Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

The Role of Cytokines in Interactions of Mesenchymal Stem Cells and Breast Cancer Cells

Author(s): Hariharan Jayaraman, Nalinkanth V. Ghone*, Ranjith K. Rajan and Himanshu Dashora

Volume 16, Issue 4, 2021

Published on: 22 October, 2020

Page: [443 - 453] Pages: 11

DOI: 10.2174/1574888X15666201022111942

Price: $65

Abstract

Mesenchymal stem cells, because of their high proliferation, differentiation, regenerative capacity, and ease of availability, have been a popular choice in cytotherapy. Mesenchymal Stem Cells (MSCs) have a natural tendency to home in a tumor microenvironment and act against it, owing to the similarity of the latter to an injured tissue environment. Several studies have confirmed the recruitment of MSCs by tumor through various cytokine signaling that brings about phenotypic changes to cancer cells, thereby promoting migration, invasion, and adhesion of cancer cells. The contrasting results on MSCs as a tool for cancer cytotherapy may be due to the complex cell to cell interaction in the tumor microenvironment, which involves various cell types such as cancer cells, immune cells, endothelial cells, and cancer stem cells. Cell to cell communication can be simple or complex and it is transmitted through various cytokines among multiple cell phenotypes, mechano-elasticity of the extra- cellular matrix surrounding the cancer cells, and hypoxic environments. In this article, the role of the extra-cellular matrix proteins and soluble mediators that act as communicators between mesenchymal stem cells and cancer cells has been reviewed specifically for breast cancer, as they are the leading members of cancer malignancies. The comprehensive information may be beneficial in finding a new combinatorial cytotherapeutic strategy using MSCs by exploiting the cross-talk between mesenchymal stem cells and cancer cells for treating breast cancer.

Keywords: Cytokines, breast cancer, mesenchymal stem cell, cell signaling, tumor microenvironment, cytotherapeutic strategy.

[1]
Xiao Y-F, Jie M-M, Li B-S, et al. Peptide-Based Treatment: A Promising Cancer Therapy. J Immunol Res 2015; 2015761820.
[http://dx.doi.org/10.1155/2015/761820] [PMID: 26568964]
[2]
Parakh S, Parslow AC, Gan HK, Scott AM. Antibody-mediated delivery of therapeutics for cancer therapy. Expert Opin Drug Deliv 2016; 13(3): 401-19.
[http://dx.doi.org/10.1517/17425247.2016.1124854] [PMID: 26654403]
[3]
Deb A, R V. Natural and synthetic polymer for graphene oxide mediated anticancer drug delivery-A comparative study. Int J Biol Macromol 2018; 107(Pt B): 2320-33.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.119]
[4]
Gomari H, Forouzandeh Moghadam M, Soleimani M. Targeted cancer therapy using engineered exosome as a natural drug delivery vehicle. OncoTargets Ther 2018; 11: 5753-62.
[http://dx.doi.org/10.2147/OTT.S173110] [PMID: 30254468]
[5]
Cheng S, Nethi SK, Rathi S, Layek B, Prabha S. Engineered Mesenchymal Stem Cells (MSCs) for Targeting Solid Tumors: Therapeutic Potential beyond Regenerative Therapy. J Pharmacol Exp Ther 2019.
[http://dx.doi.org/10.1124/jpet.119.259796]
[6]
Sukumaran S, Watanabe N, Bajgain P, et al. Enhancing the Potency and Specificity of Engineered T Cells for Cancer Treatment. Cancer Discov 2018; 8(8): 972-87.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1298] [PMID: 29880586]
[7]
Mohammed S, Sukumaran S, Bajgain P, et al. Improving Chimeric Antigen Receptor-Modified T Cell Function by Reversing the Immunosuppressive Tumor Microenvironment of Pancreatic Cancer. Mol Ther 2017; 25(1): 249-58.
[http://dx.doi.org/10.1016/j.ymthe.2016.10.016] [PMID: 28129119]
[8]
Bajgain P, Tawinwung S, D’Elia L, et al. CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation. J Immunother Cancer 2018; 6(1): 34.
[http://dx.doi.org/10.1186/s40425-018-0347-5] [PMID: 29747685]
[9]
Seledtsov VI, Goncharov AG, Seledtsova GV. Clinically feasible approaches to potentiating cancer cell-based immunotherapies. Hum Vaccin Immunother 2015; 11(4): 851-69.
[http://dx.doi.org/10.1080/21645515.2015.1009814] [PMID: 25933181]
[10]
Sun C, Dotti G, Savoldo B. Utilizing cell-based therapeutics to overcome immune evasion in hematologic malignancies. Blood 2016; 127(26): 3350-9.
[http://dx.doi.org/10.1182/blood-2015-12-629089] [PMID: 27207792]
[11]
Makkouk A, Weiner GJ. Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. Cancer Res 2015; 75(1): 5-10.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2538] [PMID: 25524899]
[12]
Miliotou AN, Papadopoulou LC. CAR T-cell Therapy: A New Era in Cancer Immunotherapy. Curr Pharm Biotechnol 2018; 19(1): 5-18.
[http://dx.doi.org/10.2174/1389201019666180418095526] [PMID: 29667553]
[13]
Zhang L, Morgan RA, Beane JD, et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin Cancer Res 2015; 21(10): 2278-88.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2085] [PMID: 25695689]
[14]
Zhang Q, Zhang Z, Peng M, Fu S, Xue Z, Zhang R. CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: From bench to bedside. OncoImmunology 2016; 5(12): e1251539.
[http://dx.doi.org/10.1080/2162402X.2016.1251539] [PMID: 28123893]
[15]
Kim HJ, Park J-S. Usage of Human Mesenchymal Stem Cells in Cell-based Therapy: Advantages and Disadvantages. Dev Reprod 2017; 21(1): 1-10.
[http://dx.doi.org/10.12717/DR.2017.21.1.001] [PMID: 28484739]
[16]
Levy O, Zhao W, Mortensen LJ, et al. mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood 2013; 122(14): e23-32.
[http://dx.doi.org/10.1182/blood-2013-04-495119] [PMID: 23980067]
[17]
Segaliny AI, Cheng JL, Farhoodi HP, et al. Combinatorial targeting of cancer bone metastasis using mRNA engineered stem cells. EBioMedicine 2019; 45: 39-57.
[http://dx.doi.org/10.1016/j.ebiom.2019.06.047] [PMID: 31281099]
[18]
DeSantis CE, Ma J, Goding Sauer A, Newman LA, Jemal A. Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J Clin 2017; 67(6): 439-48.
[http://dx.doi.org/10.3322/caac.21412] [PMID: 28972651]
[19]
Allinen M, Beroukhim R, Cai L, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 2004; 6(1): 17-32.
[http://dx.doi.org/10.1016/j.ccr.2004.06.010] [PMID: 15261139]
[20]
Daverey A, Drain AP, Kidambi S. Physical Intimacy of Breast Cancer Cells with Mesenchymal Stem Cells Elicits Trastuzumab Resistance through Src Activation. Sci Rep 2015; 5(1): 13744.
[http://dx.doi.org/10.1038/srep13744] [PMID: 26345302]
[21]
Choe C, Shin Y-S, Kim S-H, et al. Tumor-stromal interactions with direct cell contacts enhance motility of non-small cell lung cancer cells through the hedgehog signaling pathway. Anticancer Res 2013; 33(9): 3715-23.
[PMID: 24023301]
[22]
Camorani S, Hill BS, Fontanella R, et al. Auletta L i wsp. inhibition of bone marrow-derived mesenchymal stem cells homing towards triple-negative breast cancer microenvironment using an anti-PDGFRβ aptamer. Theranostics 2017; 7(14): 3595-607.
[http://dx.doi.org/10.7150/thno.18974] [PMID: 28912898]
[23]
Liu L, Zhang SX, Liao W, et al. Mechanoresponsive stem cells to target cancer metastases through biophysical cues. Sci Transl Med 2017; 9(400): eaan2966.
[http://dx.doi.org/10.1126/scitranslmed.aan2966] [PMID: 28747514]
[24]
Räsänen K, Herlyn M. Paracrine signaling between carcinoma cells and mesenchymal stem cells generates cancer stem cell niche via epithelial-mesenchymal transition. Cancer Discov 2012; 2(9): 775-7.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0312] [PMID: 22969117]
[25]
Wang H, Yang X. Association between serum cytokines and progression of breast cancer in Chinese population. Medicine (Baltimore) 2017; 96(49): e8840.
[http://dx.doi.org/10.1097/MD.0000000000008840] [PMID: 29245248]
[26]
Henderson BR. The BRCA1 Breast Cancer Suppressor: Regulation of Transport, Dynamics, and Function at Multiple Subcellular Locations. Scientifica (Cairo) 2012; •••: 2012796808.
[http://dx.doi.org/10.6064/2012/796808] [PMID: 24278741]
[27]
Zhou X, Hao Q, Lu H. Mutant p53 in cancer therapy-the barrier or the path. J Mol Cell Biol 2019; 11(4): 293-305.
[http://dx.doi.org/10.1093/jmcb/mjy072] [PMID: 30508182]
[28]
Tung M-C, Lin P-L, Wang Y-C, et al. Mutant p53 confers chemoresistance in non-small cell lung cancer by upregulating Nrf2. Oncotarget 2015; 6(39): 41692-705.
[http://dx.doi.org/10.18632/oncotarget.6150] [PMID: 26497680]
[29]
Zheng H-C. The molecular mechanisms of chemoresistance in cancers. Oncotarget 2017; 8(35): 59950-64.
[http://dx.doi.org/10.18632/oncotarget.19048] [PMID: 28938696]
[30]
Zhang W, Bai Y, Wang Y, Xiao W. Polypharmacology in Drug Discovery: A Review from Systems Pharmacology Perspective. Curr Pharm Des 2016; 22(21): 3171-81.
[http://dx.doi.org/10.2174/1381612822666160224142812] [PMID: 26907941]
[31]
Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery. J Med Chem 2014; 57(19): 7874-87.
[http://dx.doi.org/10.1021/jm5006463] [PMID: 24946140]
[32]
Lv D, Zhang Y, Kim H-J, Zhang L, Ma X. CCL5 as a potential immunotherapeutic target in triple-negative breast cancer. Cell Mol Immunol 2013; 10(4): 303-10.
[http://dx.doi.org/10.1038/cmi.2012.69] [PMID: 23376885]
[33]
Ren T, Zhang W, Liu X, et al. Discoidin domain receptor 2 (DDR2) promotes breast cancer cell metastasis and the mechanism implicates epithelial-mesenchymal transition programme under hypoxia. J Pathol 2014; 234(4): 526-37.
[http://dx.doi.org/10.1002/path.4415] [PMID: 25130389]
[34]
Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449(7162): 557-63.
[http://dx.doi.org/10.1038/nature06188] [PMID: 17914389]
[35]
Gonzalez ME, Martin EE, Anwar T, et al. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth. Cell Rep 2017; 18(5): 1215-28.
[http://dx.doi.org/10.1016/j.celrep.2016.12.079] [PMID: 28147276]
[36]
Kirschmann DA, Seftor EA, Fong SFT, et al. A molecular role for lysyl oxidase in breast cancer invasion. Cancer Res 2002; 62(15): 4478-83.
[PMID: 12154058]
[37]
El-Haibi CP, Bell GW, Zhang J, et al. Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc Natl Acad Sci USA 2012; 109(43): 17460-5.
[http://dx.doi.org/10.1073/pnas.1206653109] [PMID: 23033492]
[38]
Liu J, Ping W, Zu Y, Sun W. Correlations of lysyl oxidase with MMP2/MMP9 expression and its prognostic value in non-small cell lung cancer. Int J Clin Exp Pathol 2014; 7(9): 6040-7.
[PMID: 25337249]
[39]
Merdad A, Karim S, Schulten H-J, et al. Expression of matrix metalloproteinases (MMPs) in primary human breast cancer: MMP-9 as a potential biomarker for cancer invasion and metastasis. Anticancer Res 2014; 34(3): 1355-66.
[PMID: 24596383]
[40]
Al-toub M, Vishnubalaji R, Hamam R, Kassem M, Aldahmash A, Alajez NM. CDH1 and IL1-beta expression dictates FAK and MAPKK-dependent cross-talk between cancer cells and human mesenchymal stem cells. Stem Cell Res Ther 2015; 6(1): 135.
[PMID: 26204886]
[41]
Guo J, Liu C, Zhou X, Xu X, Deng L. Li X i wsp. Conditioned Medium from Malignant Breast Cancer Cells Induces an EMT-Like Phenotype and an Altered N-Glycan Profile in Normal Epithelial MCF10A Cells. Int J Mol Sci 2017; 18(8): 1528.
[42]
De Luca A, Lamura L, Gallo M, Maffia V, Normanno N. Mesenchymal stem cell-derived interleukin-6 and vascular endothelial growth factor promote breast cancer cell migration. J Cell Biochem 2012; 113(11): 3363-70.
[PMID: 22644871]
[43]
Li T, Zhang C, Ding Y, et al. Umbilical cord-derived mesenchymal stem cells promote proliferation and migration in MCF-7 and MDA-MB-231 breast cancer cells through activation of the ERK pathway. Oncol Rep 2015; 34(3): 1469-77.
[http://dx.doi.org/10.3892/or.2015.4109] [PMID: 26151310]
[44]
Pang M-F, Georgoudaki A-M, Lambut L, et al. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene 2016; 35(6): 748-60.
[http://dx.doi.org/10.1038/onc.2015.133] [PMID: 25961925]
[45]
McAndrews KM, McGrail DJ, Ravikumar N, Dawson MR. Mesenchymal Stem Cells Induce Directional Migration of Invasive Breast Cancer Cells through TGF-β. Sci Rep 2015; 5(1): 16941.
[http://dx.doi.org/10.1038/srep16941] [PMID: 26585689]
[46]
Dutta P, Sarkissyan M, Paico K, Wu Y, Vadgama JV. MCP-1 is overexpressed in triple-negative breast cancers and drives cancer invasiveness and metastasis. Breast Cancer Res Treat 2018; 170(3): 477-86.
[http://dx.doi.org/10.1007/s10549-018-4760-8] [PMID: 29594759]
[47]
Molloy AP, Martin FT, Dwyer RM, et al. Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int J Cancer 2009; 124(2): 326-32.
[http://dx.doi.org/10.1002/ijc.23939] [PMID: 19003962]
[48]
Dwyer RM, Potter-Beirne SM, Harrington KA, et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 2007; 13(17): 5020-7.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0731] [PMID: 17785552]
[49]
Heerboth S, Housman G, Leary M, et al. EMT and tumor metastasis. Clin Transl Med 2015; 4(1): 6.
[http://dx.doi.org/10.1186/s40169-015-0048-3] [PMID: 25852822]
[50]
Xu Q, Wang L, Li H, et al. Mesenchymal stem cells play a potential role in regulating the establishment and maintenance of epithelial-mesenchymal transition in MCF7 human breast cancer cells by paracrine and induced autocrine TGF-β. Int J Oncol 2012; 41(3): 959-68.
[http://dx.doi.org/10.3892/ijo.2012.1541] [PMID: 22766682]
[51]
Rosette C, Roth RB, Oeth P, et al. Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis 2005; 26(5): 943-50.
[http://dx.doi.org/10.1093/carcin/bgi070] [PMID: 15774488]
[52]
Guo P, Huang J, Wang L, et al. ICAM-1 as a molecular target for triple negative breast cancer. Proc Natl Acad Sci USA 2014; 111(41): 14710-5.
[http://dx.doi.org/10.1073/pnas.1408556111] [PMID: 25267626]
[53]
Dhawan A, Friedrichs J, Bonin MV, et al. Breast cancer cells compete with hematopoietic stem and progenitor cells for intercellular adhesion molecule 1-mediated binding to the bone marrow microenvironment. Carcinogenesis 2016; 37(8): 759-67.
[http://dx.doi.org/10.1093/carcin/bgw057] [PMID: 27207667]
[54]
Yi T, Song SU. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch Pharm Res 2012; 35(2): 213-21.
[http://dx.doi.org/10.1007/s12272-012-0202-z] [PMID: 22370776]
[55]
Razmkhah M, Jaberipour M, Erfani N, Habibagahi M. Talei A rasoul, Ghaderi A. Adipose derived stem cells (ASCs) isolated from breast cancer tissue express IL-4, IL-10 and TGF-??1 and upregulate expression of regulatory molecules on T cells: Do they protect breast cancer cells from the immune response? Cell Immunol 2011; 266(2): 116-22.
[http://dx.doi.org/10.1016/j.cellimm.2010.09.005] [PMID: 20970781]
[56]
Sineh Sepehr K, Razavi A, Hassan ZM, et al. Comparative immunomodulatory properties of mesenchymal stem cells derived from human breast tumor and normal breast adipose tissue. Cancer Immunol Immunother 2020; 69(9): 1841-54.
[http://dx.doi.org/10.1007/s00262-020-02567-y] [PMID: 32350594]
[57]
Razmkhah M, Mansourabadi Z, Mohtasebi MS, Talei A-R, Ghaderi A. Cancer and normal adipose-derived mesenchymal stem cells (ASCs): Do they have differential effects on tumor and immune cells? Cell Biol Int 2018; 42(3): 334-43.
[http://dx.doi.org/10.1002/cbin.10905] [PMID: 29076586]
[58]
Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M, Rameshwar P. Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J Immunol 2010; 184(10): 5885-94.
[http://dx.doi.org/10.4049/jimmunol.0903143] [PMID: 20382885]
[59]
Chaturvedi P, Gilkes DM, Takano N, Semenza GL. Hypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment. Proc Natl Acad Sci USA 2014; 111(20): E2120-9.
[http://dx.doi.org/10.1073/pnas.1406655111] [PMID: 24799675]
[60]
Kim J, Escalante LE, Dollar BA, Hanson SE, Hematti P. Comparison of breast and abdominal adipose tissue mesenchymal stromal/stem cells in support of proliferation of breast cancer cells. Cancer Invest 2013; 31(8): 550-4.
[http://dx.doi.org/10.3109/07357907.2013.830737] [PMID: 24020962]
[61]
Kosr MA, Ju D. The CXCL7/CXCR2 axis and the migration of breast cells toward the malignant phenotype. J Clin Oncol 2012; 30(27): 181.
[62]
Liu S, Ginestier C, Ou SJ, et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 2011; 71(2): 614-24.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0538] [PMID: 21224357]
[63]
Shin SY, Nam J-S, Lim Y, Lee YH. TNFα-exposed bone marrow-derived mesenchymal stem cells promote locomotion of MDA-MB-231 breast cancer cells through transcriptional activation of CXCR3 ligand chemokines. J Biol Chem 2010; 285(40): 30731-40.
[http://dx.doi.org/10.1074/jbc.M110.128124] [PMID: 20650898]
[64]
Rhodes LV, Antoon JW, Muir SE, Elliott S, Beckman BS, Burow ME. Effects of human mesenchymal stem cells on ER-positive human breast carcinoma cells mediated through ER-SDF-1/CXCR4 crosstalk. Mol Cancer 2010; 9: 295.
[http://dx.doi.org/10.1186/1476-4598-9-295] [PMID: 21087507]
[65]
von Marschall Z, Cramer T, Höcker M, Finkenzeller G, Wiedenmann B, Rosewicz S. Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human hepatocellular carcinoma. Gut 2001; 48(1): 87-96.
[http://dx.doi.org/10.1136/gut.48.1.87] [PMID: 11115828]
[66]
Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005; 69(Suppl. 3): 4-10.
[http://dx.doi.org/10.1159/000088478] [PMID: 16301830]
[67]
Lagonda CA, Tjahjadi FB, Fauza D, Kusnadi Y. 116 - Hypoxia increases vegf secretion in multiple sources of mesenchymal stem cell. Cytotherapy 2018; 20(5)(Suppl.): S44-5.
[http://dx.doi.org/10.1016/j.jcyt.2018.02.114]
[68]
Martin FT, Dwyer RM, Kelly J, et al. Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat 2010; 124(2): 317-26.
[http://dx.doi.org/10.1007/s10549-010-0734-1] [PMID: 20087650]
[69]
Jazedje T, Ribeiro AL, Pellati M, Siqueira Bueno HM. De, Nagata G. Human mesenchymal stromal cells transplantation may enhance or inhibit 4T1 murine breast adenocarcinoma through different approaches. Stem Cells Int 2015.
[70]
Gangaraju VK, Lin H. MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 2009; 10(2): 116-25.
[http://dx.doi.org/10.1038/nrm2621] [PMID: 19165214]
[71]
Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther 2016; 1(1): 15004.
[http://dx.doi.org/10.1038/sigtrans.2015.4] [PMID: 29263891]
[72]
Cuiffo BG, Campagne A, Bell GW, et al. MSC-regulated microRNAs converge on the transcription factor FOXP2 and promote breast cancer metastasis. Cell Stem Cell 2014; 15(6): 762-74.
[http://dx.doi.org/10.1016/j.stem.2014.10.001] [PMID: 25515522]
[73]
Bliss SA, Sinha G, Sandiford OA, et al. Guiro K i wsp. Mesenchymal stem cell-derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res 2016; 76(19): 5832-44.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1092] [PMID: 27569215]
[74]
naseri Z, Oskuee RK, forouzandeh-moghadam M, Jaafari MR. Delivery of LNA-antimiR-142-3p by Mesenchymal Stem Cells-Derived Exosomes to Breast Cancer Stem Cells Reduces Tumorigenicity. Stem Cell Rev Reports 2020; 16(3): 541-56.
[http://dx.doi.org/10.1007/s12015-019-09944-w]
[75]
Li T, Zhou X, Wang J, et al. Adipose-derived mesenchymal stem cells and extracellular vesicles confer antitumor activity in preclinical treatment of breast cancer. Pharmacol Res 2020; 157(March): 104843.
[http://dx.doi.org/10.1016/j.phrs.2020.104843] [PMID: 32360582]
[76]
Thakur BK, Zhang H, Becker A, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 2014; 24(6): 766-9.
[http://dx.doi.org/10.1038/cr.2014.44] [PMID: 24710597]
[77]
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[78]
Lee J-K, Park S-R, Jung B-K, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One 2013; 8(12): e84256.
[http://dx.doi.org/10.1371/journal.pone.0084256] [PMID: 24391924]
[79]
Pakravan K, Babashah S, Sadeghizadeh M, et al. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol 2017; 40(5): 457-70.
[80]
Zhao Q, Hai B, Zhang X, Xu J, Koehler B, Liu F. Biomimetic nanovesicles made from iPS cell-derived mesenchymal stem cells for targeted therapy of triple-negative breast cancer. Nanomedicine (Lond) 2020; 24102146.
[http://dx.doi.org/10.1016/j.nano.2019.102146] [PMID: 31884039]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy