Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

Emergence of a New Zoonotic COVID-19 that Creates a Pandemic: Update on Current Pharmacotherapeutics and Future Prospective of Plasma Therapy

Author(s): Farazul Hoda, Rishabh Verma, Saurabh Rastogi, Asif Iqubal, Syed Ehtaishamul Haque, Mohd. Akhtar and Abul Kalam Najmi*

Volume 2, Issue 4, 2021

Published on: 14 October, 2020

Page: [422 - 430] Pages: 9

DOI: 10.2174/2666796701999201014160857

Abstract

The current decade started on an unexpected note, with almost the entire world grappling with a newly arisen pandemic. A novel coronavirus, tracing its first human host to a Chinese province, has spread to all geographical areas with human populations. The virus, named SARS-CoV-2, infects the lower respiratory tract, much like other coronaviruses, that caused the 2002 epidemic, to which it is eponymous . The severity of infection is seen in individuals with comorbidities like diabetes, cardiovascular disorders, chronic respiratory problems, hypertension, cancer, etc. This virus represents another incidence of zoonosis to humans and has infected over eighteen million people since December 2019, of its first human transmission. All the currently employed therapies are either aimed at alleviating the severity of the symptoms or being administered on a trial basis. This review attempts to summarize brief aetiology of the virus, epidemiology of the outbreak, clinical symptoms of the disease with a postulated mechanism of pathogenesis and several existing and approved drugs and therapeutics along with plasma therapy, which are being clinically reviewed for their activity, as well as safety, against the disease; none of which are approved yet. A few promising vaccine candidates, as per in vivo studies, are also underway, but their evaluation might take a year at least. Meanwhile, experts have come up with the concept of “social distancing” to stem the viral spread, as the medical research fraternity of the world strives hard to find a safe, successful and effective cure for it.

Keywords: COVID-19, SARS-CoV-2, pathogenesis, pharmacological treatment, plasma therapy, pharmacotherapeutics.

Graphical Abstract

[1]
Millán-Oñate J, Rodriguez-Morales AJ, Camacho-Moreno G, Mendoza-Ramírez H, Rodríguez-Sabogal IA, Álvarez-Moreno C. A new emerging zoonotic virus of concern: the 2019 novel Coronavirus (SARS CoV-2). Infectio 2020; 24(3): 187-92.
[http://dx.doi.org/10.22354/in.v24i3.848]
[2]
Lai C-C, Shih T-P, Ko W-C, Tang H-J, Hsueh P-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents 2020; 55(3)105924
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[3]
Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. A novel coronavirus emerging in China—key questions for impact assessment. N Engl J Med 2020; 382(8): 692-4.
[http://dx.doi.org/10.1056/NEJMp2000929] [PMID: 31978293]
[4]
WHO. Novel coronavirus (2019-nCoV). Situation report 2020; 28. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
[5]
Chan JF-W, To KK-W, Tse H, Jin D-Y, Yuen K-Y. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol 2013; 21(10): 544-55.
[http://dx.doi.org/10.1016/j.tim.2013.05.005] [PMID: 23770275]
[6]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92(4): 418-23.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[7]
Chan JF-W, Kok K-H, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020; 9(1): 221-36.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[8]
Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med 2020; 382(13): 1199-207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[9]
Bauch CT, Lloyd-Smith JO, Coffee MP, Galvani AP. Dynamically modeling SARS and other newly emerging respiratory illnesses: past, present, and future. Epidemiology 2005; 16(6): 791-801.
[http://dx.doi.org/10.1097/01.ede.0000181633.80269.4c] [PMID: 16222170]
[10]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[11]
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323(13): 1239-42.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[12]
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020.109102433
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[13]
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020; 94(7): e00127-20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[14]
Jia HP, Look DC, Shi L, et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 2005; 79(23): 14614-21.
[http://dx.doi.org/10.1128/JVI.79.23.14614-14621.2005] [PMID: 16282461]
[15]
Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[16]
Tortorici MA, Veesler D. Structural insights into coronavirus entry.In: Kielian M, Mattenleiter TC, Roossinck MJ, Eds Advances in virus research US: Elsevier. 2019; 105: pp. 93-116.
[http://dx.doi.org/10.1016/bs.aivir.2019.08.002]
[17]
Zhang N, Jiang S, Du L. Current advancements and potential strategies in the development of MERS-CoV vaccines. Expert Rev Vaccines 2014; 13(6): 761-74.
[http://dx.doi.org/10.1586/14760584.2014.912134] [PMID: 24766432]
[18]
Xia S, Zhu Y, Liu M, et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol 2020; 17(7): 765-7.
[http://dx.doi.org/10.1038/s41423-020-0374-2] [PMID: 32047258]
[19]
de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. In:Tripp RA, Tompkins SM. Eds Roles of host gene and non-coding RNA expression in virus infection. Switzerland: Springer 2017; pp. 1-42.
[20]
Sawicki S, Sawicki D. Coronavirus transcription: a perspective.Coronavirus replication and reverse genetics. Berlin, Germany: Springer 2005; pp. 31-55.
[21]
Hussain S, Pan J, Chen Y, et al. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J Virol 2005; 79(9): 5288-95.
[http://dx.doi.org/10.1128/JVI.79.9.5288-5295.2005] [PMID: 15827143]
[22]
Perrier A, Bonnin A, Desmarets L, et al. The C-terminal domain of the MERS coronavirus M protein contains a trans-Golgi network localization signal. J Biol Chem 2019; 294(39): 14406-21.
[http://dx.doi.org/10.1074/jbc.RA119.008964] [PMID: 31399512]
[23]
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5(4): 562-9.
[http://dx.doi.org/10.1038/s41564-020-0688-y] [PMID: 32094589]
[24]
Song W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog 2018; 14(8)e1007236
[http://dx.doi.org/10.1371/journal.ppat.1007236] [PMID: 30102747]
[25]
Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001; 413(6857): 732-8.
[http://dx.doi.org/10.1038/35099560] [PMID: 11607032]
[26]
Wu J, Chen ZJ. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol 2014; 32: 461-88.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120156] [PMID: 24655297]
[27]
Yoo J-S, Kato H, Fujita T. Sensing viral invasion by RIG-I like receptors. Curr Opin Microbiol 2014; 20: 131-8.
[http://dx.doi.org/10.1016/j.mib.2014.05.011] [PMID: 24968321]
[28]
Wu J, Sun L, Chen X, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 2013; 339(6121): 826-30.
[http://dx.doi.org/10.1126/science.1229963] [PMID: 23258412]
[29]
Ishikawa H, Barber GN. Sting is an endoplasmic reticulum adaptor that facilitates innate immune signaling. Cytokine 2009; 1(48): 128.
[http://dx.doi.org/10.1016/j.cyto.2009.07.543]
[30]
Seth RB, Sun L, Ea C-K, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 2005; 122(5): 669-82.
[http://dx.doi.org/10.1016/j.cell.2005.08.012] [PMID: 16125763]
[31]
Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11(5): 373-84.
[http://dx.doi.org/10.1038/ni.1863] [PMID: 20404851]
[32]
Takeuchi O, Akira S. Innate immunity to virus infection. Immunol Rev 2009; 227(1): 75-86.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00737.x] [PMID: 19120477]
[33]
Liu Q, Wang R, Qu G, Wang Y, Liu P, Zhu Y. General anatomy report of novel coronavirus pneumonia death corpse. J Forensic Med 2020; 36(1): 19-21.
[34]
Chen C, Zhang X, Ju Z, He W. Advances in the research of cytokine storm mechanism induced by corona virus disease 2019 and the corresponding immunotherapies. Zhonghua Shao Shang Za Zhi 2020; 36(6): 471-5.
[http://dx.doi.org/10.3760/cma.j.cn501120-20200224-00088.]
[35]
Liu Y, Zhang C, Huang F, Yang Y, Wang F, Yuan J, et al. response aggravating lung injury
[36]
Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA 2020; 323(18): 1824-36.
[PMID: 32282022]
[37]
Mitsuyasu RT, Skolnik PR, Cohen SR, et al. Activity of the soft gelatin formulation of saquinavir in combination therapy in antiretroviral-naive patients. NV15355 Study Team. AIDS 1998; 12(11): F103-9.
[http://dx.doi.org/10.1097/00002030-199811000-00001] [PMID: 9708399]
[38]
Tenore SB, Ferreira PR. The place of protease inhibitors in antiretroviral treatment. Braz J Infect Dis 2009; 13(5): 371-4.
[http://dx.doi.org/10.1590/S1413-86702009000500012] [PMID: 20428639]
[39]
Pokorná J, Machala L, Rezáčová P, Konvalinka J. Current and novel inhibitors of HIV protease. Viruses 2009; 1(3): 1209-39.
[http://dx.doi.org/10.3390/v1031209] [PMID: 21994591]
[40]
Şimşek Yavuz S, Ünal S. Antiviral treatment of COVID-19. Turk J Med Sci 2020; 50(SI-1): 611-9.
[http://dx.doi.org/10.3906/sag-2004-145] [PMID: 32293834]
[41]
Chu CM, Cheng VC, Hung IF, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 2004; 59(3): 252-6.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[42]
de Wilde AH, Jochmans D, Posthuma CC, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother 2014; 58(8): 4875-84.
[http://dx.doi.org/10.1128/AAC.03011-14] [PMID: 24841269]
[43]
Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther 2020; 14(1): 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[44]
Cao B, Wang Y, Wen D, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[45]
Xu J, Zhao S, Teng T, et al. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses 2020; 12(2): 244.
[http://dx.doi.org/10.3390/v12020244] [PMID: 32098422]
[46]
Siegel D, Hui HC, Doerffler E, et al. Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo [2, 1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of ebola and emerging viruses. J Med Chem 2017; 60(5): 1648-61.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01594]
[47]
Rossignol J-F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J Infect Public Health 2016; 9(3): 227-30.
[http://dx.doi.org/10.1016/j.jiph.2016.04.001] [PMID: 27095301]
[48]
Al-Tawfiq JA, Al-Homoud AH, Memish ZA. Remdesivir as a possible therapeutic option for the COVID-19. Travel Med Infect Dis 2020; 34101615
[http://dx.doi.org/10.1016/j.tmaid.2020.101615] [PMID: 32145386]
[49]
Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; 382(10): 929-36.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[50]
Kujawski SA, Wong KK, Collins JP, et al. First 12 patients with coronavirus disease 2019 (COVID-19) in the United States. MedRxiv 2020.
[51]
Clinicaltrial.gov. Study to evaluate the safety and antiviral activity of remdesivir (GS-5734™) in participants with severe coronavirus disease (COVID-19). Available from: https://clinicaltrials.gov/
[52]
Hawman DW, Haddock E, Meade-White K, et al. Efficacy of favipiravir (T-705) against Crimean-Congo hemorrhagic fever virus infection in cynomolgus macaques. Antiviral Res 2020.181104858
[http://dx.doi.org/10.1016/j.antiviral.2020.104858] [PMID: 32645335]
[53]
Chen C, Huang J, Cheng Z, et al. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. MedRxiv 2020.
[http://dx.doi.org/10.1101/2020.03.17.20037432]
[54]
Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis 2003; 3(11): 722-7.
[http://dx.doi.org/10.1016/S1473-3099(03)00806-5] [PMID: 14592603]
[55]
Zhou D, Dai S-M, Tong Q. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother 2020; 75(7): 1667-70.
[http://dx.doi.org/10.1093/jac/dkaa114] [PMID: 32196083]
[56]
Devaux CA, Rolain J-M, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 2020; 55(5)105938
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[57]
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020; 14(1): 72-3.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[58]
Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1)105949
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[59]
Colson P, Rolain J-M, Lagier J-C, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 2020; 55105932 Epub 2020 Mar 4
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105932]
[60]
Li Y, Liu X, Guo L, et al. Traditional Chinese herbal medicine for treating novel coronavirus (COVID-19) pneumonia: protocol for a systematic review and meta-analysis. Syst Rev 2020; 9(1): 75.
[http://dx.doi.org/10.1186/s13643-020-01343-4] [PMID: 32268923]
[61]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[62]
Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020; 395(10223): 473-5.
[http://dx.doi.org/10.1016/S0140-6736(20)30317-2] [PMID: 32043983]
[63]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[64]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[65]
Xu X, Han M, Li T, Sun W, Wang D, Fu B. Effective treatment of severe COVID-19 patients with Tocilizumab. PNAS 2020; 117(20): 10970-5.
[http://dx.doi.org/10.1073/pnas.2005615117]
[66]
Jin Y-H, Cai L, Cheng Z-S, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res 2020; 7(1): 4.
[http://dx.doi.org/10.1186/s40779-020-0233-6] [PMID: 32029004]
[67]
Della-Torre E, Campochiaro C, Cavalli G, et al. Interleukin-6 blockade with sarilumab in severe COVID-19 pneumonia with systemic hyperinflammation: an open-label cohort study. Ann Rheum Dis 2020; 79: 1277-85.
[http://dx.doi.org/10.1136/annrheumdis-2020-218122]
[68]
Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020; 20(4): 398-400.
[http://dx.doi.org/10.1016/S1473-3099(20)30141-9] [PMID: 32113510]
[69]
Robbins JB, Schneerson R, Szu SC. Perspective: hypothesis: serum IgG antibody is sufficient to confer protection against infectious diseases by inactivating the inoculum. J Infect Dis 1995; 171(6): 1387-98.
[http://dx.doi.org/10.1093/infdis/171.6.1387] [PMID: 7769272]
[70]
Casadevall A, Pirofski LA. Antibody-mediated regulation of cellular immunity and the inflammatory response. Trends Immunol 2003; 24(9): 474-8.
[http://dx.doi.org/10.1016/S1471-4906(03)00228-X] [PMID: 12967670]
[71]
Casadevall A, Scharff MD. Serum therapy revisited: animal models of infection and development of passive antibody therapy. Antimicrob Agents Chemother 1994; 38(8): 1695-702.
[http://dx.doi.org/10.1128/AAC.38.8.1695] [PMID: 7985997]
[72]
Park WH. Therapeutic use of antipoliomyelitis serum in preparalytic cases of poliomyelitis. J Am Med Assoc 1932; 99(13): 1050-3.
[http://dx.doi.org/10.1001/jama.1932.02740650008003]
[73]
FDA G. Investigational-covid-19-convalescent-plasma-emergencyinds. US Food and Drug Administration 2020. Available from: https://www fda gov/vaccines-blood. 2020.
[74]
Roback JD, Guarner J. Convalescent plasma to treat COVID-19: possibilities and challenges. JAMA 2020; 323(16): 1561-2.
[http://dx.doi.org/10.1001/jama.2020.4940] [PMID: 32219429]
[75]
Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA 2020; 117(17): 9490-6.
[http://dx.doi.org/10.1073/pnas.2004168117] [PMID: 32253318]
[76]
Casadevall A, Pirofski LA. The convalescent sera option for containing COVID-19. J Clin Invest 2020; 130(4): 1545-8.
[http://dx.doi.org/10.1172/JCI138003] [PMID: 32167489]
[77]
Wan Y, Shang J, Sun S, et al. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J Virol 2020; 94(5): e02015-9.
[http://dx.doi.org/10.1128/JVI.02015-19] [PMID: 31826992]
[78]
Mair-Jenkins J, Saavedra-Campos M, Baillie JK, et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis 2015; 211(1): 80-90.
[http://dx.doi.org/10.1093/infdis/jiu396] [PMID: 25030060]
[79]
Im JH, Nahm CH, Baek JH, Kwon HY, Lee J-S. Convalescent plasma therapy in coronavirus disease 2019: a case report and suggestions to overcome obstacles. J Korean Med Sci 2020; 35(26)e239
[http://dx.doi.org/10.3346/jkms.2020.35.e239] [PMID: 32627442]
[80]
Ahn JY, Sohn Y, Lee SH, et al. Use of convalescent plasma therapy in two COVID-19 patients with acute respiratory distress syndrome in Korea. J Korean Med Sci 2020; 35(14)e149
[http://dx.doi.org/10.3346/jkms.2020.35.e149] [PMID: 32281317]

© 2025 Bentham Science Publishers | Privacy Policy