K.; Wulff, B.S.; Johansen, P.B.; Westerink, B.; Rimvall, K. Influence of a selective histamine H3 receptor antagonist on hypothalamic neural activity, food intake and body weight. Int. J. Obes., 2005, 29(12), 1402-1412.
[http://dx.doi.org/10.1038/sj.ijo.0803036] [PMID: 16151415]
[162]
Malmlöf, K.; Golozoubova, V.; Peschke, B.; Wulff, B.S.; Refsgaard, H.H.; Johansen, P.B.; Cremers, T.; Rimvall, K. Increase of neuronal histamine in obese rats is associated with decreases in body weight and plasma triglycerides. Obesity (Silver Spring), 2006, 14(12), 2154-2162.
[http://dx.doi.org/10.1038/oby.2006.252] [PMID: 17189541]
[163]
Barak, N.; Greenway, F.L.; Fujioka, K.; Aronne, L.J.; Kushner, R.F. Effect of histaminergic manipulation on weight in obese adults: a randomized placebo controlled trial. Int. J. Obes., 2008, 32(10), 1559-1565.
[http://dx.doi.org/10.1038/ijo.2008.135] [PMID: 18698316]
[164]
Lian, J.; Huang, X.F.; Pai, N.; Deng, C. Preventing olanzapine-induced weight gain using betahistine: a study in a rat model with chronic olanzapine treatment. PLoS One, 2014, 9(8)e104160
[http://dx.doi.org/10.1371/journal.pone.0104160] [PMID: 25084453]
[165]
Kotańska, M.; Kuder, K.J.; Szczepańska, K.; Sapa, J.; Kieć-Kononowicz, K. The histamine H3 receptor inverse agonist pitolisant reduces body weight in obese mice. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(8), 875-881.
[http://dx.doi.org/10.1007/s00210-018-1516-2] [PMID: 29802412]
[166]
Kotańska, M.; Mika, K.; Reguła, K.; Szczepańska, K.; Szafarz, M.; Bednarski, M.; Olejarz-Maciej, A.; Nowak, K.; Latacz, G.; Mogilski, S.; Kuder, K.J.; Kieć-Kononowicz, K.; Sapa, J. KSK19 - novel histamine H3 receptor ligand reduces body weight in diet induced obese mice. Biochem. Pharmacol., 2019, 168, 193-203.
[http://dx.doi.org/10.1016/j.bcp.2019.07.006] [PMID: 31295465]
[167]
Sabino, V.; Cottone, P.; Blasio, A.; Iyer, M.R.; Steardo, L.; Rice, K.C.; Conti, B.; Koob, G.F.; Zorrilla, E.P. Activation of σ-receptors induces binge-like drinking in Sardinian alcohol-preferring rats. Neuropsychopharmacology, 2011, 36(6), 1207-1218.
[http://dx.doi.org/10.1038/npp.2011.5] [PMID: 21346735]
[168]
Robson, M.J.; Noorbakhsh, B.; Seminerio, M.J.; Matsumoto, R.R. Sigma-1 receptors: potential targets for the treatment of substance abuse. Curr. Pharm. Des., 2012, 18(7), 902-919.
[http://dx.doi.org/10.2174/138161212799436601] [PMID: 22288407]
[169]
Katz, J.L.; Hiranita, T.; Hong, W.C.; Job, M.O.; McCurdy, C.R. A role for sigma receptors in stimulant self-administration and addiction. In:Sigma Proteins: Evolution of the Concept of Sigma Receptors. Handbook of Experimental Pharmacology;; Kim, F.; Pasternak, G.; Eds.; Springer: Berlin, 2017, vol. 244, pp. 177-218.
[http://dx.doi.org/10.1007/164_2016_94]
[170]
Stefanski, R.; Justinova, Z.; Hayashi, T.; Takebayashi, M.; Goldberg, S.R.; Su, T.P. Sigma1 receptor upregulation after chronic methamphetamine self-administration in rats: a study with yoked controls. Psychopharmacology (Berl.), 2004, 175(1), 68-75.
[http://dx.doi.org/10.1007/s00213-004-1779-9] [PMID: 15029471]
[171]
Takahashi, S.; Sonehara, K.; Takagi, K.; Miwa, T.; Horikomi, K.; Mita, N.; Nagase, H.; Iizuka, K.; Sakai, K. Pharmacological profile of MS-377, a novel antipsychotic agent with selective affinity for σ receptors. Psychopharmacology (Berl.), 1999, 145(3), 295-302.
[http://dx.doi.org/10.1007/s002130051061] [PMID: 10494578]
[172]
Sharkey, J.; Glen, K.A.; Wolfe, S.; Kuhar, M.J. Cocaine binding at sigma receptors. Eur. J. Pharmacol., 1988, 149(1-2), 171-174.
[http://dx.doi.org/10.1016/0014-2999(88)90058-1] [PMID: 2840298]
[173]
Itoh, Y.; Oishi, R.; Nishibori, M.; Saeki, K.; Furuno, K.; Fukuda, T.; Araki, Y. Lack of evidence for the involvement of catecholaminergic mechanisms in the behavioral anti-methamphetamine effect of L-histidine in the mouse. Pharmacol. Biochem. Behav., 1986, 24(3), 571-574.
[http://dx.doi.org/10.1016/0091-3057(86)90560-5] [PMID: 3703891]
[174]
Ito, C.; Onodera, K.; Yamatodani, A.; Yanai, K.; Sakurai, E.; Sato, M.; Watanabe, T. The effect of haloperidol on the histaminergic neuron system in the rat brain. Tohoku J. Exp. Med., 1997, 183(4), 285-292.
[http://dx.doi.org/10.1620/tjem.183.285] [PMID: 9549828]
[175]
Ellenbroek, B.A. Histamine H3 receptors, the complex interaction with dopamine and its implications for addiction. Br. J. Pharmacol., 2013, 170(1), 46-57.
[http://dx.doi.org/10.1111/bph.12221] [PMID: 23647606]
[176]
Clapham, J.; Kilpatrick, G.J. Thioperamide, the selective histamine H3 receptor antagonist, attenuates stimulant-induced locomotor activity in the mouse. Eur. J. Pharmacol., 1994, 259(2), 107-114.
[http://dx.doi.org/10.1016/0014-2999(94)90498-7] [PMID: 7957603]
[177]
Fox, G.B.; Esbenshade, T.A.; Pan, J.B. Pharmacological properties of ABT-239[4-(2-{2-[(2R)-2-methylpyrroli-dinyl]ethyl}-benzofuran-5-yl)benzon itrile]: II. Neurophy-siological characterization and broad preclinical efficacy in cognition and schizophrenia of a potent and selective histamine H-3 r. J. Pharmacol. Exp. Ther., 2005, 313(1), 176-190.
[http://dx.doi.org/10.1124/jpet.104.078402] [PMID: 15608077]
[178]
Ligneau, X.; Landais, L.; Perrin, D.; Piriou, J.; Uguen, M.; Denis, E.; Robert, P.; Parmentier, R.; Anaclet, C.; Lin, J.S.; Burban, A.; Arrang, J.M.; Schwartz, J.C. Brain histamine and schizophrenia: potential therapeutic applications of H3-receptor inverse agonists studied with BF2.649. Biochem. Pharmacol., 2007, 73(8), 1215-1224.
[http://dx.doi.org/10.1016/j.bcp.2007.01.023] [PMID: 17343831]
[179]
Motawaj, M.; Arrang, J.M. Ciproxifan, a histamine H3-receptor antagonist / inverse agonist, modulates methamphetamine-induced sensitization in mice. Eur. J. Neurosci., 2011, 33(7), 1197-1204.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07618.x] [PMID: 21366724]
[180]
Southam, E.; Cilia, J.; Gartlon, J.E.; Woolley, M.L.; Lacroix, L.P.; Jennings, C.A.; Cluderay, J.E.; Reavill, C.; Rourke, C.; Wilson, D.M.; Dawson, L.A.; Medhurst, A.D.; Jones, D.N. Preclinical investigations into the antipsychotic potential of the novel histamine H3 receptor antagonist GSK207040. Psychopharmacology (Berl.), 2009, 201(4), 483-494.
[http://dx.doi.org/10.1007/s00213-008-1310-9] [PMID: 18762914]
[181]
Munzar, P.; Tanda, G.; Justinova, Z.; Goldberg, S.R. Histamine H3 receptor antagonists potentiate methamphetamine self-administration and methamphetamine-induced accumbal dopamine release. Neuropsychopharmacology, 2004, 29(4), 705-717.
[http://dx.doi.org/10.1038/sj.npp.1300380] [PMID: 14735131]
[182]
Ajsuvakova, O.P.; Tinkov, A.A.; Aschner, M.; Rocha, J.B.T.; Michalke, B.; Skalnaya, M.G.; Skalny, A.V.; Butnariu, M.; Dadar, M.; Sarac, I.; Aaseth, J.; Bjørklund, G. Sulfhydryl groups as targets of mercury toxicity. Coord. Chem. Rev., 2020, 417213343
[http://dx.doi.org/10.1016/j.ccr.2020.213343] [PMID: 32905350]
[183]
Jing, L.; Wu, G.; Kang, D.; Zhou, Z.; Song, Y.; Liu, X.; Zhan, P. Contemporary medicinal-chemistry strategies for the discovery of selective butyrylcholinesterase inhibitors. Drug Discov. Today, 2019, 24(2), 629-635.
[http://dx.doi.org/10.1016/j.drudis.2018.11.012] [PMID: 30503804]
[184]
Hao, X.; Zuo, X.; Kang, D.; Zhang, J.; Song, Y.; Liu, X.; Zhan, P. Contemporary medicinal-chemistry strategies for discovery of blood coagulation factor Xa inhibitors. Expert Opin. Drug Discov., 2019, 14(9), 915-931.
[http://dx.doi.org/10.1080/17460441.2019.1626821] [PMID: 31172842]
[185]
Jia, R.; Zhang, J.; Ju, H.; Kang, D.; Fang, Z.; Liu, X.; Zhan, P. Discovery of novel anti-influenza agents via contemporary medicinal chemistry strategies (2014-2018 update). Future Med. Chem., 2019, 11(5), 375-378.
[http://dx.doi.org/10.4155/fmc-2018-0397] [PMID: 30887815]
[186]
Zheng, M.; Zhao, J.; Cui, C.; Fu, Z.; Li, X.; Liu, X.; Ding, X.; Tan, X.; Li, F.; Luo, X.; Chen, K.; Jiang, H. Computational chemical biology and drug design: Facilitating protein structure, function, and modulation studies. Med. Res. Rev., 2018, 38(3), 914-950.
[http://dx.doi.org/10.1002/med.21483] [PMID: 29323726]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy