Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Irinotecan or Oxaliplatin: Which is the First Move for the Mate?

Author(s): Cristina Morelli, Vincenzo Formica, Silvia Riondino, Antonio Russo, Patrizia Ferroni*, Fiorella Guadagni and Mario Roselli

Volume 28, Issue 16, 2021

Published on: 16 October, 2020

Page: [3158 - 3172] Pages: 15

DOI: 10.2174/0929867327666201016124950

Price: $65

Abstract

Objectives: The aim of the present review is to discuss the potential link between RAS, BRAF and microsatellite instability (MSI) mutational patterns and chemotherapeutic agent efficacy [Irinotecan (IRI) vs. Oxaliplatin (OXA)], and how this can potentially influence the choice of the chemotherapy backbone.

Methods: Following a review of the research literature, all pertinent articles published in the core journals were selected for the study. The inclusion criteria regarded relevant clinical and pre-clinical studies on the topic of interest (Relationship of OXA and IRI to KRAS/BRAF mutations and MSI).

Results: Excision repair cross complementation group 1 (ERCC1) expression is inhibited by KRAS mutation, making tumor cells more sensitive to OXA. Results from OPUS, COIN and PRIME trials support that no conclusive data are available for BRAF mutant population because of the small number of patients. Enhanced IRI cytotoxicity to MSI cell lines is due to the participation of some of the mismatch repair (MMR) components in various DNA repair processes and their role in the maintenance of the pro-apoptotic effect of IRI and G2/M cell arrest.

Conclusion: OXA and IRI are indispensable drugs for mCRC treatment and their selection must be as careful as that of targeted agents. We suggest taking into consideration the interaction between known genomic alterations and OXA and IRI activity to personalize chemotherapy in mCRC patients.

Keywords: Oxaliplatin, irinotecan, colorectal cancer, chemotherapy, molecular targets, KRAS, BRAF, MSI.

[1]
NIH. Cancer Stat Facts, S.E.E.R. Available at: https://seer.cancer.gov/statfacts/html/colorect.html (Accessed:January 20, 2020).
[2]
Simmonds, P.C. Palliative chemotherapy for advanced colorectal cancer: systematic review and meta-analysis. BMJ, 2000, 321(7260), 531-535.
[http://dx.doi.org/10.1136/bmj.321.7260.531] [PMID: 10968812]
[3]
Punt, C.J.A. New options and old dilemmas in the treatment of patients with advanced colorectal cancer. Ann. Oncol., 2004, 15(10), 1453-1459.
[http://dx.doi.org/10.1093/annonc/mdh383] [PMID: 15367403]
[4]
Emmanouilides, C.; Sfakiotaki, G.; Androulakis, N.; Kalbakis, K.; Christophylakis, C.; Kalykaki, A.; Vamvakas, L.; Kotsakis, A.; Agelaki, S.; Diamandidou, E.; Touroutoglou, N.; Chatzidakis, A.; Georgoulias, V.; Mavroudis, D.; Souglakos, J. Front-line bevacizumab in combination with oxaliplatin, leucovorin and 5-fluorouracil (FOLFOX) in patients with metastatic colorectal cancer: a multicenter phase II study. BMC Cancer, 2007, 7, 91.
[http://dx.doi.org/10.1186/1471-2407-7-91] [PMID: 17537235]
[5]
Douillard, J.Y.; Siena, S.; Cassidy, J.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; Rivera, F.; Kocákova, I.; Ruff, P.; Błasińska-Morawiec, M.; Šmakal, M.; Canon, J.L.; Rother, M.; Oliner, K.S.; Wolf, M.; Gansert, J. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J. Clin. Oncol., 2010, 28(31), 4697-4705.
[http://dx.doi.org/10.1200/JCO.2009.27.4860] [PMID: 20921465]
[6]
Saltz, L.B.; Clarke, S.; Díaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.S.; Rivera, F.; Couture, F.; Sirzén, F.; Cassidy, J. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J. Clin. Oncol., 2008, 26(12), 2013-2019.
[http://dx.doi.org/10.1200/JCO.2007.14.9930] [PMID: 18421054]
[7]
Heinemann, V.; von Weikersthal, L.F.; Decker, T.; Kiani, A.; Vehling-Kaiser, U.; Al-Batran, S.E.; Heintges, T.; Lerchenmüller, C.; Kahl, C.; Seipelt, G.; Kullmann, F.; Stauch, M.; Scheithauer, W.; Hielscher, J.; Scholz, M.; Müller, S.; Link, H.; Niederle, N.; Rost, A.; Höffkes, H.G.; Moehler, M.; Lindig, R.U. Modest, D.P.; Rossius, L.; Kirchner, T.; Jung, A.; Stintzing, S. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomized, open-label, phase 3 trial. Lancet Oncol., 2014, 15(10), 1065-1075.
[http://dx.doi.org/10.1016/S1470-2045(14)70330-4] [PMID: 25088940]
[8]
Cunningham, D.; Humblet, Y.; Siena, S.; Khayat, D.; Bleiberg, H.; Santoro, A.; Bets, D.; Mueser, M.; Harstrick, A.; Verslype, C.; Chau, I.; Van Cutsem, E. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med., 2004, 351(4), 337-345.
[http://dx.doi.org/10.1056/NEJMoa033025] [PMID: 15269313]
[9]
Peeters, M.; Price, T.J.; Cervantes, A.; Sobrero, A.F.; Ducreux, M.; Hotko, Y.; André, T.; Chan, E.; Lordick, F.; Punt, C.J.; Strickland, A.H.; Wilson, G.; Ciuleanu, T.E.; Roman, L.; Van Cutsem, E.; Tzekova, V.; Collins, S.; Oliner, K.S.; Rong, A.; Gansert, J. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J. Clin. Oncol., 2010, 28(31), 4706-4713.
[http://dx.doi.org/10.1200/JCO.2009.27.6055] [PMID: 20921462]
[10]
André, T.; Louvet, C.; Maindrault-Goebel, F.; Couteau, C.; Mabro, M.; Lotz, J.P.; Gilles-Amar, V.; Krulik, M.; Carola, E.; Izrael, V.; de Gramont, A. CPT-11 (irinotecan) addition to bimonthly, high-dose leucovorin and bolus and continuous-infusion 5-fluorouracil (FOLFIRI) for pretreated metastatic colorectal cancer. GERCOR. Eur. J. Cancer, 1999, 35(9), 1343-1347.
[http://dx.doi.org/10.1016/S0959-8049(99)00150-1] [PMID: 10658525]
[11]
Maindrault-Goebel, F.; Louvet, C.; André, T.; Carola, E.; Lotz, J.P.; Molitor, J.L.; Garcia, M.L.; Gilles-Amar, V.; Izrael, V.; Krulik, M.; de Gramont, A. Oxaliplatin added to the simplified bimonthly leucovorin and 5-fluorouracil regimen as second-line therapy for metastatic colorectal cancer (FOLFOX6). GERCOR. Eur. J. Cancer, 1999, 35(9), 1338-1342.
[http://dx.doi.org/10.1016/S0959-8049(99)00149-5] [PMID: 10658524]
[12]
Tournigand, C.; André, T.; Achille, E.; Lledo, G.; Flesh, M.; Mery-Mignard, D.; Quinaux, E.; Couteau, C.; Buyse, M.; Ganem, G.; Landi, B.; Colin, P.; Louvet, C.; de Gramont, A.; Louvet, C.; de Gramont, A. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J. Clin. Oncol., 2004, 22(2), 229-237.
[http://dx.doi.org/10.1200/JCO.2004.05.113] [PMID: 14657227]
[13]
Cassidy, J.; Clarke, S.; Díaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.S.; Rivera, F.; Couture, F.; Sirzén, F.; Saltz, L. Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer. J. Clin. Oncol., 2008, 26(12), 2006-2012.
[http://dx.doi.org/10.1200/JCO.2007.14.9898] [PMID: 18421053]
[14]
Cassidy, J.; Tabernero, J.; Twelves, C.; Brunet, R.; Butts, C.; Conroy, T.; Debraud, F.; Figer, A.; Grossmann, J.; Sawada, N.; Schöffski, P.; Sobrero, A.; Van Cutsem, E.; Díaz-Rubio, E. XELOX (capecitabine plus oxaliplatin): active first-line therapy for patients with metastatic colorectal cancer. J. Clin. Oncol., 2004, 22(11), 2084-2091.
[http://dx.doi.org/10.1200/JCO.2004.11.069] [PMID: 15169795]
[15]
Porschen, R.; Arkenau, H-T.; Kubicka, S.; Greil, R.; Seufferlein, T.; Freier, W.; Kretzschmar, A.; Graeven, U.; Grothey, A.; Hinke, A.; Schmiegel, W.; Schmoll, H.J. Phase III study of capecitabine plus oxaliplatin compared with fluorouracil and leucovorin plus oxaliplatin in metastatic colorectal cancer: a final report of the AIO colorectal study group. J. Clin. Oncol., 2007, 25(27), 4217-4223.
[http://dx.doi.org/10.1200/JCO.2006.09.2684] [PMID: 17548840]
[16]
Jäger, E.; Heike, M.; Bernhard, H.; Klein, O.; Bernhard, G.; Lautz, D.; Michaelis, J.; Büschenfelde, K.H.M.; Knuth, A. Weekly high-dose leucovorin versus low-dose leucovorin combined with fluorouracil in advanced colorectal cancer: results of a randomized multicenter trial. Study group for palliative treatment of metastatic colorectal cancer study protocol 1. J. Clin. Oncol., 1996, 14(8), 2274-2279.
[http://dx.doi.org/10.1200/JCO.1996.14.8.2274] [PMID: 8708717]
[17]
Petrelli, N.; Herrera, L.; Rustum, Y.; Burke, P.; Creaven, P.; Stulc, J.; Emrich, L.J.; Mittelman, A. A prospective randomized trial of 5-fluorouracil versus 5-fluorouracil and high-dose leucovorin versus 5-fluorouracil and methotrexate in previously untreated patients with advanced colorectal carcinoma. J. Clin. Oncol., 1987, 5(10), 1559-1565.
[http://dx.doi.org/10.1200/JCO.1987.5.10.1559] [PMID: 2443619]
[18]
Wolmark, N.; Rockette, H.; Fisher, B.; Wickerham, D.L.; Redmond, C.; Fisher, E.R.; Jones, J.; Mamounas, E.P.; Ore, L.; Petrelli, N.J. The benefit of leucovorin-modulated fluorouracil as postoperative adjuvant therapy for primary colon cancer: results from National surgical adjuvant breast and bowel project protocol C-03. J. Clin. Oncol., 1993, 11(10), 1879-1887.
[http://dx.doi.org/10.1200/JCO.1993.11.10.1879] [PMID: 8410113]
[19]
Falcone, A.; Ricci, S.; Brunetti, I.; Pfanner, E.; Allegrini, G.; Barbara, C.; Crinò, L.; Benedetti, G.; Evangelista, W.; Fanchini, L.; Cortesi, E.; Picone, V.; Vitello, S.; Chiara, S.; Granetto, C.; Porcile, G.; Fioretto, L.; Orlandini, C.; Andreuccetti, M.; Masi, G. Phase III trial of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared with infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first-line treatment for metastatic colorectal cancer: the Gruppo Oncologico Nord Ovest. J. Clin. Oncol., 2007, 25(13), 1670-1676.
[http://dx.doi.org/10.1200/JCO.2006.09.0928] [PMID: 17470860]
[20]
Souglakos, J.; Androulakis, N.; Syrigos, K.; Polyzos, A.; Ziras, N.; Athanasiadis, A.; Kakolyris, S.; Tsousis, S.; Kouroussis, Ch.; Vamvakas, L.; Kalykaki, A.; Samonis, G.; Mavroudis, D.; Georgoulias, V. FOLFOXIRI (folinic acid, 5-fluorouracil, oxaliplatin and irinotecan) vs FOLFIRI (folinic acid, 5-fluorouracil and irinotecan) as first-line treatment in metastatic colorectal cancer (MCC): a multicentre randomised phase III trial from the Hellenic Oncology Research Group (HORG). Br. J. Cancer, 2006, 94(6), 798-805.
[http://dx.doi.org/10.1038/sj.bjc.6603011] [PMID: 16508637]
[21]
Kirstein, M.M.; Lange, A.; Prenzler, A.; Manns, M.P.; Kubicka, S.; Vogel, A. Targeted therapies in metastatic colorectal cancer: a systematic review and assessment of currently available data. Oncologist, 2014, 19(11), 1156-1168.
[http://dx.doi.org/10.1634/theoncologist.2014-0032] [PMID: 25326159]
[22]
Formica, V.; Roselli, M. Targeted therapy in first line treatment of RAS wild type colorectal cancer. World J. Gastroenterol., 2015, 21(10), 2871-2874.
[http://dx.doi.org/10.3748/wjg.v21.i10.2871] [PMID: 25780283]
[23]
Schwartzberg, L.S.; Rivera, F.; Karthaus, M.; Fasola, G.; Canon, J.L.; Hecht, J.R.; Yu, H.; Oliner, K.S.; Go, W.Y. PEAK: a randomized, multicenter phase II study of panitumumab plus modified fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) or bevacizumab plus mFOLFOX6 in patients with previously untreated, unresectable, wild-type KRAS exon 2 metastatic colorectal cancer. J. Clin. Oncol., 2014, 32(21), 2240-2247.
[http://dx.doi.org/10.1200/JCO.2013.53.2473] [PMID: 24687833]
[24]
Venook, A.P.; Niedzwiecki, D.; Lenz, H.J.; Innocenti, F.; Fruth, B.; Meyerhardt, J.A.; Schrag, D.; Greene, C.; O’Neil, B.H.; Atkins, J.N.; Berry, S.; Polite, B.N.; O’Reilly, E.M.; Goldberg, R.M.; Hochster, H.S.; Schilsky, R.L.; Bertagnolli, M.M.; El-Khoueiry, A.B.; Watson, P.; Benson, A.B., III; Mulkerin, D.L.; Mayer, R.J.; Blanke, C. Effect of first-line chemotherapy combined with cetuximab or bevacizumab on overall survival in patients with KRAS wild-type advanced or metastatic colorectal cancer: a randomized clinical trial. JAMA, 2017, 317(23), 2392-2401.
[http://dx.doi.org/10.1001/jama.2017.7105] [PMID: 28632865]
[25]
Pietrantonio, F.; Cremolini, C.; Petrelli, F.; Di Bartolomeo, M.; Loupakis, F.; Maggi, C.; Antoniotti, C.; de Braud, F.; Falcone, A.; Iacovelli, R. First-line anti-EGFR monoclonal antibodies in panRAS wild-type metastatic colorectal cancer: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol., 2015, 96(1), 156-166.
[http://dx.doi.org/10.1016/j.critrevonc.2015.05.016] [PMID: 26088456]
[26]
Saris, C.P.; van de Vaart, P.J.; Rietbroek, R.C.; Blommaert, F.A. In vitro formation of DNA adducts by cisplatin, lobaplatin and oxaliplatin in calf thymus DNA in solution and in cultured human cells. Carcinogenesis, 1996, 17(12), 2763-2769.
[http://dx.doi.org/10.1093/carcin/17.12.2763] [PMID: 9006117]
[27]
Faivre, S.; Chan, D.; Salinas, R.; Woynarowska, B.; Woynarowski, J.M. DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells. Biochem. Pharmacol., 2003, 66(2), 225-237.
[http://dx.doi.org/10.1016/S0006-2952(03)00260-0] [PMID: 12826265]
[28]
Woynarowski, J.M.; Faivre, S.; Herzig, M.C.; Arnett, B.; Chapman, W.G.; Trevino, A.V.; Raymond, E.; Chaney, S.G.; Vaisman, A.; Varchenko, M.; Juniewicz, P.E. Oxaliplatin-induced damage of cellular DNA. Mol. Pharmacol., 2000, 58(5), 920-927.
[http://dx.doi.org/10.1124/mol.58.5.920] [PMID: 11040038]
[29]
Woynarowski, J.M.; Chapman, W.G.; Napier, C.; Herzig, M.C.; Juniewicz, P. Sequence- and region-specificity of oxaliplatin adducts in naked and cellular DNA. Mol. Pharmacol., 1998, 54(5), 770-777.
[http://dx.doi.org/10.1124/mol.54.5.770] [PMID: 9804612]
[30]
Luo, F.R.; Yen, T.Y.; Wyrick, S.D.; Chaney, S.G. High-performance liquid chromatographic separation of the biotransformation products of oxaliplatin. J. Chromatogr. B Biomed. Sci. Appl., 1999, 724(2), 345-356.
[http://dx.doi.org/10.1016/S0378-4347(98)00565-9] [PMID: 10219677]
[31]
Luo, F.R.; Wyrick, S.D.; Chaney, S.G. Biotransformations of oxaliplatin in rat blood in vitro. J. Biochem. Mol. Toxicol., 1999, 13(3-4), 159-169.
[http://dx.doi.org/10.1002/(SICI)1099-0461(1999)13:3/4<159::AID-JBT6 >3.0.CO;2-C] [PMID: 10098901]
[32]
Fizazi, K.; Doubre, H.; Le Chevalier, T.; Riviere, A.; Viala, J.; Daniel, C.; Robert, L.; Barthélemy, P.; Fandi, A.; Ruffié, P. Combination of raltitrexed and oxaliplatin is an active regimen in malignant mesothelioma: results of a phase II study. J. Clin. Oncol., 2003, 21(2), 349-354.
[http://dx.doi.org/10.1200/JCO.2003.05.123] [PMID: 12525529]
[33]
Rixe, O.; Ortuzar, W.; Alvarez, M.; Parker, R.; Reed, E.; Paull, K.; Fojo, T. Oxaliplatin, tetraplatin, cisplatin, and carboplatin: spectrum of activity in drug-resistant cell lines and in the cell lines of the National Cancer Institute’s Anticancer Drug Screen panel. Biochem. Pharmacol., 1996, 52(12), 1855-1865.
[http://dx.doi.org/10.1016/S0006-2952(97)81490-6] [PMID: 8951344]
[34]
Schmidt, W.; Chaney, S.G. Role of carrier ligand in platinum resistance of human carcinoma cell lines. Cancer Res., 1993, 53(4), 799-805.
[PMID: 8428361]
[35]
Chaney, S.G.; Campbell, S.L.; Bassett, E.; Wu, Y. Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit. Rev. Oncol. Hematol., 2005, 53(1), 3-11.
[http://dx.doi.org/10.1016/j.critrevonc.2004.08.008] [PMID: 15607931]
[36]
Kraker, A.; Steinkampf, R.W.; Moore, C.W. Transport of Cis-Pt and Cis-Pt analogs in sensitive and resistant murine leukemia cell lines. Proc. Am. Assoc. Cancer Res., 1986, 27, 286.
[37]
Fukuda, M.; Ohe, Y.; Kanzawa, F.; Oka, M.; Hara, K.; Saijo, N. Evaluation of novel platinum complexes, inhibitors of topoisomerase I and II in non-small cell lung cancer (NSCLC) sublines resistant to cisplatin. Anticancer Res., 1995, 15(2), 393-398.
[PMID: 7763011]
[38]
Cvitkovic, E. Ongoing and unsaid on oxaliplatin: the hope. Br. J. Cancer, 1998, 77(Suppl. 4), 8-11.
[http://dx.doi.org/10.1038/bjc.1998.429]] [PMID: 9647613]
[39]
Llory, J.F.; Soulie´, P.; Cvitkovic, E.; Misset, J.L. Feasibility of high-dose platinum delivery with combined carboplatin and oxaliplatin. J. Natl. Cancer Inst., 1994, 86(14), 1098-1099.
[http://dx.doi.org/10.1093/jnci/86.14.1098]] [PMID: 8043147]
[40]
Soulié, P.; Bensmaïne, A.; Garrino, C.; Chollet, P.; Brain, E.; Fereres, M.; Jasmin, C.; Musset, M.; Misset, J.L.; Cvitkovic, E. Oxaliplatin/cisplatin (L-OHP/CDDP) combination in heavily pretreated ovarian cancer. Eur. J. Cancer, 1997, 33(9), 1400-1406.
[http://dx.doi.org/10.1016/S0959-8049(97)00122-6] [PMID: 9337681]
[41]
Pendyala, L.; Kidani, Y.; Perez, R.; Wilkes, J.; Bernacki, R.J.; Creaven, P.J. Cytotoxicity, cellular accumulation and DNA binding of oxaliplatin isomers. Cancer Lett., 1995, 97(2), 177-184.
[http://dx.doi.org/10.1016/0304-3835(95)03974-2] [PMID: 7497460]
[42]
Pendyala, L.; Creaven, P.J. In vitro cytotoxicity, protein binding, red blood cell partitioning, and biotransformation of oxaliplatin. Cancer Res., 1993, 53(24), 5970-5976.
[PMID: 8261411]
[43]
Holmes, J.; Stanko, J.; Varchenko, M.; Ding, H.; Madden, V.J.; Bagnell, C.R.; Wyrick, S.D.; Chaney, S.G. Comparative neurotoxicity of oxaliplatin, cisplatin, and ormaplatin in a Wistar rat model. Toxicol. Sci., 1998, 46(2), 342-351.
[http://dx.doi.org/10.1006/toxs.1998.2558]] [PMID: 10048138]
[44]
Raymond, E.; Lawrence, R.; Izbicka, E.; Faivre, S.; Von Hoff, D.D. Activity of oxaliplatin against human tumor colony-forming units. Clin. Cancer Res., 1998, 4(4), 1021-1029.
[PMID: 9563898]
[45]
Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.T.; Lim, G.A. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloid leukemia and tumor inhibitor from Camptotheca acuminata. J. Am. Chem. Soc., 1966, 88(16), 3888-3890.
[http://dx.doi.org/10.1021/ja00968a057]
[46]
Hatfield, M.J.; Umans, R.A.; Hyatt, J.L.; Edwards, C.C.; Wierdl, M.; Tsurkan, L.; Taylor, M.R.; Potter, P.M. Carboxylesterases: general detoxifying enzymes. Chem. Biol. Interact., 2016, 259(Pt B), 327-331.
[http://dx.doi.org/10.1016/j.cbi.2016.02.011] [PMID: 26892220]
[47]
Hsiang, Y.H.; Liu, L.F. Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res., 1988, 48(7), 1722-1726.
[PMID: 2832051]
[48]
Shao, R.G.; Cao, C.X.; Zhang, H.; Kohn, K.W.; Wold, M.S.; Pommier, Y. Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes. EMBO J., 1999, 18(5), 1397-1406.
[http://dx.doi.org/10.1093/emboj/18.5.1397] [PMID: 10064605]
[49]
Mathijssen, R.H.; van Alphen, R.J.; Verweij, J.; Loos, W.J.; Nooter, K.; Stoter, G.; Sparreboom, A. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin. Cancer Res., 2001, 7(8), 2182-2194.
[PMID: 11489791]
[50]
Sparreboom, A.; Fujita, K.; Zamboni, W.C. Topoisomerase I-Targeting Drugs. In: Cancer Chemotherapy and Biotherapy: Principles and Practice; 5th ed; Chabner, B.A.; Longo, D.L., Eds.; Lippincott Williams & Wilkins: Philadelphia. , 2010; pp. 342-355.
[51]
Rivory, L.P.; Robert, J. Molecular, cellular, and clinical aspects of the pharmacology of 20(S)camptothecin and its derivatives. Pharmacol. Ther., 1995, 68(2), 269-296.
[http://dx.doi.org/10.1016/0163-7258(95)02009-8] [PMID: 8719971]
[52]
Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer, 2006, 6(10), 789-802.
[http://dx.doi.org/10.1038/nrc1977] [PMID: 16990856]
[53]
Hsiang, Y.H.; Hertzberg, R.; Hecht, S.; Liu, L.F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem., 1985, 260(27), 14873-14878.
[PMID: 2997227]
[54]
Hsiang, Y.H.; Lihou, M.G.; Liu, L.F. Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res., 1989, 49(18), 5077-5082.
[PMID: 2548710]
[55]
Gupta, E.; Lestingi, T.M.; Mick, R.; Ramirez, J.; Vokes, E.E.; Ratain, M.J. Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res., 1994, 54(14), 3723-3725.
[PMID: 8033091]
[56]
Gupta, E.; Mick, R.; Ramirez, J.; Wang, X.; Lestingi, T.M.; Vokes, E.E.; Ratain, M.J. Pharmacokinetic and pharmacodynamic evaluation of the topoisomerase inhibitor irinotecan in cancer patients. J. Clin. Oncol., 1997, 15(4), 1502-1510.
[http://dx.doi.org/10.1200/JCO.1997.15.4.1502] [PMID: 9193346]
[57]
Guillemette, C.; Lévesque, É.; Rouleau, M. Pharmacogenomics of human uridine diphospho-glucuronosyl-transferases and clinical implications. Clin. Pharmacol. Ther., 2014, 96(3), 324-339.
[http://dx.doi.org/10.1038/clpt.2014.126] [PMID: 24922307]
[58]
Bosma, P.J.; Chowdhury, J.R.; Bakker, C.; Gantla, S.; de Boer, A.; Oostra, B.A.; Lindhout, D.; Tytgat, G.N.; Jansen, P.L.; Oude Elferink, R.P. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N. Engl. J. Med., 1995, 333(18), 1171-1175.
[http://dx.doi.org/10.1056/NEJM199511023331802] [PMID: 7565971]
[59]
Beutler, E.; Gelbart, T.; Demina, A. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc. Natl. Acad. Sci. USA, 1998, 95(14), 8170-8174.
[http://dx.doi.org/10.1073/pnas.95.14.8170] [PMID: 9653159]
[60]
Akaba, K.; Kimura, T.; Sasaki, A.; Tanabe, S.; Wakabayashi, T.; Hiroi, M.; Yasumura, S.; Maki, K.; Aikawa, S.; Hayasaka, K. Neonatal hyperbilirubinemia and a common mutation of the bilirubin uridine diphosphate-glucuronosyltransferase gene in Japanese. J. Hum. Genet., 1999, 44(1), 22-25.
[http://dx.doi.org/10.1007/s100380050100] [PMID: 9929972]
[61]
Ando, Y.; Saka, H.; Ando, M.; Sawa, T.; Muro, K.; Ueoka, H.; Yokoyama, A.; Saitoh, S.; Shimokata, K.; Hasegawa, Y. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res., 2000, 60(24), 6921-6926.
[PMID: 11156391]
[62]
Han, J.Y.; Lim, H.S.; Shin, E.S.; Yoo, Y.K.; Park, Y.H.; Lee, J.E.; Jang, I.J.; Lee, D.H.; Lee, J.S. Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J. Clin. Oncol., 2006, 24(15), 2237-2244.
[http://dx.doi.org/10.1200/JCO.2005.03.0239] [PMID: 16636344]
[63]
Innocenti, F.; Undevia, S.D.; Iyer, L.; Chen, P.X.; Das, S.; Kocherginsky, M.; Karrison, T.; Janisch, L.; Ramírez, J.; Rudin, C.M.; Vokes, E.E.; Ratain, M.J. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J. Clin. Oncol., 2004, 22(8), 1382-1388.
[http://dx.doi.org/10.1200/JCO.2004.07.173] [PMID: 15007088]
[64]
Minami, H.; Sai, K.; Saeki, M.; Saito, Y.; Ozawa, S.; Suzuki, K.; Kaniwa, N.; Sawada, J.; Hamaguchi, T.; Yamamoto, N.; Shirao, K.; Yamada, Y.; Ohmatsu, H.; Kubota, K.; Yoshida, T.; Ohtsu, A.; Saijo, N. Irinotecan pharmacokinetics/pharmacodynamics and UGT1A genetic polymorphisms in Japanese: roles of UGT1A1*6 and *28. Pharmacogenet. Genomics, 2007, 17(7), 497-504.
[http://dx.doi.org/10.1097/FPC.0b013e328014341f] [PMID: 17558305]
[65]
Roth, A.D.; Tejpar, S.; Delorenzi, M.; Yan, P.; Fiocca, R.; Klingbiel, D.; Dietrich, D.; Biesmans, B.; Bodoky, G.; Barone, C.; Aranda, E.; Nordlinger, B.; Cisar, L.; Labianca, R.; Cunningham, D.; Van Cutsem, E.; Bosman, F. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J. Clin. Oncol., 2010, 28(3), 466-474.
[http://dx.doi.org/10.1200/JCO.2009.23.3452] [PMID: 20008640]
[66]
Van Cutsem, E.; Köhne, C.H.; Láng, I.; Folprecht, G.; Nowacki, M.P.; Cascinu, S.; Shchepotin, I.; Maurel, J.; Cunningham, D.; Tejpar, S.; Schlichting, M.; Zubel, A.; Celik, I.; Rougier, P.; Ciardiello, F. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J. Clin. Oncol., 2011, 29(15), 2011-2019.
[http://dx.doi.org/10.1200/JCO.2010.33.5091] [PMID: 21502544]
[67]
Baselga, J.; Rosen, N. Determinants of RASistance to anti-epidermal growth factor receptor agents. J. Clin. Oncol., 2008, 26(10), 1582-1584.
[http://dx.doi.org/10.1200/JCO.2007.15.3700] [PMID: 18316790]
[68]
Karapetis, C.S.; Khambata-Ford, S.; Jonker, D.J.; O’Callaghan, C.J.; Tu, D.; Tebbutt, N.C.; Simes, R.J.; Chalchal, H.; Shapiro, J.D.; Robitaille, S.; Price, T.J.; Shepherd, L.; Au, H.J.; Langer, C.; Moore, M.J.; Zalcberg, J.R. K-Ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med., 2008, 359(17), 1757-1765.
[http://dx.doi.org/10.1056/NEJMoa0804385] [PMID: 18946061]
[69]
Lièvre, A.; Bachet, J-B.; Boige, V.; Cayre, A.; Le Corre, D.; Buc, E.; Ychou, M.; Bouché, O.; Landi, B.; Louvet, C.; André, T.; Bibeau, F.; Diebold, M.D.; Rougier, P.; Ducreux, M.; Tomasic, G.; Emile, J.F.; Penault-Llorca, F.; Laurent-Puig, P. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J. Clin. Oncol., 2008, 26(3), 374-379.
[http://dx.doi.org/10.1200/JCO.2007.12.5906] [PMID: 18202412]
[70]
Allegra, C.J.; Rumble, R.B.; Hamilton, S.R.; Mangu, P.B.; Roach, N.; Hantel, A.; Schilsky, R.L. Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy: American Society of Clinical Oncology provisional clinical opinion update 2015. J. Clin. Oncol., 2016, 34(2), 179-185.
[http://dx.doi.org/10.1200/JCO.2015.63.9674] [PMID: 26438111]
[71]
Stec, R.; Bodnar, L.; Charkiewicz, R.; Korniluk, J.; Rokita, M.; Smoter, M.; Ciechowicz, M.; Chyczewski, L.; Nikliński, J.; Kozłowski, W.; Szczylik, C. K-Ras gene mutation status as a prognostic and predictive factor in patients with colorectal cancer undergoing irinotecan- or oxaliplatin-based chemotherapy. Cancer Biol. Ther., 2012, 13(13), 1235-1243.
[http://dx.doi.org/10.4161/cbt.21813] [PMID: 22909976]
[72]
Grothey, A.; Lenz, H.J. Explaining the unexplainable: EGFR antibodies in colorectal cancer. J. Clin. Oncol., 2012, 30(15), 1735-1737.
[http://dx.doi.org/10.1200/JCO.2011.40.4194] [PMID: 22473160]
[73]
Huang, J.; Nair, S.G.; Mahoney, M.R.; Nelson, G.D.; Shields, A.F.; Chan, E.; Goldberg, R.M.; Gill, S.; Kahlenberg, M.S.; Quesenberry, J.T.; Thibodeau, S.N.; Smyrk, T.C.; Grothey, A.; Sinicrope, F.A.; Webb, T.A.; Farr, G.H. Jr.; Pockaj, B.A.; Berenberg, J.L.; Mooney, M.; Sargent, D.J.; Alberts, S.R. Comparison of FOLFIRI with or without cetuximab in patients with resected stage III colon cancer; NCCTG (Alliance) intergroup trial N0147. Clin. Colorectal Cancer, 2014, 13(2), 100-109.https://dxdoi.org/10.1016/j.clcc.2013.12.002
[PMID: 24512953]
[74]
Lin, Y.L.; Liang, Y.H.; Tsai, J.H.; Liau, J.Y.; Liang, J.T.; Lin, B.R.; Hung, J.S.; Lin, L.I.; Tseng, L.H.; Chang, Y.L.; Yeh, K.H.; Cheng, A.L. Oxaliplatin-based chemotherapy is more beneficial in KRAS mutant than in KRAS wild-type metastatic colorectal cancer patients. PLoS One, 2014, 9(2), e86789.
[http://dx.doi.org/10.1371/journal.pone.0086789]] [PMID: 24505265]
[75]
Lin, Y.L.; Liau, J.Y.; Yu, S.C.; Tseng, L.H.; Lin, L.I.; Liang, J.T.; Lin, B.R.; Hung, J.S.; Chang, Y.L.; Yeh, K.H.; Cheng, A.L. Oxaliplatin-based chemotherapy might provide longer progression-free survival in kras mutant metastatic colorectal cancer. Transl. Oncol., 2013, 6(3), 363-369.
[http://dx.doi.org/10.1593/tlo.13166]] [PMID: 23730417]
[76]
Weinstein, I.B. Addiction to oncogenes-the Achilles heal of cancer. Science, 2002, 297(5578), 63-64.
[http://dx.doi.org/10.1126/science.1073096]] [PMID: 12098689]
[77]
Vekris, A.; Meynard, D.; Haaz, M.C.; Bayssas, M.; Bonnet, J.; Robert, J. Molecular determinants of the cytotoxicity of platinum compounds: the contribution of in silico research. Cancer Res., 2004, 64(1), 356-362.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2258] [PMID: 14729645]
[78]
Reed, E. Platinum-DNA adduct, nucleotide excision repair and platinum based anti-cancer chemotherapy. Cancer Treat. Rev., 1998, 24(5), 331-344.
[http://dx.doi.org/10.1016/S0305-7372(98)90056-1] [PMID: 9861196]
[79]
Tsodikov, O.V.; Enzlin, J.H.; Schärer, O.D.; Ellenberger, T. Crystal structure and DNA binding functions of ERCC1, a subunit of the DNA structure-specific endonuclease XPF-ERCC1. Proc. Natl. Acad. Sci. USA, 2005, 102(32), 11236-11241.
[http://dx.doi.org/10.1073/pnas.0504341102] [PMID: 16076955]
[80]
Youn, C.K.; Kim, M.H.; Cho, H.J.; Kim, H.B.; Chang, I.Y.; Chung, M.H.; You, H.J. Oncogenic H-Ras up-regulates expression of ERCC1 to protect cells from platinum-based anticancer agents. Cancer Res., 2004, 64(14), 4849-4857.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0348] [PMID: 15256455]
[81]
Orlandi, A.; Di Salvatore, M.; Bagalà, C.; Basso, M.; Strippoli, A.; Plastino, F.; Calegari, M.A.; Cassano, A.; Astone, A.; Barone, C. ERCC1 Induction after oxaliplatin exposure may depend on kras mutational status in colorectal cancer cell line: in vitro veritas. J. Cancer, 2015, 6(1), 70-81.
[http://dx.doi.org/10.7150/jca.10478] [PMID: 25553091]
[82]
Castellano, E.; Santos, E. Functional specificity of ras isoforms: so similar but so different. Genes Cancer, 2011, 2(3), 216-231.
[http://dx.doi.org/10.1177/1947601911408081] [PMID: 21779495]
[83]
Balin-Gauthier, D.; Delord, J-P.; Pillaire, M-J.; Rochaix, P.; Hoffman, J-S.; Bugat, R.; Cazaux, C.; Canal, P.; Allal, B.C. Cetuximab potentiates oxaliplatin cytotoxic effect through a defect in NER and DNA replication initiation. Br. J. Cancer, 2008, 98(1), 120-128.
[http://dx.doi.org/10.1038/sj.bjc.6604134] [PMID: 18182978]
[84]
Bokemeyer, C.; Bondarenko, I.; Makhson, A.; Hartmann, J.T.; Aparicio, J.; de Braud, F.; Donea, S.; Ludwig, H.; Schuch, G.; Stroh, C.; Loos, A.H.; Zubel, A.; Koralewski, P. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J. Clin. Oncol., 2009, 27(5), 663-671.
[http://dx.doi.org/10.1200/JCO.2008.20.8397] [PMID: 19114683]
[85]
Tejpar, S.; Celik, I.; Schlichting, M.; Sartorius, U.; Bokemeyer, C.; Van Cutsem, E. Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J. Clin. Oncol., 2012, 30(29), 3570-3577.
[http://dx.doi.org/10.1200/JCO.2012.42.2592] [PMID: 22734028]
[86]
Douillard, J.Y.; Oliner, K.S.; Siena, S.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; Rivera, F.; Kocákova, I.; Ruff, P.; Błasińska-Morawiec, M.; Šmakal, M.; Canon, J.L.; Rother, M.; Williams, R.; Rong, A.; Wiezorek, J.; Sidhu, R.; Patterson, S.D. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med., 2013, 369(11), 1023-1034.
[http://dx.doi.org/10.1056/NEJMoa1305275] [PMID: 24024839]
[87]
Maughan, T.S.; Adams, R.A.; Smith, C.G.; Meade, A.M.; Seymour, M.T.; Wilson, R.H.; Idziaszczyk, S.; Harris, R.; Fisher, D.; Kenny, S.L.; Kay, E.; Mitchell, J.K.; Madi, A.; Jasani, B.; James, M.D.; Bridgewater, J.; Kennedy, M.J.; Claes, B.; Lambrechts, D.; Kaplan, R.; Cheadle, J.P. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet, 2011, 377(9783), 2103-2114.
[http://dx.doi.org/10.1016/S0140-6736(11)60613-2] [PMID: 21641636]
[88]
Correale, P.; Marra, M.; Remondo, C.; Migali, C.; Misso, G.; Arcuri, F.P.; Del Vecchio, M.T.; Carducci, A.; Loiacono, L.; Tassone, P.; Abbruzzese, A.; Tagliaferri, P.; Caraglia, M. Cytotoxic drugs up-regulate epidermal growth factor receptor (EGFR) expression in colon cancer cells and enhance their susceptibility to EGFR-targeted antibody-dependent cell-mediated-cytotoxicity (ADCC). Eur. J. Cancer, 2010, 46(9), 1703-1711.
[http://dx.doi.org/10.1016/j.ejca.2010.03.005] [PMID: 20399639]
[89]
Inoue, Y.; Hazama, S.; Suzuki, N.; Tokumitsu, Y.; Kanekiyo, S.; Tomochika, S.; Tsunedomi, R.; Tokuhisa, Y.; Iida, M.; Sakamoto, K.; Takeda, S.; Ueno, T.; Yoshino, S.; Nagano, H. Cetuximab strongly enhances immune cell infiltration into liver metastatic sites in colorectal cancer. Cancer Sci., 2017, 108(3), 455-460.
[http://dx.doi.org/10.1111/cas.13162] [PMID: 28075526]
[90]
Lotti, F.; Jarrar, A.M.; Pai, R.K.; Hitomi, M.; Lathia, J.; Mace, A.; Gantt, G.A. Jr.; Sukhdeo, K.; DeVecchio, J.; Vasanji, A.; Leahy, P.; Hjelmeland, A.B.; Kalady, M.F.; Rich, J.N. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J. Exp. Med., 2013, 210(13), 2851-2872.
[http://dx.doi.org/10.1084/jem.20131195] [PMID: 24323355]
[91]
Bierie, B.; Moses, H.L. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer, 2006, 6(7), 506-520.
[http://dx.doi.org/10.1038/nrc1926] [PMID: 16794634]
[92]
Ikushima, H.; Miyazono, K. TGFbeta signalling: a complex web in cancer progression. Nat. Rev. Cancer, 2010, 10(6), 415-424.
[http://dx.doi.org/10.1038/nrc2853] [PMID: 20495575]
[93]
Johnston, C.J.; Smyth, D.J.; Dresser, D.W.; Maizels, R.M. TGF-β in tolerance, development and regulation of immunity. Cell. Immunol., 2016, 299, 14-22.
[http://dx.doi.org/10.1016/j.cellimm.2015.10.006] [PMID: 26617281]
[94]
Carrasco, J.; Gizzi, M.; Pairet, G.; Lannoy, V.; Lefesvre, P.; Gigot, J.F.; Hubert, C.; Jouret-Mourin, A.; Humblet, Y.; Canon, J.L.; Sempoux, C.; Chapaux, X.; Danse, E.; Tinton, N.; Navez, B.; Van den Eynde, M. Pathological responses after angiogenesis or EGFR inhibitors in metastatic colorectal cancer depend on the chemotherapy backbone. Br. J. Cancer, 2015, 113(9), 1298-1304.
[http://dx.doi.org/10.1038/bjc.2015.321] [PMID: 26461062]
[95]
Van Cutsem, E.; Köhne, C.H.; Hitre, E.; Zaluski, J.; Chang Chien, C.R Makhson, A.; D’Haens, G.; Pintér, T.; Lim, R.; Bodoky, G.; Roh, J.K.; Folprecht, G.; Ruff, P.; Stroh, C.; Tejpar, S.; Schlichting, M.; Nippgen, J.; Rougier, P. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med., 2009, 360(14), 1408-1417.
[http://dx.doi.org/10.1056/NEJMoa0805019] [PMID: 19339720]
[96]
Loupakis, F.; Cremolini, C.; Salvatore, L.; Schirripa, M.; Lonardi, S.; Vaccaro, V.; Cuppone, F.; Giannarelli, D.; Zagonel, V.; Cognetti, F.; Tortora, G.; Falcone, A.; Bria, E. Clinical impact of anti-epidermal growth factor receptor monoclonal antibodies in first-line treatment of metastatic colorectal cancer: meta-analytical estimation and implications for therapeutic strategies. Cancer, 2012, 118(6), 1523-1532.
[http://dx.doi.org/10.1002/cncr.26460] [PMID: 22009364]
[97]
Tauriello, D.V.F.; Palomo-Ponce, S.; Stork, D.; Berenguer-Llergo, A.; Badia-Ramentol, J.; Iglesias, M.; Sevillano, M.; Ibiza, S.; Cañellas, A.; Hernando-Momblona, X.; Byrom, D.; Matarin, J.A.; Calon, A.; Rivas, E.I.; Nebreda, A.R.; Riera, A.; Attolini, C.S.; Batlle, E. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature, 2018, 554(7693), 538-543.
[http://dx.doi.org/10.1038/nature25492] [PMID: 29443964]
[98]
Yang, L.; Pang, Y.; Moses, H.L. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol., 2010, 31(6), 220-227.
[http://dx.doi.org/10.1016/j.it.2010.04.002] [PMID: 20538542]
[99]
Yi, J.Y.; Shin, I.; Arteaga, C.L. Type I transforming growth factor beta receptor binds to and activates phosphatidylinositol 3-kinase. J. Biol. Chem., 2005, 280(11), 10870-10876.
[http://dx.doi.org/10.1074/jbc.M413223200] [PMID: 15657037]
[100]
Bedi, A.; Chang, X.; Noonan, K.; Pham, V.; Bedi, R.; Fertig, E.J.; Considine, M.; Califano, J.A.; Borrello, I.; Chung, C.H.; Sidransky, D.; Ravi, R. Inhibition of TGF-β enhances the in vivo antitumor efficacy of EGF receptor-targeted therapy. Mol. Cancer Ther., 2012, 11(11), 2429-2439.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0101-T] [PMID: 22927667]
[101]
Richman, S.D.; Seymour, M.T.; Chambers, P.; Elliott, F.; Daly, C.L.; Meade, A.M.; Taylor, G.; Barrett, J.H.; Quirke, P. KRAS and BRAF mutations in advanced colorectal cancer are associated with poor prognosis but do not preclude benefit from oxaliplatin or irinotecan: results from the MRC FOCUS trial. J. Clin. Oncol., 2009, 27(35), 5931-5937.
[http://dx.doi.org/10.1200/JCO.2009.22.4295] [PMID: 19884549]
[102]
Cremolini, C.; Loupakis, F.; Antoniotti, C.; Lupi, C.; Sensi, E.; Lonardi, S.; Mezi, S.; Tomasello, G.; Ronzoni, M.; Zaniboni, A.; Tonini, G.; Carlomagno, C.; Allegrini, G.; Chiara, S.; D’Amico, M.; Granetto, C.; Cazzaniga, M.; Boni, L.; Fontanini, G.; Falcone, A. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol., 2015, 16(13), 1306-1315.
[http://dx.doi.org/10.1016/S1470-2045(15)00122-9] [PMID: 26338525]
[103]
Geissler, M.; Martens, U.; Knorrenschield, R.; Greeve, J.; Florschuetz, A.; Tannapfel, A.; Wessendorf, F.; Seuerlein, T.; Kanzler, S.; Heinemann, V.; Reinacher-Schick, A.C.; Martens, U.M. 475O-mFOLFOXIRI + panitumumab versus FOLFOXIRI as first-line treatment in patients with RAS wild-type metastatic colorectal cancer m(CRC): a randomized phase II VOLFI trial of the AIO (AIO-KRK0109). Ann. Oncol., 2017, 28(Suppl. 5), v158-v208.
[http://dx.doi.org/10.1093/annonc/mdx393.002]
[104]
Markowitz, S.D.; Bertagnolli, M.M. Molecular origins of cancer: molecular basis of colorectal cancer. N. Engl. J. Med., 2009, 361(25), 2449-2460.
[http://dx.doi.org/10.1056/NEJMra0804588] [PMID: 20018966]
[105]
Hampel, H.; Frankel, W.L.; Martin, E.; Arnold, M.; Khanduja, K.; Kuebler, P.; Clendenning, M.; Sotamaa, K.; Prior, T.; Westman, J.A.; Panescu, J.; Fix, D.; Lockman, J.; LaJeunesse, J.; Comeras, I.; de la Chapelle, A. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J. Clin. Oncol., 2008, 26(35), 5783-5788.
[http://dx.doi.org/10.1200/JCO.2008.17.5950] [PMID: 18809606]
[106]
Lynch, H.T.; de la Chapelle, A. Hereditary colorectal cancer. N. Engl. J. Med., 2003, 348(10), 919-932.
[http://dx.doi.org/10.1056/NEJMra012242] [PMID: 12621137]
[107]
Aaltonen, L.A.; Salovaara, R.; Kristo, P.; Canzian, F.; Hemminki, A.; Peltomäki, P.; Chadwick, R.B.; Kääriäinen, H.; Eskelinen, M.; Järvinen, H.; Mecklin, J.P.; de la Chapelle, A. Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N. Engl. J. Med., 1998, 338(21), 1481-1487.
[http://dx.doi.org/10.1056/NEJM199805213382101] [PMID: 9593786]
[108]
Hampel, H.; Frankel, W.L.; Martin, E.; Arnold, M.; Khanduja, K.; Kuebler, P.; Nakagawa, H.; Sotamaa, K.; Prior, T.W.; Westman, J.; Panescu, J.; Fix, D.; Lockman, J.; Comeras, I.; de la Chapelle, A. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N. Engl. J. Med., 2005, 352(18), 1851-1860.
[http://dx.doi.org/10.1056/NEJMoa043146] [PMID: 15872200]
[109]
Halvarsson, B.; Anderson, H.; Domanska, K.; Lindmark, G.; Nilbert, M. Clinicopathologic factors identify sporadic mismatch repair-defective colon cancers. Am. J. Clin. Pathol., 2008, 129(2), 238-244.
[http://dx.doi.org/10.1309/0PP5GDRTXUDVKAWJ] [PMID: 18208804]
[110]
Koopman, M.; Kortman, G.A.M.; Mekenkamp, L.; Ligtenberg, M.J.; Hoogerbrugge, N.; Antonini, N.F.; Punt, C.J.; van Krieken, J.H. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br. J. Cancer, 2009, 100(2), 266-273.
[http://dx.doi.org/10.1038/sj.bjc.6604867] [PMID: 19165197]
[111]
Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; Spigel, D.R.; Antonia, S.J.; Horn, L.; Drake, C.G.; Pardoll, D.M.; Chen, L.; Sharfman, W.H.; Anders, R.A.; Taube, J.M.; McMiller, T.L.; Xu, H.; Korman, A.J.; Jure-Kunkel, M.; Agrawal, S.; McDonald, D.; Kollia, G.D.; Gupta, A.; Wigginton, J.M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454.
[http://dx.doi.org/10.1056/NEJMoa1200690] [PMID: 22658127]
[112]
U.S. Food & Drug Administration. Package Insert. KEYTRUDA® (pembrolizumab) injection, for intravenous use 2019.Available at:. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125514s065lbl.pdf(Accessed: February 8, 2020).
[113]
U.S. Food & Drug Administration. Package Insert. OPDIVO (nivolumab) injection, for intravenous use 2019.Available at:. https://www.accessdata.fda.gov/drugsatfda_ docs/label/2019/125554s075lbl.pdf(Accessed: February 8,2020).
[114]
Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; Biedrzycki, B.; Donehower, R.C.; Zaheer, A.; Fisher, G.A.; Crocenzi, T.S.; Lee, J.J.; Duffy, S.M.; Goldberg, R.M.; de la Chapelle, A.; Koshiji, M.; Bhaijee, F.; Huebner, T.; Hruban, R.H.; Wood, L.D.; Cuka, N.; Pardoll, D.M.; Papadopoulos, N.; Kinzler, K.W.; Zhou, S.; Cornish, T.C.; Taube, J.M.; Anders, R.A.; Eshleman, J.R.; Vogelstein, B.; Diaz, L.A. Jr. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med., 2015, 372(26), 2509-2520.
[http://dx.doi.org/10.1056/NEJMoa1500596] [PMID: 26028255]
[115]
Overman, M.J.; Lonardi, S.; Wong, K.Y.M.; Lenz, H.J.; Gelsomino, F.; Aglietta, M.; Morse, M.A.; Van Cutsem, E.; McDermott, R.; Hill, A.; Sawyer, M.B.; Hendlisz, A.; Neyns, B.; Svrcek, M.; Moss, R.A.; Ledeine, J.M.; Cao, Z.A.; Kamble, S.; Kopetz, S.; André, T. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J. Clin. Oncol., 2018, 36(8), 773-779.
[http://dx.doi.org/10.1200/JCO.2017.76.9901] [PMID: 29355075]
[116]
Overman, M.J.; McDermott, R.; Leach, J.L.; Lonardi, S.; Lenz, H.J.; Morse, M.A.; Desai, J.; Hill, A.; Axelson, M.; Moss, R.A.; Goldberg, M.V.; Cao, Z.A.; Ledeine, J.M.; Maglinte, G.A.; Kopetz, S.; André, T. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol., 2017, 18(9), 1182-1191.
[http://dx.doi.org/10.1016/S1470-2045(17)30422-9] [PMID: 28734759]
[117]
Fink, D.; Aebi, S.; Howell, S.B. The role of DNA mismatch repair in drug resistance. Clin. Cancer Res., 1998, 4(1), 1-6.
[PMID: 9516945]
[118]
Kat, A.; Thilly, W.G.; Fang, W.H.; Longley, M.J.; Li, G.M.; Modrich, P. An alkylation-tolerant, mutator human cell line is deficient in strand-specific mismatch repair. Proc. Natl. Acad. Sci. USA, 1993, 90(14), 6424-6428.
[http://dx.doi.org/10.1073/pnas.90.14.6424] [PMID: 8341649]
[119]
Sibghat, -Ullah Day, R.S., III Incision at O6-methylguanine: thymine mispairs in DNA by extracts of human cells. Biochemistry, 1992, 31(34), 7998-8008.
[http://dx.doi.org/10.1021/bi00149a034] [PMID: 1510986]
[120]
Swann, P.F.; Waters, T.R.; Moulton, D.C.; Xu, Y-Z.; Zheng, Q.; Edwards, M.; Mace, R. Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science, 1996, 273(5278), 1109-1111.
[http://dx.doi.org/10.1126/science.273.5278.1109] [PMID: 8688098]
[121]
Fedier, A.; Schwarz, V.A.; Walt, H.; Carpini, R.D.; Haller, U.; Fink, D. Resistance to topoisomerase poisons due to loss of DNA mismatch repair. Int. J. Cancer, 2001, 93(4), 571-576.
[http://dx.doi.org/10.1002/ijc.1356] [PMID: 11477562]
[122]
Aebi, S.; Kurdi-Haidar, B.; Gordon, R.; Cenni, B.; Zheng, H.; Fink, D.; Christen, R.D.; Boland, C.R.; Koi, M.; Fishel, R.; Howell, S.B. Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res., 1996, 56(13), 3087-3090.
[PMID: 8674066]
[123]
Branch, P.; Masson, M.; Aquilina, G.; Bignami, M.; Karran, P. Spontaneous development of drug resistance: mismatch repair and p53 defects in resistance to cisplatin in human tumor cells. Oncogene, 2000, 19(28), 3138-3145.
[http://dx.doi.org/10.1038/sj.onc.1203668] [PMID: 10918568]
[124]
Fink, D.; Zheng, H.; Nebel, S.; Norris, P.S.; Aebi, S.; Lin, T.P.; Nehmé, A.; Christen, R.D.; Haas, M.; MacLeod, C.L.; Howell, S.B. In vitro and in vivo resistance to cisplatin in cells that have lost DNA mismatch repair. Cancer Res., 1997, 57(10), 1841-1845.
[PMID: 9157971]
[125]
Fink, D.; Nebel, S.; Aebi, S.; Zheng, H.; Cenni, B.; Nehmé, A.; Christen, R.D.; Howell, S.B. The role of DNA mismatch repair in platinum drug resistance. Cancer Res., 1996, 56(21), 4881-4886.
[PMID: 8895738]
[126]
van Boom, S.S.; Yang, D.; Reedijk, J.; van der Marel, G.A.; Wang, A.H.J. Structural effect of intra-strand cisplatin-crosslink on palindromic DNA sequences. J. Biomol. Struct. Dyn., 1996, 13(6), 989-998.
[http://dx.doi.org/10.1080/07391102.1996.10508913] [PMID: 8832381]
[127]
Mello, J.A.; Acharya, S.; Fishel, R.; Essigmann, J.M. The mismatch-repair protein hMSH2 binds selectively to DNA adducts of the anticancer drug cisplatin. Chem. Biol., 1996, 3(7), 579-589.
[http://dx.doi.org/10.1016/S1074-5521(96)90149-0] [PMID: 8807890]
[128]
Yamada, M.; O’Regan, E.; Brown, R.; Karran, P. Selective recognition of a cisplatin-DNA adduct by human mismatch repair proteins. Nucleic Acids Res., 1997, 25(3), 491-496.
[http://dx.doi.org/10.1093/nar/25.3.491] [PMID: 9016586]
[129]
Vaisman, A.; Varchenko, M.; Umar, A.; Kunkel, T.A.; Risinger, J.I.; Barrett, J.C.; Hamilton, T.C.; Chaney, S.G. The role of hMLH1, hMSH3, and hMSH6 defects in cisplatin and oxaliplatin resistance: correlation with replicative bypass of platinum-DNA adducts. Cancer Res., 1998, 58(16), 3579-3585.
[PMID: 9721864]
[130]
Mamenta, E.L.; Poma, E.E.; Kaufmann, W.K.; Delmastro, D.A.; Grady, H.L.; Chaney, S.G. Enhanced replicative bypass of platinum-DNA adducts in cisplatin-resistant human ovarian carcinoma cell lines. Cancer Res., 1994, 54(13), 3500-3505.
[PMID: 8012973]
[131]
des Guetz, G.; Mariani, P.; Cucherousset, J.; Benamoun, M.; Lagorce, C.; Sastre, X.; Le Toumelin, P.; Uzzan, B.; Perret, G.Y.; Morere, J.F.; Breau, J.L.; Fagard, R.; Schischmanoff, P.O. Microsatellite instability and sensitivitiy to FOLFOX treatment in metastatic colorectal cancer. Anticancer Res., 2007, 27(4C), 2715-2719.
[PMID: 17695437]
[132]
Bras-Gonçalves, R.A.; Rosty, C.; Laurent-Puig, P.; Soulié, P.; Dutrillaux, B.; Poupon, M.F. Sensitivity to CPT-11 of xenografted human colorectal cancers as a function of microsatellite instability and p53 status. Br. J. Cancer, 2000, 82(4), 913-923.
[http://dx.doi.org/10.1054/bjoc.1999.1019] [PMID: 10732766]
[133]
Xu, Y.; Her, C. Inhibition of Topoisomerase (DNA) I (TOP1): DNA Damage Repair and Anticancer Therapy. Biomolecules, 2015, 5(3), 1652-1670.
[http://dx.doi.org/10.3390/biom5031652] [PMID: 26287259]
[134]
Harfe, B.D.; Jinks-Robertson, S. DNA mismatch repair and genetic instability. Annu. Rev. Genet., 2000, 34, 359-399.
[http://dx.doi.org/10.1146/annurev.genet.34.1.359] [PMID: 11092832]
[135]
Markowitz, S.; Wang, J.; Myeroff, L.; Parsons, R.; Sun, L.; Lutterbaugh, J.; Fan, R.S.; Zborowska, E.; Kinzler, K.W.; Vogelstein, B. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science, 1995, 268(5215), 1336-1338.
[http://dx.doi.org/10.1126/science.7761852] [PMID: 7761852]
[136]
Rampino, N.; Yamamoto, H.; Ionov, Y.; Li, Y.; Sawai, H.; Reed, J.C.; Perucho, M. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science, 1997, 275(5302), 967-969.
[http://dx.doi.org/10.1126/science.275.5302.967] [PMID: 9020077]
[137]
Fallik, D.; Borrini, F.; Boige, V.; Viguier, J.; Jacob, S.; Miquel, C.; Sabourin, J.C.; Ducreux, M.; Praz, F. Microsatellite instability is a predictive factor of the tumor response to irinotecan in patients with advanced colorectal cancer. Cancer Res., 2003, 63(18), 5738-5744.
[PMID: 14522894]
[138]
Vilar, E.; Scaltriti, M.; Balmaña, J.; Saura, C.; Guzman, M.; Arribas, J.; Baselga, J.; Tabernero, J. Microsatellite instability due to hMLH1 deficiency is associated with increased cytotoxicity to irinotecan in human colorectal cancer cell lines. Br. J. Cancer, 2008, 99(10), 1607-1612.
[http://dx.doi.org/10.1038/sj.bjc.6604691] [PMID: 18941461]
[139]
Pavillard, V.; Formento, P.; Rostagno, P.; Formento, J.L.; Fischel, J.L.; Francoual, M.; Etienne, M.C.; Milano, G. Combination of irinotecan (CPT11) and 5-fluorouracil with an analysis of cellular determinants of drug activity. Biochem. Pharmacol., 1998, 56(10), 1315-1322.
[http://dx.doi.org/10.1016/S0006-2952(98)00205-6] [PMID: 9825730]
[140]
Magrini, R.; Bhonde, M.R.; Hanski, M.L.; Notter, M.; Scherübl, H.; Boland, C.R.; Zeitz, M.; Hanski, C. Cellular effects of CPT-11 on colon carcinoma cells: dependence on p53 and hMLH1 status. Int. J. Cancer, 2002, 101(1), 23-31.
[http://dx.doi.org/10.1002/ijc.10565] [PMID: 12209584]
[141]
Kim, J.E.; Hong, Y.S.; Ryu, M.H.; Lee, J.L.; Chang, H.M.; Lim, S.B.; Kim, J.H.; Jang, S.J.; Kim, M.J.; Yu, C.S.; Kang, Y.K.; Kim, J.C.; Kim, T.W. Association between deficient mismatch repair system and efficacy to irinotecan-containing chemotherapy in metastatic colon cancer. Cancer Sci., 2011, 102(9), 1706-1711.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02009.x] [PMID: 21679278]
[142]
Wang, D.; Zhang, X.; Zhang, Y.; Wu, Y.; Guan, X.; Zhu, W.; Wang, M.; Qi, C.; Shen, B. Association of MLH1 single nucleotide polymorphisms with clinical outcomes of first-line irinotecan-based chemotherapy in colorectal cancer. OncoTargets Ther., 2018, 11, 8083-8088.
[http://dx.doi.org/10.2147/OTT.S180145] [PMID: 30519050]
[143]
Guinney, J.; Dienstmann, R.; Wang, X.; de Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; Bot, B.M.; Morris, J.S.; Simon, I.M.; Gerster, S.; Fessler, E.; De Sousa, E. Melo, F.; Missiaglia, E.; Ramay, H.; Barras, D.; Homicsko, K.; Maru, D.; Manyam, G.C.; Broom, B.; Boige, V.; Perez-Villamil, B.; Laderas, T.; Salazar, R.; Gray, J.W.; Hanahan, D.; Tabernero, J.; Bernards, R.; Friend, S.H.; Laurent-Puig, P.; Medema, J.P.; Sadanandam, A.; Wessels, L.; Delorenzi, M.; Kopetz, S.; Vermeulen, L.; Tejpar, S.; Tejpar, S. The consensus molecular subtypes of colorectal cancer. Nat. Med., 2015, 21(11), 1350-1356.
[http://dx.doi.org/10.1038/nm.3967] [PMID: 26457759]
[144]
Okita, A.; Takahashi, S.; Ouchi, K.; Inoue, M.; Watanabe, M.; Endo, M.; Honda, H.; Yamada, Y.; Ishioka, C. Consensus molecular subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic efficacy against metastatic colorectal cancer. Oncotarget, 2018, 9(27), 18698-18711.
[http://dx.doi.org/10.18632/oncotarget.24617] [PMID: 29721154]
[145]
Aderka, D.; Stintzing, S.; Heinemann, V. Explaining the unexplainable: discrepancies in results from the CALGB/SWOG 80405 and FIRE-3 studies. Lancet Oncol., 2019, 20(5), e274-e283.
[http://dx.doi.org/10.1016/S1470-2045(19)30172-X] [PMID: 31044725]
[146]
Kopetz, S.; Grothey, A.; Yaeger, R.; Van Cutsem, E.; Desai, J.; Yoshino, T.; Wasan, H.; Ciardiello, F.; Loupakis, F.; Hong, Y.S.; Steeghs, N.; Guren, T.K.; Arkenau, H.T.; Garcia-Alfonso, P.; Pfeiffer, P.; Orlov, S.; Lonardi, S.; Elez, E.; Kim, T.W.; Schellens, J.H.M.; Guo, C.; Krishnan, A.; Dekervel, J.; Morris, V.; Calvo Ferrandiz, A.; Tarpgaard, L.S.; Braun, M.; Gollerkeri, A.; Keir, C.; Maharry, K.; Pickard, M.; Christy-Bittel, J.; Anderson, L.; Sandor, V.; Tabernero, J. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N. Engl. J. Med., 2019, 381(17), 1632-1643.
[http://dx.doi.org/10.1056/NEJMoa1908075] [PMID: 31566309]
[147]
Grothey, A.; Tabernero, J.; Taieb, J.; Yaeger, R.; Yoshino, T.; Maiello, E.; Elez Fernandez, E.; Ruiz Casado, A.; Ross, P.; André, T.; Kato, T.; Ruffinelli, J.; Graham, J.; Van den Eynde, M.; Vera, R.; Jean, B.; Carriere Roussel, E.; Cahuzac, C.; Issiakhem, Z.; Vedovato, J.; Van Cutsem, E. LBA-5 ANCHOR CRC: a single-arm, phase 2 study of encorafenib, binimetinib plus cetuximab in previously untreated BRAF V600E mutant metastatic colorectal cancer. Ann. Oncol., 2020, 31(suppl. 3), S242-S243.
[http://dx.doi.org/10.1016/j.annonc.2020.04.080]
[148]
Andre, T.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.J.A.; Smith, D.M. GarciaCarbonero, R.; Manuel Benavides, M.; Gibbs, P.; De La Fouchardiere, C.; Rivera, F.; Elez, E.; Bendell, J.C.; Le, D-T.; Yoshino, T.; Yang, P.; Farooqui, M.Z.H.; Marinello, P.; Diaz, L.A. Pembrolizumab versus chemotherapy for microsatellite instability-high/mismatch repair deficient metastatic colorectal cancer: The phase 3 KEYNOTE-177 study. J. Clin. Oncol., 2020, 38(18), LBA4-LBA4.
[http://dx.doi.org/10.1200/JCO.2020.38.18_suppl.LBA4]
[149]
Chan, D.L.; Pavlakis, N.; Shapiro, J.; Price, T.J.; Karapetis, C.S.; Tebbutt, N.C.; Segelov, E. Does the chemotherapy backbone impact on the efficacy of targeted agents in metastatic colorectal cancer? A systematic review and meta-analysis of the literature. PLoS One, 2015, 10(8), e0135599.
[http://dx.doi.org/10.1371/journal.pone.0135599] [PMID: 26275292]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy