Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Tetralone Scaffolds and Their Potential Therapeutic Applications

Author(s): Bhagwati Gauni*, Krunal Mehariya, Anamik Shah and Srinivas Murty Duggirala

Volume 18, Issue 3, 2021

Published on: 13 October, 2020

Page: [222 - 238] Pages: 17

DOI: 10.2174/1570180817999201013165656

Price: $65

Abstract

Substituted tetralones have played a substantial role in organic synthesis due to their strong reactivity and suitability as a starting material for a range of synthetic heterocyclic compounds, pharmaceuticals along with biological activities as well as precursors of many natural products and their derivatives. Many α-tetralone derivatives are building blocks that have been used in the synthesis of therapeutically functional compounds like some antibiotics, antidepressants, acetylcholinesterase inhibitors effective for treating Alzheimer’s disease and alkaloids possessing antitumor activity. In this review, there has been an attempt to explore the small molecule library having an α-tetralone scaffold along with their diverse biological activities. Structural features of α- tetralone derivatives responsible for potential therapeutic applications are also described.

Keywords: α-tetralone, anticancer, antibacterial, antimalarial, antipsychotic, therapeutic applications.

Graphical Abstract

[1]
Mishra, B.B.; Kumar, D.; Mishra, A.; Mohapatra, P.P.; Tiwari, V.K. Cyclo-release strategy in solid-phase combinatorial synthesis of heterocyclic skeletons.In: Advances in Heterocyclic Chemistry; Academic Press, 2012.
[http://dx.doi.org/10.1016/B978-0-12-396532-5.00002-0]
[2]
Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd., 2012, 48(1), 7-10.
[http://dx.doi.org/10.1007/s10593-012-0960-z]
[3]
Cope, H.; Mutter, R.; Heal, W.; Pascoe, C.; Brown, P.; Pratt, S.; Chen, B. Synthesis and SAR study of acridine, 2-methylquinoline and 2-phenylquinazoline analogues as anti-prion agents. Eur. J. Med. Chem., 2006, 41(10), 1124-1143.
[http://dx.doi.org/10.1016/j.ejmech.2006.05.002] [PMID: 16782236]
[4]
Jha, A.; Beal, J. Convenient synthesis of 12H-benzo [a] xanthenes from 2-tetralone. Tetrahedron Lett., 2004, 45(49), 8999-9001.
[http://dx.doi.org/10.1016/j.tetlet.2004.10.046]
[5]
Shefali, S.; Srivastava, S.K.; Husbands, S.M.; Lewis, J.W. Extension of the Nenitzescu reaction to simple ketones provides an efficient route to 1′-alkyl-5′-hydroxynaltrindole analogues, potent and selective δ-opioid receptor antagonists. J. Med. Chem., 2005, 48(2), 635-638.
[http://dx.doi.org/10.1021/jm040853s] [PMID: 15658877]
[6]
Tririya, G.; Zanger, M. Synthesis of Anthracyclinone Precursor: 5, 12-Dihydroxy-1, 3, 4-trihydronaphthacene-2, 6, 11-quinone. Synth. Commun., 2004, 34(17), 3047-3059.
[http://dx.doi.org/10.1081/SCC-200028508]
[7]
Shekhawat, K.; Jhankal, K.; Sharma, D. Synthesis of 4-(5′, 6′, 7′, 8′-tetrahydronaphthalene)-1-tetralone. Pharm. Sin., 2003, 4(1), 17-20.
[8]
Hou, S.; Prichina, A.; Zhang, M.; Dong, G. Asymmetric total syntheses of Di- and Sesqui-terpenoids via catalytic C-C activation of cyclopentanones. Angew. Chem., 2020, 7848-7856.
[http://dx.doi.org/10.1002/anie.201915821]
[9]
Wright, P.M.; Seiple, I.B.; Myers, A.G. The evolving role of chemical synthesis in antibacterial drug discovery. Angew. Chem. Int. Ed. Engl., 2014, 53(34), 8840-8869.
[http://dx.doi.org/10.1002/anie.201310843] [PMID: 24990531]
[10]
[11]
Alagumuthu, M.; Arumugam, S. Molecular docking, discovery, synthesis, and pharmacological properties of new 6-substituted-2-(3-phenoxyphenyl)-4-phenyl quinoline derivatives; An approach to developing potent DNA gyrase inhibitors/antibacterial agents. Bioorg. Med. Chem., 2017, 25(4), 1448-1455.
[http://dx.doi.org/10.1016/j.bmc.2017.01.007] [PMID: 28094220]
[12]
Fernández-Sáez, N.; Rubio-Ruiz, B.; Campos, J.M.; Unciti-Broceta, A.; Carrión, M.D.; Camacho, M.E. Purine derivatives with heterocyclic moieties and related analogs as new antitumor agents. Future Med. Chem., 2019, 11(2), 83-95.
[http://dx.doi.org/10.4155/fmc-2018-0291] [PMID: 30644318]
[13]
Desai, N.C.; Patel, B.Y.; Dave, B.P. Synthesis and antimicrobial activity of novel quinoline derivatives bearing pyrazoline and pyridine analogues. Med. Chem. Res., 2017, 26(1), 109-119.
[http://dx.doi.org/10.1007/s00044-016-1732-6]
[14]
Silveira, C.C.; Braga, A.L.; Kaufman, T.S.; Lenardao, E.J. Synthetic approaches to 2-tetralones. Tetrahedron, 2004, 60(38), 8295-8328.
[http://dx.doi.org/10.1016/j.tet.2004.06.080]
[15]
Olson, C.; Bader, A. α-Tetralone. Org. Synth., 1963, 4, 898.
[16]
Kuo, P.C.; Li, Y.C.; Wu, T.S. Chemical constituents and pharmacology of the aristolochia (mădōu ling) species. J. Tradit. Complement. Med., 2012, 2(4), 249-266.
[17]
Sharifzadeh, B.; Mahmoodi, N.O.; Mamaghani, M.; Tabatabaeian, K.; Chirani, A.S.; Nikokar, I. Facile regioselective synthesis of novel bioactive thiazolyl-pyrazoline derivatives via a three-component reaction and their antimicrobial activity. Bioorg. Med. Chem. Lett., 2013, 23(2), 548-551.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.024] [PMID: 23228471]
[18]
Yoshino, K.; Kohno, T.; Uno, T.; Morita, T.; Tsukamoto, G. Organic phosphorus compounds. 1. 4-(Benzothiazol-2-yl)benzylphosphonate as potent calcium antagonistic vasodilator. J. Med. Chem., 1986, 29(5), 820-825.
[http://dx.doi.org/10.1021/jm00155a037] [PMID: 3701791]
[19]
Kirby, A.J.; Le Lain, R.; Maharlouie, F.; Mason, P.; Nicholls, P.J.; Smith, H.J.; Simons, C. Inhibition of retinoic acid metabolising enzymes by 2-(4-aminophenylmethyl)-6-hydroxy-3,4-dihydronaphthalen-1(2H)-one and related compounds. J. Enzyme Inhib. Med. Chem., 2003, 18(1), 27-33.
[http://dx.doi.org/10.1080/1475636021000049221] [PMID: 12751817]
[20]
Mandrioli, R.; Mercolini, L.; Raggi, M.A. Evaluation of the pharmacokinetics, safety and clinical efficacy of sertraline used to treat social anxiety. Expert Opin. Drug Metab. Toxicol., 2013, 9(11), 1495-1505.
[http://dx.doi.org/10.1517/17425255.2013.816675] [PMID: 23834458]
[21]
Fuller, R.W.; Hemrick-Luecke, S.K.; Littlefield, E.S.; Audia, J.E. Comparison of desmethylsertraline with sertraline as a monoamine uptake inhibitor in vivo. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1995, 19(1), 135-149.
[http://dx.doi.org/10.1016/0278-5846(94)00110-4] [PMID: 7535937]
[22]
Owens, M.J.; Morgan, W.N.; Plott, S.J.; Nemeroff, C.B. Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites. J. Pharmacol. Exp. Ther., 1997, 283(3), 1305-1322.
[PMID: 9400006]
[23]
DeVane, C.L.; Liston, H.L.; Markowitz, J.S. Clinical pharmacokinetics of sertraline. Clin. Pharmacokinet., 2002, 41(15), 1247-1266.
[http://dx.doi.org/10.2165/00003088-200241150-00002] [PMID: 12452737]
[24]
Manvar, D. Fernandes, Tde.A.; Domingos, J.L.; Baljinnyam, E.; Basu, A.; Junior, E.F.; Costa, P.R.; Kaushik-Basu, N. Synthesis and biological evaluation of α-aryl-α-tetralone derivatives as hepatitis C virus inhibitors. Eur. J. Med. Chem., 2015, 93, 51-54.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.057] [PMID: 25644675]
[25]
Aparicio, D.A.; Lobo, G.M.; Sánchez, J.L.; Melina, C. Monasterios, María E.; Acosta, Lola De Lima, Ligia J.; Llovera, Jorge E. Ángel; Jaime, E. C. Synthesis of Trans-and cis-2-acetyl-3-phenyl-3, 3a, 4, 5-tetrahydro-2 H-benzo [g] Indazoles: Evaluation as Inhibitors of β-hematin Formation. J. Chem. Res., 2017, 41(11), 668-672.
[http://dx.doi.org/10.3184/174751917X15105690662845]
[26]
Yuko Kirin Beer, K.K.; Shigeyuki Kirin Beer, K.K. Mizobuchi, Kozo Kirin Beer, K.K. Tanabe, Hideo Kirin Beer K.K. 2-bromo-1-tetralone derivatives. European Patent EP0125695B1, 2019.
[27]
Legoabe, L.J.; Petzer, A.; Petzer, J.P. Inhibition of monoamine oxidase by selected C6-substituted chromone derivatives. Eur. J. Med. Chem., 2012, 49, 343-353.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.037] [PMID: 22309913]
[28]
Legoabe, L.J.; Petzer, A.; Petzer, J.P. α-Tetralone derivatives as inhibitors of monoamine oxidase. Bioorg. Med. Chem. Lett., 2014, 24(12), 2758-2763.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.021] [PMID: 24794105]
[29]
Legoabe, L.J.; Van der Walt, M.M. Terre’Blanche, G. Evaluation of 2-benzylidene-1-tetralone derivatives as antagonists of A1 and A2A adenosine receptors. Chem. Biol. Drug Des., 2018, 91(1), 234-244.
[http://dx.doi.org/10.1111/cbdd.13074] [PMID: 28734058]
[30]
Leng, J.; Qin, H.L.; Zhu, K.; Jantan, I.; Hussain, M.A.; Sher, M.; Amjad, M.W.; Naeem-Ul-Hassan, M.; Ahmad, W.; Bukhari, S.N.A. Evaluation of multifunctional synthetic tetralone derivatives for treatment of Alzheimer’s disease. Chem. Biol. Drug Des., 2016, 88(6), 889-898.
[http://dx.doi.org/10.1111/cbdd.12822] [PMID: 27434226]
[31]
Deshineni, R.; Velpula, R.; Ragi, R.; Chellamella, G.K. One-pot multi-component synthesis of 4-substituted thiazole Schiff base derivatives and their antibacterial activity. Indian J. Chem., 2016, 55, 1415-1419.
[32]
Ceylan, M.; Kocyigit, U.M.; Usta, N.C.; Gürbüzlü, B.; Temel, Y.; Alwasel, S.H.; Gülçin, İ. Synthesis, carbonic anhydrase I and II isoenzymes inhibition properties, and antibacterial activities of novel tetralone-based 1,4-benzothiazepine derivatives. J. Biochem. Mol. Toxicol., 2017, 31(4),e21872.
[http://dx.doi.org/10.1002/jbt.21872] [PMID: 27780313]
[33]
Gautam, D.; Chaudhary, R.P. Synthesis, structure and antimicrobial evaluation of new 3,3a,4,5-tetrahydro-2H-benzo[g]indazol-2-ylthiazol-4(5H)-ones. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 219-226.
[http://dx.doi.org/10.1016/j.saa.2014.06.134] [PMID: 25064506]
[34]
Abdel-Wahab, B.F.; Mohamed, H.A.; Awad, G.E. Synthesis and antimicrobial activity of some new 3-(4-fluorophenyl)-benzo [g] indazoles and 1-pyrazolyl-thiazoles. Eur. Chem. Bull., 2014, 3(11), 1069-1074.
[35]
Dwivedi, G.R.; Upadhyay, H.C.; Yadav, D.K.; Singh, V.; Srivastava, S.K.; Khan, F.; Darmwal, N.S.; Darokar, M.P. 4-Hydroxy-α-tetralone and its derivative as drug resistance reversal agents in multi drug resistant Escherichia coli. Chem. Biol. Drug Des., 2014, 83(4), 482-492.
[http://dx.doi.org/10.1111/cbdd.12263] [PMID: 24267788]
[36]
Broccolo, F.; Cainelli, G.; Caltabiano, G.; Cocuzza, C.E.; Fortuna, C.G.; Galletti, P.; Giacomini, D.; Musumarra, G.; Musumeci, R.; Quintavalla, A. Design, synthesis, and biological evaluation of 4-alkyliden-beta lactams: new products with promising antibiotic activity against resistant bacteria. J. Med. Chem., 2006, 49(9), 2804-2811.
[http://dx.doi.org/10.1021/jm0580510] [PMID: 16640341]
[37]
Arumugam, N.; Raghunathan, R.; Shanmugaiah, V.; Mathivanan, N. Synthesis of novel β-lactam fused spiroisoxazolidine chromanones and tetralones as potent antimicrobial agent for human and plant pathogens. Bioorg. Med. Chem. Lett., 2010, 20(12), 3698-3702.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.084] [PMID: 20483609]
[38]
Gibson, M.Z.; Nguyen, M.A.; Zingales, S.K. Design, synthesis, and evaluation of (2-(Pyridinyl) methylene)-1-tetralone chalcones for anticancer and antimicrobial activity. Med. Chem., 2018, 14(4), 333-343.
[http://dx.doi.org/10.2174/1573406413666171020121244] [PMID: 29065840]
[39]
Lóránd, T.; Kocsis, B.; Sohár, P.; Nagy, G.; József, P.; Kispál, G.; László, R.; Prókai, L. Synthesis and antibacterial activity of fused Mannich ketones. Eur. J. Med. Chem., 2002, 37(10), 803-812.
[http://dx.doi.org/10.1016/S0223-5234(02)01404-6] [PMID: 12446038]
[40]
Gali, R.; Banothu, J.; Porika, M.; Velpula, R.; Hnamte, S.; Bavantula, R.; Abbagani, S.; Busi, S. Indolylmethylene benzo[h]thiazolo[2,3-b]quinazolinones: Synthesis, characterization and evaluation of anticancer and antimicrobial activities. Bioorg. Med. Chem. Lett., 2014, 24(17), 4239-4242.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.030] [PMID: 25096298]
[41]
Wang, H.; Liu, X. Glucosides from the fresh flowers of Juglans regia L. and their biological evaluation. Lett. Org. Chem., 2020, 17(1), 31-35.
[http://dx.doi.org/10.2174/1570178616666190226150248]
[42]
David, J.; Barreiros, A.; David, J. Antioxidant phenylpropanoid esters of triterpenes from Dioclea lasiophylla. Pharm. Biol., 2004, 42(1), 36-38.
[http://dx.doi.org/10.1080/13880200490505447]
[43]
Upadhyay, H.; Thakur, J.; Saikia, D.; Srivastava, S. Anti-tubercular agents from Ammania baccifera (Linn.). Med. Chem. Res., 2013, 22, 16-21.
[http://dx.doi.org/10.1007/s00044-012-9998-9]
[44]
Tzanetou, E.; Liekens, S.; Kasiotis, K.M.; Melagraki, G.; Afantitis, A.; Fokialakis, N.; Haroutounian, S.A. Antiproliferative novel isoxazoles: Modeling, virtual screening, synthesis, and bioactivity evaluation. Eur. J. Med. Chem., 2014, 81, 139-149.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.011] [PMID: 24836066]
[45]
Qin, H.L.; Leng, J.; Zhang, C.P.; Jantan, I.; Amjad, M.W.; Sher, M.; Naeem-Ul-Hassan, M.; Hussain, M.A.; Bukhari, S.N.A. Synthesis of α, β-unsaturated carbonyl-based compounds, oxime and oxime ether analogs as potential anticancer agents for overcoming cancer multidrug resistance by modulation of efflux pumps in tumor cells. J. Med. Chem., 2016, 59(7), 3549-3561.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00276] [PMID: 27010345]
[46]
Wang, Y.; Hedblom, A.; Koerner, S.K.; Li, M.; Jernigan, F.E.; Wegiel, B.; Sun, L. Novel synthetic chalcones induce apoptosis in the A549 non-small cell lung cancer cells harboring a KRAS mutation. Bioorg. Med. Chem. Lett., 2016, 26(23), 5703-5706.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.063] [PMID: 27810244]
[47]
Hurdle, J.G.; O’Neill, A.J.; Chopra, I.; Lee, R.E. Targeting bacterial membrane function: An underexploited mechanism for treating persistent infections. Nat. Rev. Microbiol., 2011, 9(1), 62-75.
[http://dx.doi.org/10.1038/nrmicro2474] [PMID: 21164535]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy