Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Current Paradigms in COVID-19 Research: Proposed Treatment Strategies, Recent Trends and Future Directions

Author(s): Anil K. Sharma*, Varruchi Sharma, Arun Sharma, Suresh Pallikkuth and Anil Kumar Sharma

Volume 28, Issue 16, 2021

Published on: 11 July, 2020

Page: [3173 - 3192] Pages: 20

DOI: 10.2174/0929867327666200711153829

Price: $65

Abstract

Background: Recent pandemic of coronavirus disease caused by a novel coronavirus SARS-CoV-2 in humans is the third outbreak by this family of viruses leading to an acute respiratory infection, which has been a major cause of morbidity and mortality worldwide.The virus belongs to the genus, Betacoronavirus, which has been recently reported to have significant similarity (>89%) to a severe acute respiratory syndrome (SARS)-related member of the Sarbecoviruses. Current researches are not sufficient to understand the etiological and immunopathobiological parameters related to COVID-19 so as to have a therapeutic solution to the problem.

Methods: A structured search of bibliographic databases for peer-reviewed research literature has been carried out using focused review questions and inclusion/exclusion criteria. Further Standard tools were implied in order to appraise the quality of retrieved papers. The characteristic outcomes of screened research and review articles along with analysis of the interventions and findings of included studies using a conceptual framework have been described employing a deductive qualitative content analysis methodology.

Results: This review systematically summarizes the immune-pathobiological characteristics, diagnosis, potential therapeutic options for the treatment and prevention of COVID-19 based on the current published literature and evidence. The current review has covered 125 peerreviewed articles, the majority of which are from high-income technically developed countries providing the most recent updates about the current understanding of the COVID-19 bringing all the significant findings and related researches together at a single platform. In addition, possible therapeutic interventions, treatment strategies and vaccine development initiatives to manage COVID-19 have been proposed.

Conclusion: It is anticipated that this review would certainly assist the public in general and scientific community in particular to recognize and effectively deal with COVID-19, providing a reference guide for futuristic studies.

Keywords: Coronavirus, SARS-CoV-2, pandemic, pathogenesis, therapeutic, treatment, vaccines.

[1]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[2]
Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.K.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol., 2016, 24(6), 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[3]
Hindson, J. COVID-19: faecal-oral transmission? Nat. Rev. Gastroenterol. Hepatol., 2020, 17(5), 259.
[http://dx.doi.org/10.1038/s41575-020-0295-7] [PMID: 32214231]
[4]
van Doremalen, N.; Bushmaker, T.; Munster, V.J. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Euro Surveill., 2013, 18(38), 20590.
[http://dx.doi.org/10.2807/1560-7917.ES2013.18.38.20590] [PMID: 24084338]
[5]
Duan, S.M.; Zhao, X.S.; Wen, R.F.; Huang, J.J.; Pi, G.H.; Zhang, S.X.; Han, J.; Bi, S.L.; Ruan, L.; Dong, X.P. SARS Research Team. Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed. Environ. Sci., 2003, 16(3), 246-255.
[PMID: 14631830]
[6]
Warnes, S.L.; Little, Z.R.; Keevil, C.W. Human coronavirus 229E remains infectious on common touch surface materials. MBio, 2015, 6(6), e01697-15.
[http://dx.doi.org/10.1128/mBio.01697-15] [PMID: 26556276]
[7]
Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect., 2020, 104(3), 246-251.
[http://dx.doi.org/10.1016/j.jhin.2020.01.022] [PMID: 32035997]
[8]
Rabenau, H.F.; Cinatl, J.; Morgenstern, B.; Bauer, G.; Preiser, W.; Doerr, H.W. Stability and inactivation of SARS coronavirus. Med. Microbiol. Immunol. (Berl.), 2005, 194(1-2), 1-6.
[http://dx.doi.org/10.1007/s00430-004-0219-0] [PMID: 15118911]
[9]
Rabenau, H.F.; Kampf, G.; Cinatl, J.; Doerr, H.W. Efficacy of various disinfectants against SARS coronavirus. J. Hosp. Infect., 2005, 61(2), 107-111.
[http://dx.doi.org/10.1016/j.jhin.2004.12.023] [PMID: 15923059]
[10]
Sexton, N.R.; Smith, E.C.; Blanc, H.; Vignuzzi, M.; Peersen, O.B.; Denison, M.R. Homology-based identification of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens. J. Virol., 2016, 90(16), 7415-7428.
[http://dx.doi.org/10.1128/JVI.00080-16] [PMID: 27279608]
[11]
Lim, Y.X.; Ng, Y.L.; Tam, J.P.; Liu, D.X. Human coronaviruses: a review of virus-host interactions. Diseases, 2016, 4(3), 26.
[http://dx.doi.org/10.3390/diseases4030026] [PMID: 28933406]
[12]
Gaunt, E.R.; Hardie, A.; Claas, E.C.; Simmonds, P.; Templeton, K.E. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J. Clin. Microbiol., 2010, 48(8), 2940-2947.
[http://dx.doi.org/10.1128/JCM.00636-10] [PMID: 20554810]
[13]
Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun., 2020, 109,102433.
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[14]
Prompetchara, E.; Ketloy, C.; Palaga, T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol., 2020, 38(1), 1-9.
[PMID: 32105090]
[15]
Chan, J.F-W.; Kok, K-H.; Zhu, Z.; Chu, H.; To, K.K-W.; Yuan, S.; Yuen, K-Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[16]
Peiris, J.S.; Lai, S.T.; Poon, L.L.; Guan, Y.; Yam, L.Y.; Lim, W.; Nicholls, J.; Yee, W.K.; Yan, W.W.; Cheung, M.T.; Cheng, V.C.; Chan, K.H.; Tsang, D.N.; Yung, R.W.; Ng, T.K.; Yuen, K.Y. SARS study group Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 2003, 361(9366), 1319-1325.
[http://dx.doi.org/10.1016/S0140-6736(03)13077-2] [PMID: 12711465]
[17]
Yeung, M-L.; Yao, Y.; Jia, L.; Chan, J.F.; Chan, K-H.; Cheung, K-F.; Chen, H.; Poon, V.K.; Tsang, A.K.; To, K.K.; Yiu, M.K.; Teng, J.L.; Chu, H.; Zhou, J.; Zhang, Q.; Deng, W.; Lau, S.K.; Lau, J.Y.; Woo, P.C.; Chan, T.M.; Yung, S.; Zheng, B.J.; Jin, D.Y.; Mathieson, P.W.; Qin, C.; Yuen, K.Y. MERS coronavirus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2. Nat. Microbiol., 2016, 1(3), 16004.
[http://dx.doi.org/10.1038/nmicrobiol.2016.4] [PMID: 27572168]
[18]
Tang, X.; Wu, C.; Li, X.; Song, Y.; Yao, X.; Wu, X.; Duan, Y.; Zhang, H.; Wang, Y.; Qian, Z.; Cui, J.; Lu, J. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev., 2020.
[http://dx.doi.org/10.1093/nsr/nwaa036]
[19]
Zaina, L.A.M.; Rodrigues, J.F. Jr.; do Amaral, A.R. Social tagging for e-learning: an approach based on the triplet of learners, learning objects and tags. International Workshop on Learning Technology for Education in Cloud, Springer Cham. 2015, pp. 104-115.
[http://dx.doi.org/10.1007/978-3-319-22629-3_9]
[20]
Walls, A.C.; Park, Y-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein Cell, 2020, 181(2), 281.e6-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058 ] [PMID: 32155444]
[21]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[22]
Cao, J.; Forrest, J.C.; Zhang, X. A screen of the NIH clinical collection small molecule library identifies potential anti-coronavirus drugs. Antiviral Res., 2015, 114, 1-10.
[http://dx.doi.org/10.1016/j.antiviral.2014.11.010] [PMID: 25451075]
[23]
Isihak, F.A.; Hamad, M.A.; Mustafa, N.G. COVID-19: an updated review. Russian J. Infec. Immun., 2020, 10(2), 247-258.
[http://dx.doi.org/10.15789/2220-7619-CAU-1443]
[24]
Chilvers, M.A.; McKean, M.; Rutman, A.; Myint, B.S.; Silverman, M.; O’Callaghan, C. The effects of coronavirus on human nasal ciliated respiratory epithelium. Eur. Respir. J., 2001, 18(6), 965-970.
[http://dx.doi.org/10.1183/09031936.01.00093001] [PMID: 11829103]
[25]
Fehr, A.R.; Perlman, S. Coronaviruses: an overview of their replication and pathogenesis.In:Coronaviruses; Springer, 2015, pp. 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1]
[26]
Gu, J.; Korteweg, C. Pathology and pathogenesis of severe acute respiratory syndrome. Am. J. Pathol., 2007, 170(4), 1136-1147.
[http://dx.doi.org/10.2353/ajpath.2007.061088] [PMID: 17392154]
[27]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[28]
Zhang, J-J.; Dong, X.; Cao, Y-Y.; Yuan, Y-D.; Yang, Y-B.; Yan, Y-Q.; Akdis, C.A.; Gao, Y-D. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy, 2020, 75(7), 1730-1741.
[http://dx.doi.org/10.1111/all.14238] [PMID: 32077115]
[29]
Rokni, M.; Ghasemi, V.; Tavakoli, Z. Immune responses and pathogenesis of SARS-CoV-2 during an outbreak in Iran: comparison with SARS and MERS. Rev. Med. Virol., 2020, 30(3),e2107.
[http://dx.doi.org/10.1002/rmv.2107] [PMID: 32267987]
[30]
Li, X.; Geng, M.; Peng, Y.; Meng, L.; Lu, S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal., 2020, 10(2), 102-108.
[http://dx.doi.org/10.1016/j.jpha.2020.03.001] [PMID: 32282863]
[31]
Cameron, M.J.; Bermejo-Martin, J.F.; Danesh, A.; Muller, M.P.; Kelvin, D.J. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res., 2008, 133(1), 13-19.
[http://dx.doi.org/10.1016/j.virusres.2007.02.014] [PMID: 17374415]
[32]
Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, 20(6), 363-374.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[33]
Williams, A.E.; Chambers, R.C. The mercurial nature of neutrophils: still an enigma in ARDS? Am. J. Physiol. Lung Cell. Mol. Physiol., 2014, 306(3), L217-L230.
[http://dx.doi.org/10.1152/ajplung.00311.2013] [PMID: 24318116]
[34]
Li, G.; Fan, Y.; Lai, Y.; Han, T.; Li, Z.; Zhou, P.; Pan, P.; Wang, W.; Hu, D.; Liu, X.; Zhang, Q.; Wu, J. Coronavirus infections and immune responses. J. Med. Virol., 2020, 92(4), 424-432.
[http://dx.doi.org/10.1002/jmv.25685] [PMID: 31981224]
[35]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N-H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[36]
Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965), 450-454.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[37]
Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci., 2020, 63(3), 457-460.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[38]
Belouzard, S.; Chu, V.C.; Whittaker, G.R. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl. Acad. Sci. USA, 2009, 106(14), 5871-5876.
[http://dx.doi.org/10.1073/pnas.0809524106] [PMID: 19321428]
[39]
Cao, Y.; Li, L.; Feng, Z.; Wan, S.; Huang, P.; Sun, X.; Wen, F.; Huang, X.; Ning, G.; Wang, W. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov., 2020, 6(1), 11.
[http://dx.doi.org/10.1038/s41421-020-0147-1] [PMID: 32133153]
[40]
Bittmann, S.; Luchter, E.; Weissenstein, A.; Villalon, G.; Moschuring-Alieva, E. TMPRSS2-Inhibitors play a role in cell entry mechanism of COVID-19: an insight into camostat and nefamostat. J. Regen. Biol. Med., 2020, 2(2), 1-3.
[http://dx.doi.org/10.37191/Mapsci-2582-385X-2(2)-022]]
[41]
Glowacka, I.; Bertram, S.; Müller, M.A.; Allen, P.; Soilleux, E.; Pfefferle, S.; Steffen, I.; Tsegaye, T.S.; He, Y.; Gnirss, K.; Niemeyer, D.; Schneider, H.; Drosten, C.; Pöhlmann, S. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J. Virol., 2011, 85(9), 4122-4134.
[http://dx.doi.org/10.1128/JVI.02232-10] [PMID: 21325420]
[42]
Hirano, T.; Murakami, M. COVID-19: a new virus, but a familiar receptor and cytokine release syndrome. Immunity, 2020, 52(5), 731-733.
[http://dx.doi.org/10.1016/j.immuni.2020.04.003] [PMID: 32325025]
[43]
Cossarizza, A.; De Biasi, S.; Guaraldi, G.; Girardis, M.; Mussini, C.; Group, M.C.W. Modena Covid-19 Working Group (MoCo19). SARS‐CoV‐2, the virus that causes COVID‐19: cytometry and the new challenge for global health. Cytometry A, 2020, 97(4), 340-343.
[http://dx.doi.org/10.1002/cyto.a.24002] [PMID: 32187834]
[44]
Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med., 2020, 46(5), 846-848.
[http://dx.doi.org/10.1007/s00134-020-05991-x] [PMID: 32125452]
[45]
Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; Tian, D.S. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis., 2020, 71(15), 762-768.
[http://dx.doi.org/10.1093/cid/ciaa248]] [PMID: 32161940]
[46]
Li, Y.; Xia, L. Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management. AJR Am. J. Roentgenol., 2020, 214(6), 1280-1286.
[http://dx.doi.org/10.2214/AJR.20.22954] [PMID: 32130038]
[47]
Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; Du, B.; Li, L.J.; Zeng, G.; Yuen, K.Y.; Chen, R.C.; Tang, C.L.; Wang, T.; Chen, P.Y.; Xiang, J.; Li, S.Y.; Wang, J.L.; Liang, Z.J.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Zhong, N.S. China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[48]
de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol., 2016, 14(8), 523-534.
[http://dx.doi.org/10.1038/nrmicro.2016.81] [PMID: 27344959]
[49]
Wang, Y.; Liu, L. The membrane protein of severe acute respiratory syndrome coronavirus functions as a novel cytosolic pathogen-associated molecular pattern to promote beta interferon induction via a toll-like-receptor-related TRAF3-independent mechanism. MBio, 2016, 7(1), e01872-15.
[http://dx.doi.org/10.1128/mBio.01872-15] [PMID: 26861016]
[50]
Sallard, E.; Lescure, F-X.; Yazdanpanah, Y.; Mentre, F.; Peiffer-Smadja, N.; Florence, A. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res., 2020, 178,104791.
[http://dx.doi.org/10.1016/j.antiviral.2020.104791] [PMID: 32275914]
[51]
Huang, K.A.; Tan, T.K.; Chen, T.H.; Huang, C.G.; Harvey, R.; Hussain, S.; Chen, C.P.; Hardin, A.; Gilbert-Jaramillo, J.; Liu, X.; Knight, M.; Schimanski, L.; Shih, S.R.; Lin, Y.C.; Cheng, C.Y.; Cheng, S.H.; Huang, Y.C.; Lin, T.Y.; Jan, J.T.; Ma, C.; James, W.; Daniels, R.S.; McCauley, J.W.; Rijal, P.; Townsend, A.R. Breadth and function of antibody response to acute SARS-CoV2 infection in humans. PLoS Pathog., 2021, 17(2),e1009352.
[http://dx.doi.org/10.1371/journal.ppat.1009352] [PMID: 33635919 ]
[52]
Zhao, J.; Yuan, Q.; Wang, H.; Liu, W.; Liao, X.; Su, Y.; Wang, X.; Yuan, J.; Li, T.; Li, J.; Qian, S.; Hong, C.; Wang, F.; Liu, Y.; Wang, Z.; He, Q.; Li, Z.; He, B.; Zhang, T.; Fu, Y.; Ge, S.; Liu, L.; Zhang, J.; Xia, N.; Zhang, Z. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin. Infect. Dis., 2020, 71(16), 2027-2034.
[http://dx.doi.org/10.1093/cid/ciaa344] [PMID: 32221519]
[53]
Corman, V.M.; Albarrak, A.M.; Omrani, A.S.; Albarrak, M.M.; Farah, M.E.; Almasri, M.; Muth, D.; Sieberg, A.; Meyer, B.; Assiri, A.M.; Binger, T.; Steinhagen, K.; Lattwein, E.; Al-Tawfiq, J.; Müller, M.A.; Drosten, C.; Memish, Z.A. Viral shedding and antibody response in 37 patients with Middle East respiratory syndrome coronavirus infection. Clin. Infect. Dis., 2016, 62(4), 477-483.
[http://dx.doi.org/10.1093/cid/civ951]] [PMID: 26565003]
[54]
Hsueh, P-R.; Huang, L-M.; Chen, P-J.; Kao, C-L.; Yang, P-C. Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus. Clin. Microbiol. Infect., 2004, 10(12), 1062-1066.
[http://dx.doi.org/10.1111/j.1469-0691.2004.01009.x] [PMID: 15606632]
[55]
Park, W.B.; Perera, R.A.; Choe, P.G.; Lau, E.H.; Choi, S.J.; Chun, J.Y.; Oh, H.S.; Song, K-H.; Bang, J.H.; Kim, E.S.; Kim, H.B.; Park, S.W.; Kim, N.J.; Man Poon, L.L.; Peiris, M.; Oh, M.D. Kinetics of serologic responses to MERS coronavirus infection in humans, South Korea. Emerg. Infect. Dis., 2015, 21(12), 2186-2189.
[http://dx.doi.org/10.3201/eid2112.151421] [PMID: 26583829]
[56]
Meyer, B.; Drosten, C.; Müller, M.A. Serological assays for emerging coronaviruses: challenges and pitfalls. Virus Res., 2014, 194, 175-183.
[http://dx.doi.org/10.1016/j.virusres.2014.03.018] [PMID: 24670324]
[57]
Tan, M.; Liu, Y.; Zhou, R.; Deng, X.; Li, F.; Liang, K.; Shi, Y. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou. Immunology, 2020, 60(3), 261-268.
[http://dx.doi.org/10.1111/imm.13223] [PMID: 32460357]
[58]
Fan, Y-Y.; Huang, Z-T.; Li, L.; Wu, M-H.; Yu, T.; Koup, R.A.; Bailer, R.T.; Wu, C-Y. Characterization of SARS-CoV-specific memory T cells from recovered individuals 4 years after infection. Arch. Virol., 2009, 154(7), 1093-1099.
[http://dx.doi.org/10.1007/s00705-009-0409-6] [PMID: 19526193]
[59]
Lv, H.; Wu, N.C.; Tsang, O.T-Y.; Yuan, M.; Perera, R.A.P.M.; Leung, W.S.; So, R.T.Y.; Chan, J.M.C.; Yip, G.K.; Chik, T.S.H.; Wang, Y.; Choi, C.Y.C.; Lin, Y.; Ng, W.W.; Zhao, J.; Poon, L.L.M.; Peiris, J.S.M.; Wilson, I.A.; Mok, C.K.P. Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections. Cell Rep., 2020, 31(9),107725.
[http://dx.doi.org/10.1016/j.celrep.2020.107725] [PMID: 32426212]
[60]
Erbelding, E.J.; Post, D.J.; Stemmy, E.J.; Roberts, P.C.; Augustine, A.D.; Ferguson, S.; Paules, C.I.; Graham, B.S.; Fauci, A.S. A universal influenza vaccine: the strategic plan for the National institute of allergy and infectious diseases. J. Infect. Dis., 2018, 218(3), 347-354.
[http://dx.doi.org/10.1093/infdis/jiy103] [PMID: 29506129]
[61]
Zost, S.J.; Wu, N.C.; Hensley, S.E.; Wilson, I.A. Immunodominance and antigenic variation of influenza virus hemagglutinin: implications for design of universal vaccine immunogens. J. Infect. Dis, 2019, 219(Suppl._1), S38-S45.
[http://dx.doi.org/10.1093/infdis/jiy696] [PMID: 30535315]
[62]
Pinto, D.; Park, Y-J.; Beltramello, M.; Walls, A.C.; Tortorici, M.A.; Bianchi, S.; Jaconi, S.; Culap, K.; Zatta, F.; De Marco, A.; Peter, A.; Guarino, B.; Spreafico, R.; Cameroni, E.; Case, J.B.; Chen, R.E.; Havenar-Daughton, C.; Snell, G.; Telenti, A.; Virgin, H.W.; Lanzavecchia, A.; Diamond, M.S.; Fink, K.; Veesler, D.; Corti, D. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature, 2020, 583(7815), 290-295.
[http://dx.doi.org/10.1038/s41586-020-2349-y] [PMID: 32422645]
[63]
Hardy, A. Karyopharm Therapeutics doses first COVID-19 patient in selinexor study, 2020.Available at:. https://investors.karyopharm.com/news-releases/news-release-details/karyopharm-announces-dosing-first-patient-randomized-study(April 20, 2020).
[64]
Che, X.Y.; Qiu, L.W.; Liao, Z.Y.; Wang, Y.D.; Wen, K.; Pan, Y.X.; Hao, W.; Mei, Y.B.; Cheng, V.C.; Yuen, K.Y. Antigenic cross-reactivity between severe acute respiratory syndrome-associated coronavirus and human coronaviruses 229E and OC43. J. Infect. Dis., 2005, 191(12), 2033-2037.
[http://dx.doi.org/10.1086/430355] [PMID: 15897988]
[65]
Warter, L.; Appanna, R.; Fink, K. Human poly- and cross-reactive anti-viral antibodies and their impact on protection and pathology. Immunol. Res., 2012, 53(1-3), 148-161.
[http://dx.doi.org/10.1007/s12026-012-8268-8] [PMID: 22434513]
[66]
Chan, K-H.; Chan, J.F-W.; Tse, H.; Chen, H.; Lau, C.C-Y.; Cai, J-P.; Tsang, A.K-L.; Xiao, X.; To, K.K-W.; Lau, S.K-P.; Woo, P.C.; Zheng, B.J.; Wang, M.; Yuen, K.Y. Cross-reactive antibodies in convalescent SARS patients’ sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests. J. Infect., 2013, 67(2), 130-140.
[http://dx.doi.org/10.1016/j.jinf.2013.03.015] [PMID: 23583636]
[67]
Rathore, A.P.S.; St John, A.L. Cross-reactive immunity among flaviviruses. Front. Immunol., 2020, 11, 334.
[http://dx.doi.org/10.3389/fimmu.2020.00334] [PMID: 32174923]
[68]
Pang, J.; Wang, M.X.; Ang, I.Y.H.; Tan, S.H.X.; Lewis, R.F.; Chen, J.I-P.; Gutierrez, R.A.; Gwee, S.X.W.; Chua, P.E.Y.; Yang, Q.; Ng, X.Y.; Yap, R.K.; Tan, H.Y.; Teo, Y.Y.; Tan, C.C.; Cook, A.R.; Yap, J.C.; Hsu, L.Y. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-nCoV): a systematic review. J. Clin. Med., 2020, 9(3), 623.
[http://dx.doi.org/10.3390/jcm9030623] [PMID: 32110875]
[69]
Shen, C.; Wang, Z.; Zhao, F.; Yang, Y.; Li, J.; Yuan, J.; Wang, F.; Li, D.; Yang, M.; Xing, L.; Wei, J.; Xiao, H.; Yang, Y.; Qu, J.; Qing, L.; Chen, L.; Xu, Z.; Peng, L.; Li, Y.; Zheng, H.; Chen, F.; Huang, K.; Jiang, Y.; Liu, D.; Zhang, Z.; Liu, Y.; Liu, L. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA, 2020, 323(16), 1582-1589.
[http://dx.doi.org/10.1001/jama.2020.4783] [PMID: 32219428]
[70]
Tseng, C-T.; Sbrana, E.; Iwata-Yoshikawa, N.; Newman, P.C.; Garron, T.; Atmar, R.L.; Peters, C.J.; Couch, R.B. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One, 2012, 7(4),e35421.
[http://dx.doi.org/10.1371/journal.pone.0035421] [PMID: 22536382]
[71]
Weiss, R.C.; Scott, F.W. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comp. Immunol. Microbiol. Infect. Dis., 1981, 4(2), 175-189.
[http://dx.doi.org/10.1016/0147-9571(81)90003-5] [PMID: 6754243]
[72]
Kim, E.S.; Choe, P.G.; Park, W.B.; Oh, H.S.; Kim, E.J.; Nam, E.Y.; Na, S.H.; Kim, M.; Song, K-H.; Bang, J.H.; Park, S.W.; Kim, H.B.; Kim, N.J.; Oh, M.D. Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection. J. Korean Med. Sci., 2016, 31(11), 1717-1725.
[http://dx.doi.org/10.3346/jkms.2016.31.11.1717] [PMID: 27709848]
[73]
Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[74]
Lau, J.T.; Lau, M.; Kim, J.H.; Tsui, H.Y.; Tsang, T.; Wong, T.W.; Wong, T.W. Probable secondary infections in households of SARS patients in Hong Kong. Emerg. Infect. Dis., 2004, 10(2), 235-243.
[http://dx.doi.org/10.3201/eid1002.030626] [PMID: 15030689]
[75]
Pedersen, S.F.; Ho, Y-C. SARS-CoV-2: a storm is raging. J. Clin. Invest., 2020, 130(5), 2202-2205.
[http://dx.doi.org/10.1172/JCI137647] [PMID: 32217834]
[76]
Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA, 2020, 323(18), 1843-1844.
[http://dx.doi.org/10.1001/jama.2020.3786] [PMID: 32159775]
[77]
Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; Mulders, D.G.; Haagmans, B.L.; van der Veer, B.; van den Brink, S.; Wijsman, L.; Goderski, G.; Romette, J.L.; Ellis, J.; Zambon, M.; Peiris, M.; Goossens, H.; Reusken, C.; Koopmans, M.P.; Drosten, C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill., 2020, 25(3),2000045.
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.3.2000045] [PMID: 31992387]
[78]
Broughton, J.P.; Deng, X.; Yu, G.; Fasching, C.L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J.A.; Granados, A.; Sotomayor-Gonzalez, A.; Zorn, K.; Gopez, A.; Hsu, E.; Gu, W.; Miller, S.; Pan, C.Y.; Guevara, H.; Wadford, D.A.; Chen, J.S.; Chiu, C.Y. CRISPR-Cas12-based detection of SARS-CoV-2. Nat. Biotechnol., 2020, 38(7), 870-874.
[http://dx.doi.org/10.1038/s41587-020-0513-4]] [PMID: 32300245]
[79]
Li, X.; Zeng, W.; Li, X.; Chen, H.; Shi, L.; Li, X.; Xiang, H.; Cao, Y.; Chen, H.; Liu, C.; Wang, J. CT imaging changes of corona virus disease 2019(COVID-19): a multi-center study in Southwest China. J. Transl. Med., 2020, 18(1), 154.
[http://dx.doi.org/10.1186/s12967-020-02324-w] [PMID: 32252784]
[80]
Fang, Y.; Zhang, H.; Xie, J.; Lin, M.; Ying, L.; Pang, P.; Ji, W. Sensitivity of Chest CT for COVID-19: comparison to RT-PCR. Radiology, 2020, 296(2), E115-E117.
[http://dx.doi.org/10.1148/radiol.2020200432] [PMID: 32073353]
[81]
Galante, O.; Avni, Y.S.; Fuchs, L.; Ferster, O.A.; Almog, Y. Coronavirus NL63-induced adult respiratory distress syndrome. Am. J. Respir. Crit. Care Med., 2016, 193(1), 100-101.
[http://dx.doi.org/10.1164/rccm.201506-1239LE] [PMID: 26720790]
[82]
Albarello, F.; Pianura, E.; Di Stefano, F.; Cristofaro, M.; Petrone, A.; Marchioni, L.; Palazzolo, C.; Schininà, V.; Nicastri, E.; Petrosillo, N.; Campioni, P.; Eskild, P.; Zumla, A.; Ippolito, G. COVID 19 INMI Study Group 2019-Novel coronavirus severe adult respiratory distress syndrome in two cases in Italy: an uncommon radiological presentation. Int. J. Infect. Dis., 2019, 93, 192-197.
[http://dx.doi.org/10.1016/j.ijid.2020.02.043] [PMID: 32112966]
[83]
Shi, H.; Han, X.; Jiang, N.; Cao, Y.; Alwalid, O.; Gu, J.; Fan, Y.; Zheng, C. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect. Dis., 2020, 20(4), 425-434.
[http://dx.doi.org/10.1016/S1473-3099(20)30086-4] [PMID: 32105637]
[84]
Zhang, H.; Zhou, P.; Wei, Y.; Yue, H.; Wang, Y.; Hu, M.; Zhang, S.; Cao, T.; Yang, C.; Li, M.; Guo, G.; Chen, X.; Chen, Y.; Lei, M.; Liu, H.; Zhao, J.; Peng, P.; Wang, C.Y.; Du, R. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann. Intern. Med., 2020, 172(9), 629-632.
[http://dx.doi.org/10.7326/M20-0533] [PMID: 32163542]
[85]
Woo, P.C.; Lau, S.K.; Wong, B.H.; Tsoi, H.W.; Fung, A.M.; Kao, R.Y.; Chan, K.H.; Peiris, J.S.; Yuen, K.Y. Differential sensitivities of severe acute respiratory syndrome (SARS) coronavirus spike polypeptide enzyme-linked immunosorbent assay (ELISA) and SARS coronavirus nucleocapsid protein ELISA for serodiagnosis of SARS coronavirus pneumonia. J. Clin. Microbiol., 2005, 43(7), 3054-3058.
[http://dx.doi.org/10.1128/JCM.43.7.3054-3058.2005] [PMID: 16000415]
[86]
Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol., 2016, 3(1), 237-261.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[87]
Yang, W.; Huang, W.; Su, S.; Li, B.; Zhao, W.; Chen, S.; Gu, D. Association study of ACE2 (angiotensin I-converting enzyme 2) gene polymorphisms with coronary heart disease and myocardial infarction in a Chinese Han population. Clin. Sci. (Lond.), 2006, 111(5), 333-340.
[http://dx.doi.org/10.1042/CS20060020] [PMID: 16822235]
[88]
van der Hoek, L.; Berkhout, B. Questions concerning the New Haven coronavirus. J. Infect. Dis., 2005, 192(2), 350-351.
[http://dx.doi.org/10.1086/430795] [PMID: 15962232]
[89]
Lau, S.K.; Lee, P.; Tsang, A.K.; Yip, C.C.; Tse, H.; Lee, R.A.; So, L-Y.; Lau, Y-L.; Chan, K-H.; Woo, P.C.; Yuen, K.Y. Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J. Virol., 2011, 85(21), 11325-11337.
[http://dx.doi.org/10.1128/JVI.05512-11] [PMID: 21849456]
[90]
Regan, A.D.; Whittaker, G.R. Utilization of DC-SIGN for entry of feline coronaviruses into host cells. J. Virol., 2008, 82(23), 11992-11996.
[http://dx.doi.org/10.1128/JVI.01094-08] [PMID: 18799586]
[91]
Ge, X-Y.; Li, J-L.; Yang, X-L.; Chmura, A.A.; Zhu, G.; Epstein, J.H.; Mazet, J.K.; Hu, B.; Zhang, W.; Peng, C.; Zhang, Y.J.; Luo, C.M.; Tan, B.; Wang, N.; Zhu, Y.; Crameri, G.; Zhang, S.Y.; Wang, L.F.; Daszak, P.; Shi, Z.L. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 2013, 503(7477), 535-538.
[http://dx.doi.org/10.1038/nature12711] [PMID: 24172901]
[92]
Wong, A.C.P.; Li, X.; Lau, S.K.P.; Woo, P.C.Y. Global epidemiology of bat coronaviruses. Viruses, 2019, 11(2), 174.
[http://dx.doi.org/10.3390/v11020174] [PMID: 30791586]
[93]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178,104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[94]
Rowland, R.R.; Chauhan, V.; Fang, Y.; Pekosz, A.; Kerrigan, M.; Burton, M.D. Intracellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein: absence of nucleolar accumulation during infection and after expression as a recombinant protein in vero cells. J. Virol., 2005, 79(17), 11507-11512.
[http://dx.doi.org/10.1128/JVI.79.17.11507-11512.2005] [PMID: 16103202]
[95]
Timani, K.A.; Liao, Q.; Ye, L.; Zeng, Y.; Liu, J.; Zheng, Y.; Ye, L.; Yang, X.; Lingbao, K.; Gao, J.; Zhu, Y. Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus. Virus Res., 2005, 114(1-2), 23-34.
[http://dx.doi.org/10.1016/j.virusres.2005.05.007] [PMID: 15992957]
[96]
Wulan, W.N.; Heydet, D.; Walker, E.J.; Gahan, M.E.; Ghildyal, R. Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses. Front. Microbiol., 2015, 6, 553.
[http://dx.doi.org/10.3389/fmicb.2015.00553] [PMID: 26082769]
[97]
Hiscox, J.A.; Wurm, T.; Wilson, L.; Britton, P.; Cavanagh, D.; Brooks, G. The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J. Virol., 2001, 75(1), 506-512.
[http://dx.doi.org/10.1128/JVI.75.1.506-512.2001] [PMID: 11119619]
[98]
Wurm, T.; Chen, H.; Hodgson, T.; Britton, P.; Brooks, G.; Hiscox, J.A. Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. J. Virol., 2001, 75(19), 9345-9356.
[http://dx.doi.org/10.1128/JVI.75.19.9345-9356.2001] [PMID: 11533198]
[99]
Hamming, I.; Timens, W.; Bulthuis, M.; Lely, A.; Navis, G.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 2004, 203(2), 631-637.
[http://dx.doi.org/10.1002/path.1570]] [PMID: 15141377]
[100]
Leng, Z.; Zhu, R.; Hou, W.; Feng, Y.; Yang, Y.; Han, Q.; Shan, G.; Meng, F.; Du, D.; Wang, S.; Fan, J.; Wang, W.; Deng, L.; Shi, H.; Li, H.; Hu, Z.; Zhang, F.; Gao, J.; Liu, H.; Li, X.; Zhao, Y.; Yin, K.; He, X.; Gao, Z.; Wang, Y.; Yang, B.; Jin, R.; Stambler, I.; Lim, L.W.; Su, H.; Moskalev, A.; Cano, A.; Chakrabarti, S.; Min, K.J.; Ellison-Hughes, G.; Caruso, C.; Jin, K.; Zhao, R.C. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis., 2020, 11(2), 216-228.
[http://dx.doi.org/10.14336/AD.2020.0228] [PMID: 32257537]
[101]
Shetty, A.K. Mesenchymal stem cell infusion shows promise for combating coronavirus (COVID-19)-induced pneumonia. Aging Dis., 2020, 11(2), 462-464.
[http://dx.doi.org/10.14336/AD.2020.0301] [PMID: 32257554]
[102]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[103]
Sproston, N.R.; Ashworth, J.J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol., 2018, 9, 754.
[http://dx.doi.org/10.3389/fimmu.2018.00754] [PMID: 29706967]
[104]
Bisoendial, R.J.; Boekholdt, S.M.; Vergeer, M.; Stroes, E.S.; Kastelein, J.J. C-reactive protein is a mediator of cardiovascular disease. Eur. Heart J., 2010, 31(17), 2087-2091.
[http://dx.doi.org/10.1093/eurheartj/ehq238] [PMID: 20685682]
[105]
Sardar, R.; Satish, D.; Birla, S.; Gupta, D. Comparative analyses of SAR-CoV2 genomes from different geographical locations and other coronavirus family genomes reveals unique features potentially consequential to host-virus interaction and pathogenesis. bioRxiv, 2020. 2020.03.21.001586
[http://dx.doi.org/10.1101/2020.03.21.001586]
[106]
Tai, D.Y. Pharmacologic treatment of SARS: current knowledge and recommendations. Ann. Acad. Med. Singapore, 2007, 36(6), 438-443.
[PMID: 17597972]
[107]
Winquist, A.G.; Fukuda, K.; Bridges, C.B.; Cox, N.J. Neuraminidase inhibitors for treatment of influenza a and b infections. MMWR Recomm. Rep., 1999, 48(RR-14), 1-9.
[PMID: 10632433]
[108]
Cooper, N.J.; Sutton, A.J.; Abrams, K.R.; Wailoo, A.; Turner, D.; Nicholson, K.G. Effectiveness of neuraminidase inhibitors in treatment and prevention of influenza A and B: systematic review and meta-analyses of randomised controlled trials. BMJ, 2003, 326(7401), 1235.
[http://dx.doi.org/10.1136/bmj.326.7401.1235] [PMID: 12791735]
[109]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[110]
Sarma, P.; Prajapat, M.; Avti, P.; Kaur, H.; Kumar, S.; Medhi, B. Therapeutic options for the treatment of 2019-novel coronavirus: an evidence-based approach. Indian J. Pharmacol., 2020, 52(1), 1-5.
[http://dx.doi.org/10.4103/ijp.IJP_119_20] [PMID: 32201439]
[111]
Amirian, E.S.; Levy, J.K. Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses. One Health, 2020, 9,100128.
[http://dx.doi.org/10.1016/j.onehlt.2020.100128] [PMID: 32258351]
[112]
Sheahan, T.P.; Sims, A.C.; Graham, R.L.; Menachery, V.D.; Gralinski, L.E.; Case, J.B.; Leist, S.R.; Pyrc, K.; Feng, J.Y.; Trantcheva, I.; Bannister, R.; Park, Y.; Babusis, D.; Clarke, M.O.; Mackman, R.L.; Spahn, J.E.; Palmiotti, C.A.; Siegel, D.; Ray, A.S.; Cihlar, T.; Jordan, R.; Denison, M.R.; Baric, R.S. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med., 2017, 9(396),eaal3653.
[http://dx.doi.org/10.1126/scitranslmed.aal3653] [PMID: 28659436]
[113]
Warren, T.K.; Jordan, R.; Lo, M.K.; Ray, A.S.; Mackman, R.L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H.C.; Larson, N.; Strickley, R.; Wells, J.; Stuthman, K.S.; Van Tongeren, S.A.; Garza, N.L.; Donnelly, G.; Shurtleff, A.C.; Retterer, C.J.; Gharaibeh, D.; Zamani, R.; Kenny, T.; Eaton, B.P.; Grimes, E.; Welch, L.S.; Gomba, L.; Wilhelmsen, C.L.; Nichols, D.K.; Nuss, J.E.; Nagle, E.R.; Kugelman, J.R.; Palacios, G.; Doerffler, E.; Neville, S.; Carra, E.; Clarke, M.O.; Zhang, L.; Lew, W.; Ross, B.; Wang, Q.; Chun, K.; Wolfe, L.; Babusis, D.; Park, Y.; Stray, K.M.; Trancheva, I.; Feng, J.Y.; Barauskas, O.; Xu, Y.; Wong, P.; Braun, M.R.; Flint, M.; McMullan, L.K.; Chen, S.S.; Fearns, R.; Swaminathan, S.; Mayers, D.L.; Spiropoulou, C.F.; Lee, W.A.; Nichol, S.T.; Cihlar, T.; Bavari, S. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 2016, 531(7594), 381-385.
[http://dx.doi.org/10.1038/nature17180] [PMID: 26934220]
[114]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2(1), 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[115]
Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov., 2020, 6(1), 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 32194981]
[116]
Gautret, P.; Lagier, J-C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Dupont, H.T.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1),105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[117]
Kim, A.H.; Sparks, J.A.; Liew, J.W.; Putman, M.S.; Berenbaum, F.; Duarte-García, A.; Graef, E.R.; Korsten, P.; Sattui, S.E.; Sirotich, E.; Ugarte-Gil, M.F.; Webb, K.; Grainger, R. A rush to judgment? Rapid reporting and dissemination of results and its consequences regarding the use of hydroxychloroquine for COVID-19. Ann. Intern. Med., 2020, 172(12), 819-821.
[http://dx.doi.org/10.7326/M20-1223] [PMID: 32227189]
[118]
Choudhary, R.; Sharma, A.K.; Choudhary, R. Potential use of hydroxychloroquine, ivermectin and azithromycin drugs in fighting COVID-19: trends, scope and relevance. New Microbes New Infect., 2020, 35,100684.
[http://dx.doi.org/10.1016/j.nmni.2020.100684] [PMID: 32322397]
[119]
Poschet, J.F.; Perkett, E.A.; Timmins, G.S.; Deretic, V. Azithromycin and ciprofloxacin have a chloroquine-like effecton respiratory epithelial cells. bioRxiv, 2020. 2020.03.29.008631
[http://dx.doi.org/10.1101/2020.03.29.008631] [PMID: 32511331]
[120]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[121]
Baden, L.R.; Rubin, E.J. Covid-19-the search for effective therapy. N. Engl. J. Med., 2020, 382(19), 1851-1852.
[http://dx.doi.org/10.1056/NEJMe2005477] [PMID: 32187463]
[122]
Hardy, A. A closer look at the race to develop antibody drugs for COVID-19. 2020.Available at:. https://www.bio-pharmadive.com/news/coronavirus-antibody-drug-trials/577778(Accessed: May 12, 2020).
[123]
Michel, D. Evaluation of Activity and Safety of Oral Selinexor in Participants with Severe COVID-19 Infection(Coronavirus). NCT No. NCT04349098. Available at:. https://clinicaltrials.gov/ct2/show/NCT04349098(Accessed: June 5, 2020).
[124]
Fidler, B. A closer look at the race to develop antibody drugs for COVID-19, 2020.Available at:. https://www.biopharmadive.com/news/coronavirus-antibody-drug-trials/577778(Accessed: May 12, 2020)
[125]
Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D-Y.; Chen, L.; Wang, M. Presumed asymptomatic carrier transmission of COVID-19. JAMA, 2020, 323(14), 1406-1407.
[http://dx.doi.org/10.1001/jama.2020.2565] [PMID: 32083643]
[126]
Lin, L-T.; Hsu, W-C.; Lin, C-C. Antiviral natural products and herbal medicines. J. Tradit. Complement. Med., 2014, 4(1), 24-35.
[http://dx.doi.org/10.4103/2225-4110.124335] [PMID: 24872930]
[127]
Yang, Y.; Islam, M.S.; Wang, J.; Li, Y.; Chen, X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective. Int. J. Biol. Sci., 2020, 16(10), 1708-1717.
[http://dx.doi.org/10.7150/ijbs.45538] [PMID: 32226288]
[128]
Lin, C-W.; Tsai, F-J.; Tsai, C-H.; Lai, C-C.; Wan, L.; Ho, T-Y.; Hsieh, C-C.; Chao, P-D.L. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[129]
Lau, K-M.; Lee, K-M.; Koon, C-M.; Cheung, C.S-F.; Lau, C-P.; Ho, H-M.; Lee, M.Y-H.; Au, S.W-N.; Cheng, C.H-K.; Lau, C.B.; Tsui, S.K.; Wan, D.C.; Waye, M.M.; Wong, K.B.; Wong, C.K.; Lam, C.W.; Leung, P.C.; Fung, K.P. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J. Ethnopharmacol., 2008, 118(1), 79-85.
[http://dx.doi.org/10.1016/j.jep.2008.03.018] [PMID: 18479853]
[130]
Zou, H.; He, T.; Chen, X. Tetrandrine inhibits differentiation of proinflammatory subsets of T helper cells but spares de novo differentiation of iTreg cells. Int. Immunopharmacol., 2019, 69, 307-312.
[http://dx.doi.org/10.1016/j.intimp.2019.01.040] [PMID: 30769211]
[131]
Kim, D.E.; Min, J.S.; Jang, M.S.; Lee, J.Y.; Shin, Y.S.; Song, J.H.; Kim, H.R.; Kim, S.; Jin, Y.H.; Kwon, S. Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules, 2019, 9(11), 696.
[http://dx.doi.org/10.3390/biom9110696] [PMID: 31690059]
[132]
Gong, S.; Su, X.; Wu, H.; Li, J.; Qin, Y.; Xu, Q.; Luo, W. A study on anti-SARS-CoV 3CL protein of flavonoids from Litchi chinensis sonn. core. Chin Pharma Bull, 2008, 24(5), 699-700.
[133]
Nguyen, T.T.H.; Woo, H-J.; Kang, H-K.; Nguyen, V.D.; Kim, Y.M.; Kim, D.W.; Ahn, S.A.; Xia, Y.; Kim, D. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol. Lett., 2012, 34(5), 831-838.
[http://dx.doi.org/10.1007/s10529-011-0845-8] [PMID: 22350287]
[134]
Jo, S.; Kim, S.; Shin, D.H.; Kim, M-S. Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 145-151.
[http://dx.doi.org/10.1080/14756366.2019.1690480] [PMID: 31724441]
[135]
Chen, C-J.; Michaelis, M.; Hsu, H-K.; Tsai, C-C.; Yang, K.D.; Wu, Y-C.; Cinatl, J., Jr; Doerr, H.W. Toona sinensis roem tender leaf extract inhibits SARS coronavirus replication. J. Ethnopharmacol., 2008, 120(1), 108-111.
[http://dx.doi.org/10.1016/j.jep.2008.07.048] [PMID: 18762235]
[136]
Chen, Z.; Nakamura, T. Statistical evidence for the usefulness of Chinese medicine in the treatment of SARS. Phytother. Res., 2004, 18(7), 592-594.
[http://dx.doi.org/10.1002/ptr.1485] [PMID: 15305324]
[137]
Deng, Y.F.; Aluko, R.E.; Jin, Q.; Zhang, Y.; Yuan, L.J. Inhibitory activities of baicalin against renin and angiotensin-converting enzyme. Pharm. Biol., 2012, 50(4), 401-406.
[http://dx.doi.org/10.3109/13880209.2011.608076] [PMID: 22136493]
[138]
Cheng, P.W.; Ng, L.T.; Chiang, L.C.; Lin, C.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol., 2006, 33(7), 612-616.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04415.x] [PMID: 16789928]
[139]
Eyal, N.; Lipsitch, M.; Smith, P.G. Human challenge studies to accelerate coronavirus vaccine licensure. J. Infect. Dis., 2020, 221(11), 1752-1756.
[http://dx.doi.org/10.1093/infdis/jiaa152] [PMID: 32232474]
[140]
Wan, Y.; Shang, J.; Sun, S.; Tai, W.; Chen, J.; Geng, Q.; He, L.; Chen, Y.; Wu, J.; Shi, Z.; Zhou, Y.; Du, L.; Li, F. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J. Virol., 2020, 94(5), e02015-e02019.
[http://dx.doi.org/10.1128/JVI.02015-19] [PMID: 31826992]
[141]
WHO.Draft landscape and tracker of COVID-19 candidate vaccines 2020.Available at:. https://www.who.int/publica-tions/m/item/draft-landscape-of-covid-19-candidate-vaccines(Accessed: June 5, 2020).
[142]
Jiang, S.; He, Y.; Liu, S. SARS vaccine development. Emerg. Infect. Dis., 2005, 11(7), 1016-1020.
[http://dx.doi.org/10.3201/1107.050219] [PMID: 16022774]
[143]
Regla-Nava, J.A.; Nieto-Torres, J.L.; Jimenez-Guardeño, J.M.; Fernandez-Delgado, R.; Fett, C.; Castaño-Rodríguez, C.; Perlman, S.; Enjuanes, L.; DeDiego, M.L. Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates. J. Virol., 2015, 89(7), 3870-3887.
[http://dx.doi.org/10.1128/JVI.03566-14] [PMID: 25609816]
[144]
Collins, F.S.; Stoffels, P. Accelerating COVID-19 therapeutic interventions and vaccines (activ): an unprecedented partnership for unprecedented times. JAMA, 2020, 323(24), 2455-2457.
[http://dx.doi.org/10.1001/jama.2020.8920] [PMID: 32421150]
[145]
Wajnberg, A.; Mansour, M.; Leven, E.; Bouvier, N. M.; Patel, G.; Firpo, A.; Mendu, R.; Jhang, J.; Arinsburg, S.; Gitman, M.; Houldsworth, J.; Baine, I.; Simon, V.; Aberg, J.; Krammer, F.; Reich, D.; Cordon-Cardo, C. Humoral immune response and prolonged PCR positivity in a cohort of 1343 SARS-CoV 2 patients in the New York City region. medRxiv, 2020. 2020.04.30.20085613.
[http://dx.doi.org/10.1101/2020.04.30.20085613]
[146]
Maggi, E.; Canonica, G.W.; Moretta, L. COVID-19: unanswered questions on immune response and pathogenesis. J. Allergy Clin. Immunol., 2020, 146(1), 18-22.
[http://dx.doi.org/10.1016/j.jaci.2020.05.001] [PMID: 32389590]
[147]
Smith, P.F.; Dodds, M.; Bentley, D.; Yeo, K.; Rayner, C. Dosing will be a key success factor in repurposing antivirals for COVID-19. Br. J. Clin. Pharmacol., 2020.
[http://dx.doi.org/10.1111/bcp.14314] [PMID: 32304110]
[148]
Geleris, J.; Sun, Y.; Platt, J.; Zucker, J.; Baldwin, M.; Hripcsak, G.; Labella, A.; Manson, D.K.; Kubin, C.; Barr, R.G.; Sobieszczyk, M.E.; Schluger, N.W. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N. Engl. J. Med., 2020, 382(25), 2411-2418.
[http://dx.doi.org/10.1056/NEJMoa2012410] [PMID: 32379955]
[149]
Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M.L.; Lescure, F.X.; Nicastri, E.; Oda, R.; Yo, K.; Quiros-Roldan, E.; Studemeister, A.; Redinski, J.; Ahmed, S.; Bernett, J.; Chelliah, D.; Chen, D.; Chihara, S.; Cohen, S.H.; Cunningham, J.; D’Arminio Monforte, A.; Ismail, S.; Kato, H.; Lapadula, G.; L’Her, E.; Maeno, T.; Majumder, S.; Massari, M.; Mora-Rillo, M.; Mutoh, Y.; Nguyen, D.; Verweij, E.; Zoufaly, A.; Osinusi, A.O.; DeZure, A.; Zhao, Y.; Zhong, L.; Chokkalingam, A.; Elboudwarej, E.; Telep, L.; Timbs, L.; Henne, I.; Sellers, S.; Cao, H.; Tan, S.K.; Winterbourne, L.; Desai, P.; Mera, R.; Gaggar, A.; Myers, R.P.; Brainard, D.M.; Childs, R.; Flanigan, T. Compassionate use of remdesivir for patients with severe Covid-19. N. Engl. J. Med., 2020, 382(24), 2327-2336.
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812]
[150]
Hanada, S.; Pirzadeh, M.; Carver, K.Y.; Deng, J.C. Respiratory viral infection-induced microbiome alterations and secondary bacterial pneumonia. Front. Immunol., 2018, 9, 2640.
[http://dx.doi.org/10.3389/fimmu.2018.02640] [PMID: 30505304]
[151]
Anderson, G.; Reiter, R.J. Melatonin: roles in influenza, Covid-19, and other viral infections. Rev. Med. Virol., 2020, 30(3),e2109.
[http://dx.doi.org/10.1002/rmv.2109] [PMID: 32314850]
[152]
Islam, S.R.; Siddiqua, T.J. Functional foods in cancer prevention and therapy: Recent epidemiological findings.In:Functional Foods in Cancer Prevention and Therapy; Elsevier, 2020, pp. 405-433.
[http://dx.doi.org/10.1016/B978-0-12-816151-7.00020-X]
[153]
Chakrabarti, S.S.; Kaur, U.; Banerjee, A.; Ganguly, U.; Banerjee, T.; Saha, S.; Parashar, G.; Prasad, S.; Chakrabarti, S.; Mittal, A.; Agrawal, B.K.; Rawal, R.K.; Zhao, R.C.; Gambhir, I.S.; Khanna, R.; Shetty, A.K.; Jin, K.; Chakrabarti, S. COVID-19 in India: are biological and environmental factors helping to stem the incidence and severity? Aging Dis., 2020, 11(3), 480-488.
[http://dx.doi.org/10.14336/AD.2020.0402] [PMID: 32489695]
[154]
Wang, J.; Tang, K.; Feng, K.; Lv, W. High temperature and high humidity reduce the transmission of COVID-19. ArXiv:2003.05003, 2020.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy