Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

General Review Article

Biosurfactants as a Novel Additive in Pharmaceutical Formulations: Current Trends and Future Implications

Author(s): Shubham Thakur, Amrinder Singh, Ritika Sharma, Rohan Aurora and Subheet Kumar Jain*

Volume 21, Issue 11, 2020

Page: [885 - 901] Pages: 17

DOI: 10.2174/1389200221666201008143238

Price: $65

Abstract

Background: Surfactants are an important category of additives that are used widely in most of the formulations as solubilizers, stabilizers, and emulsifiers. Current drug delivery systems comprise of numerous synthetic surfactants (such as Cremophor EL, polysorbate 80, Transcutol-P), which are associated with several side effects though used in many formulations. Therefore, to attenuate the problems associated with conventional surfactants, a new generation of surface-active agents is obtained from the metabolites of fungi, yeast, and bacteria, which are termed as biosurfactants.

Objectives: In this article, we critically analyze the different types of biosurfactants, their origin along with their chemical and physical properties, advantages, drawbacks, regulatory status, and detailed pharmaceutical applications.

Methods: 243 papers were reviewed and included in this review.

Results: Briefly, Biosurfactants are classified as glycolipids, rhamnolipids, sophorolipids, trehalolipids, surfactin, lipopeptides & lipoproteins, lichenysin, fatty acids, phospholipids, and polymeric biosurfactants. These are amphiphilic biomolecules with lipophilic and hydrophilic ends and are used as drug delivery vehicles (foaming, solubilizer, detergent, and emulsifier) in the pharmaceutical industry. Despite additives, they have some biological activity as well (anti-cancer, anti-viral, anti-microbial, P-gp inhibition, etc.). These biomolecules possess better safety profiles and are biocompatible, biodegradable, and specific at different temperatures.

Conclusion: Biosurfactants exhibit good biomedicine and additive properties that can be used in developing novel drug delivery systems. However, more research should be driven due to the lack of comprehensive toxicity testing and high production cost which limits their use.

Keywords: Biosurfactants, regulatory status, lipopeptides, glycolipids, cremophor EL, transcutol-P.

Graphical Abstract

[1]
Miah, M.K.; Shaik, I.H.; Feturi, F.G.; Ali, A.; Venkataramanan, R. Clinical Pharmacokinetics Cli. Pharm. Edu. Pract.Res., 2019, 409-424.
[2]
Bhagwat, R.R.; Vaidhya, I.S. Novel drug delivery systems: An overview. Int. J. Pharm. Sci. Res., 2013, 4, 970.
[3]
Al-Obaidi, H.; Lawrence, M.J.; Buckton, G. Atypical effects of incorporated surfactants on stability and dissolution properties of amorphous polymeric dispersions. J. Pharm. Pharmacol., 2016, 68(11), 1373-1383.
[http://dx.doi.org/10.1111/jphp.12645] [PMID: 27696396]
[4]
Savić, S.; Tamburić, S.; Savić, M.M. From conventional towards new - natural surfactants in drug delivery systems design: current status and perspectives. Expert Opin. Drug Deliv., 2010, 7(3), 353-369.
[http://dx.doi.org/10.1517/17425240903535833] [PMID: 20201739]
[5]
Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer, 2001, 37(13), 1590-1598.
[http://dx.doi.org/10.1016/S0959-8049(01)00171-X] [PMID: 11527683]
[6]
Schwartzberg, L.S.; Navari, R.M. Safety of polysorbate 80 in the oncology setting. Adv. Ther., 2018, 35(6), 754-767.
[http://dx.doi.org/10.1007/s12325-018-0707-z] [PMID: 29796927]
[7]
Sullivan, D.W., Jr; Gad, S.C.; Julien, M. A review of the nonclinical safety of Transcutol®, a highly purified form of diethylene glycol monoethyl ether (DEGEE) used as a pharmaceutical excipient. Food Chem. Toxicol., 2014, 72, 40-50.
[http://dx.doi.org/10.1016/j.fct.2014.06.028] [PMID: 25016034]
[8]
Inácio, Â.S.; Mesquita, K.A.; Baptista, M.; Ramalho-Santos, J.; Vaz, W.L.; Vieira, O.V. In vitro surfactant structure-toxicity relationships: implications for surfactant use in sexually transmitted infection prophylaxis and contraception. PLoS One, 2011, 6(5), e19850.
[http://dx.doi.org/10.1371/journal.pone.0019850] [PMID: 21603626]
[9]
De, S.; Malik, S.; Ghosh, A.; Saha, R.; Saha, B. A review on natural surfactants. RSC Advances, 2015, 5, 65757-65767.
[http://dx.doi.org/10.1039/C5RA11101C]
[10]
Santos, D.K.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Biosurfactants: multifunctional biomolecules of the 21st century. Int. J. Mol. Sci., 2016, 17(3), 401.
[http://dx.doi.org/10.3390/ijms17030401] [PMID: 26999123]
[11]
Faivre, V.; Rosilio, V. Interest of glycolipids in drug delivery: from physicochemical properties to drug targeting. Expert Opin. Drug Deliv., 2010, 7(9), 1031-1048.
[http://dx.doi.org/10.1517/17425247.2010.511172] [PMID: 20716018]
[12]
Palanisamy, P.; Raichur, A.M. Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique. Mater. Sci. Eng. C, 2009, 29, 199-204.
[http://dx.doi.org/10.1016/j.msec.2008.06.008]
[13]
De Oliveira, M.R.; Magri, A.; Baldo, C.; Camilios-Neto, D.; Minucelli, T.; Celligoi, M.A. Sophorolipids A promising biosurfactant and it’s applications. Int. J. Adv. Biotechnol. Res., 2015, 6, 161-174.
[14]
Vijayakumar, S.; Saravanan, V. Biosurfactants-types, sources and applications. Res. J. Microbiol., 2015, 10, 181-192.
[http://dx.doi.org/10.3923/jm.2015.181.192]
[15]
Gakpe, E.E.; Rahman, P.P.; Hatha, A.M. Microbial biosurfactants–review. J. Mar. Atmos. Res., 2007, 3, 1-7.
[16]
Cooper, D.G.; Paddock, D.A. Production of a biosurfactant from Torulopsis bombicola. Appl. Environ. Microbiol., 1984, 47(1), 173-176.
[http://dx.doi.org/10.1128/AEM.47.1.173-176.1984] [PMID: 16346455]
[17]
Rodrigues, L.; Banat, I.M.; Teixeira, J.; Oliveira, R. Biosurfactants: potential applications in medicine. J. Antimicrob. Chemother., 2006, 57(4), 609-618.
[http://dx.doi.org/10.1093/jac/dkl024] [PMID: 16469849]
[18]
Dehghan-Noude, G.; Housaindokht, M.; Bazzaz, B.S.F. Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. J. Microbiol., 2005, 43(3), 272-276.
[PMID: 15995646]
[19]
Das, K.; Mukherjee, A.K. Characterization of biochemical properties and biological activities of biosurfactants produced by Pseudomonas aeruginosa mucoid and non-mucoid strains isolated from hydrocarbon-contaminated soil samples. Appl. Microbiol. Biotechnol., 2005, 69(2), 192-199.
[http://dx.doi.org/10.1007/s00253-005-1975-5] [PMID: 15856227]
[20]
Hwang, Y.H.; Kim, M.S.; Song, I.B.; Park, B.K.; Lim, J.H.; Park, S.C.; Yun, H.I. Subacute (28 day) Toxicity of Surfactin C, a Lipopeptide Produced by Bacillus subtilis, in Rats. J. Health Sci., 2009, 55, 351-355.
[http://dx.doi.org/10.1248/jhs.55.351]
[21]
Kim, H.S.; Jeon, J.W.; Kim, S.B.; Oh, H.M.; Kwon, T.J.; Yoon, B.D. Surface and physico-chemical properties of a glycolipid biosurfactant, mannosylerythritol lipid, from Candidaantarctica. Biotechnol. Lett., 2002, 24, 1637-1641.
[http://dx.doi.org/10.1023/A:1020309816545]
[22]
Edwards, K.R.; Lepo, J.E.; Lewis, M.A. Toxicity comparison of biosurfactants and synthetic surfactants used in oil spill remediation to two estuarine species. Mar. Pollut. Bull., 2003, 46(10), 1309-1316.
[http://dx.doi.org/10.1016/S0025-326X(03)00238-8] [PMID: 14550343]
[23]
Thavasi, R.; Banat, I.M. Biosurfactants and bioemulsifiers from marine sources. Biosurfactants USA: Intech Open; , 2010, p. 125.
[24]
Md, F. Biosurfactant: production and application. J. Pet. Environ. Biotechnol., 2012, 3, 2.
[http://dx.doi.org/10.4172/2157-7463.1000124]
[25]
Ferdous, U.; Shishir, M.; Khan, S.; Hoq, M. Bacillus spp.: Attractive Sources of Anti-cancer and Anti-proliferative Biomolecules Microbial Bioactives, 2018, 1, 033-045.
[26]
Wu, Y.S.; Ngai, S.C.; Goh, B.H.; Chan, K.G.; Lee, L.H.; Chuah, L.H. Anticancer activities of surfactin and potential application of nanotechnology assisted surfactin delivery. Front. Pharmacol., 2017, 8, 761.
[http://dx.doi.org/10.3389/fphar.2017.00761] [PMID: 29123482]
[27]
Zeraik, A.E.; Nitschke, M. Biosurfactants as agents to reduce adhesion of pathogenic bacteria to polystyrene surfaces: effect of temperature and hydrophobicity. Curr. Microbiol., 2010, 61(6), 554-559.
[http://dx.doi.org/10.1007/s00284-010-9652-z] [PMID: 20422191]
[28]
Gharaei-Fathabad, E. Biosurfactants in pharmaceutical industry: a mini-review. Am. J. Drug Discov. Devel., 2011, 1, 58-69.
[http://dx.doi.org/10.3923/ajdd.2011.58.69]
[29]
Sil, J.; Dandapat, P.; Das, S. Health Care Applications of Different Biosurfactants. Int. J. Sci. Res. (Ahmedabad), 2017, 6, 41-50.
[30]
Nakanishi, M.; Inoh, Y.; Kitamoto, D.; Furuno, T. Nano vectors with a biosurfactant for gene transfection and drug delivery. J. Drug Deliv. Sci. Technol., 2009, 19, 165-169.
[http://dx.doi.org/10.1016/S1773-2247(09)50031-7]
[31]
Gudiña, E.J.; Rangarajan, V.; Sen, R.; Rodrigues, L.R. Potential therapeutic applications of biosurfactants. Trends Pharmacol. Sci., 2013, 34(12), 667-675.
[http://dx.doi.org/10.1016/j.tips.2013.10.002] [PMID: 24182625]
[32]
Rikalović, M.G.; Vrvić, M.M.; Karadžić, I.M. Rhamnolipid biosurfactant from Pseudomonas aeruginosa–from discovery to application in contemporary technology. J. Serb. Chem. Soc., 2015, 80, 279.
[http://dx.doi.org/10.2298/JSC140627096R]
[33]
Vecino, X.; Rodríguez-López, L.; Ferreira, D.; Cruz, J.M.; Moldes, A.B.; Rodrigues, L.R. Bioactivity of glycolipopeptide cell-bound biosurfactants against skin pathogens. Int. J. Biol. Macromol., 2018, 109, 971-979.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.088] [PMID: 29162463]
[34]
Pandey, A.; Mittal, A.; Chauhan, N.; Alam, S. Role of surfactants as penetration enhancer in transdermal drug delivery system. J. Mol. Pharm. Org. Process Res., 2014, 2, 2-7.
[http://dx.doi.org/10.4172/2329-9053.1000113]
[35]
Bezza, F.A.; Tichapondwa, S.M.; Chirwa, E.M.N. Synthesis of biosurfactant stabilized silver nanoparticles, characterization and their potential application for bactericidal purposes. J. Hazard. Mater., 2020, 393, 122319.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122319] [PMID: 32120206]
[36]
Kiran, G.S.; Selvin, J.; Manilal, A.; Sujith, S. Biosurfactants as green stabilizers for the biological synthesis of nanoparticles. Crit. Rev. Biotechnol., 2011, 31(4), 354-364.
[http://dx.doi.org/10.3109/07388551.2010.539971] [PMID: 21254833]
[37]
Porter, M.R. Handbook of surfactants. Springer: New york; , 2013.
[38]
Van os, N.M.; Haak, J.R.; Rupert, L.A. Physico-chemical properties of selected anionic, cationic and nonionic surfactants. Elsevier: Amsterdam, ; , 2012.
[39]
You, X.; Xing, Q.; Tuo, J.; Song, W.; Zeng, Y.; Hu, H. Optimizing surfactant content to improve oral bioavailability of ibuprofen in microemulsions: just enough or more than enough? Int. J. Pharm., 2014, 471(1-2), 276-284.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.031] [PMID: 24858390]
[40]
Zhu, Z.; Wen, Y.; Yi, J.; Cao, Y.; Liu, F.; McClements, D.J. Comparison of natural and synthetic surfactants at forming and stabilizing nanoemulsions: Tea saponin, Quillaja saponin, and Tween 80. J. Colloid Interface Sci., 2019, 536, 80-87.
[http://dx.doi.org/10.1016/j.jcis.2018.10.024] [PMID: 30359887]
[41]
Torres, L.; Moctezuma, A.; Avendaño, J.R.; Muñoz, A.; Gracida, J. Comparison of bio-and synthetic surfactants for EOR. J. Petrol. Sci. Eng., 2011, 76, 6-11.
[http://dx.doi.org/10.1016/j.petrol.2010.11.022]
[42]
Halliday, H.L. Natural vs synthetic surfactants in neonatal respiratory distress syndrome. Drugs, 1996, 51(2), 226-237.
[http://dx.doi.org/10.2165/00003495-199651020-00004] [PMID: 8808165]
[43]
Besson, F.; Peypoux, F.; Michel, G.; Delcambe, L. Antifungal activity upon Saccharomyces cerevisiae of iturin A, mycosubtilin, bacillomycin L and of their derivatives; inhibition of this antifungal activity by lipid antagonists. J. Antibiot. (Tokyo), 1979, 32(8), 828-833.
[http://dx.doi.org/10.7164/antibiotics.32.828] [PMID: 387691]
[44]
Diniz Rufino, R.; Moura de Luna, J.; de Campos Takaki, G.M.; Asfora Sarubbo, L. Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron. J. Biotechnol., 2014, 17, 6-6.
[45]
Alves, T.S.; Salgado, J.P.; Andrade, R.F.; Montero-Rodríguez, D.; Ferreira, W.B.; Almeida, M.M.; Takaki, G.C.; Araújo, H.W. Production and evaluation of biosurfactant by Serratia marcescens UCP 1549 using industrial wastes. Br. Biotechnol., 2014, 4, 708.
[http://dx.doi.org/10.9734/BBJ/2014/9774]
[46]
Pacwa-Płociniczak, M.; Płaza, G.A.; Piotrowska-Seget, Z.; Cameotra, S.S. Environmental applications of biosurfactants: recent advances. Int. J. Mol. Sci., 2011, 12(1), 633-654.
[http://dx.doi.org/10.3390/ijms12010633] [PMID: 21340005]
[47]
Lang, S.; Philp, J.C. Surface-active lipids in rhodococci. Antonie van Leeuwenhoek, 1998, 74(1-3), 59-70.
[http://dx.doi.org/10.1023/A:1001799711799] [PMID: 10068789]
[48]
Pruthi, V.; Cameotra, S.S. Production and properties of a biosurfactant synthesized by Arthrobacter protophormiae—an antarctic strain. World J. Microbiol. Biotechnol., 1997, 13, 137-139.
[http://dx.doi.org/10.1007/BF02770822]
[49]
Abu‐Ruwaida, A.S.; Banat, I.M.; Haditirto, S.; Salem, A.; Kadri, M. Isolation of biosurfactant‐producing bacteria, product characterization, and evaluation. Acta Biotechnol., 1991, 11, 315-324.
[http://dx.doi.org/10.1002/abio.370110405]
[50]
Singh, A.; Van Hamme, J.D.; Ward, O.P. Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol. Adv., 2007, 25(1), 99-121.
[http://dx.doi.org/10.1016/j.biotechadv.2006.10.004] [PMID: 17156965]
[51]
Ikeda, Y.; Sunakawa, T.; Tsuchiya, S.; Kondo, M.; Okamoto, K. Toxicological Studies On Sophorolipid Derivatives:(I) Acute Toxicity, Eye Irritation, Primary Skin Irritation, Skin Sensitization, Phototoxicity, Photosensitization, Mutagenicity Of Polyoxypropylene (12)[(2′-0-B-D-Glucopyranosyl-B-D Glucopyranosyl) Oxy-] Fatty Acid Ester. J. Toxicol. Sci., 1986, 11, 197-211.
[http://dx.doi.org/10.2131/jts.11.197] [PMID: 3795298]
[52]
Joshi-Navare, K.; Prabhune, A. A biosurfactant-sophorolipid acts in synergy with antibiotics to enhance their efficiency. BioMed Res. Int., 2013, 2013, 512495.
[http://dx.doi.org/10.1155/2013/512495] [PMID: 24089681]
[53]
US Environmental Protection Agency Office of Pesticide Programs. Available from: https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-110029_11-May-04.pdf
[54]
Li, Z.; Zhang, Y.; Lin, J.; Wang, W.; Li, S. High-yield di-rhamnolipid production by Pseudomonas aeruginosa YM4 and its potential application in MEOR. Molecules, 2019, 24(7), 1433.
[http://dx.doi.org/10.3390/molecules24071433] [PMID: 30979013]
[55]
Müller, M.M.; Kügler, J.H.; Henkel, M.; Gerlitzki, M.; Hörmann, B.; Pöhnlein, M.; Syldatk, C.; Hausmann, R. Rhamnolipids--next generation surfactants? J. Biotechnol., 2012, 162(4), 366-380.
[http://dx.doi.org/10.1016/j.jbiotec.2012.05.022] [PMID: 22728388]
[56]
Christofi, N.; Ivshina, I.B. Microbial surfactants and their use in field studies of soil remediation. J. Appl. Microbiol., 2002, 93(6), 915-929.
[http://dx.doi.org/10.1046/j.1365-2672.2002.01774.x] [PMID: 12452947]
[57]
Kuyukina, M.S.; Ivshina, I.B. Production of Trehalolipid Biosurfactants by Rhodococcus. Dordrecht: Spinger; , 2019.
[58]
Seydlová, G.; Svobodová, J. Review of surfactin chemical properties and the potential biomedical applications. Cent. Eur. J. Med., 2008, 3, 123-133.
[59]
Seydlová, G.; Čabala, R.; Svobodová, J. Surfactin-novel solutions for global issues Biomed. Eng. Trends Res. Technol, 2011, 13, 305-330.
[http://dx.doi.org/10.5772/13015]
[60]
Vaz, D.A.; Gudiña, E.J.; Alameda, E.J.; Teixeira, J.A.; Rodrigues, L.R. Performance of a biosurfactant produced by a Bacillus subtilis strain isolated from crude oil samples as compared to commercial chemical surfactants. Colloids Surf. B Biointerfaces, 2012, 89, 167-174.
[http://dx.doi.org/10.1016/j.colsurfb.2011.09.009] [PMID: 21958536]
[62]
Grau, A.; Gómez-Fernández, J.C.; Peypoux, F.; Ortiz, A. Aggregational behavior of aqueous dispersions of the antifungal lipopeptide iturin A. Peptides, 2001, 22(1), 1-5.
[http://dx.doi.org/10.1016/S0196-9781(00)00350-8] [PMID: 11179592]
[63]
Zhao, H.; Li, J.; Zhang, Y.; Lei, S.; Zhao, X.; Shao, D.; Jiang, C.; Shi, J.; Sun, H. Potential of iturins as functional agents: safe, probiotic, and cytotoxic to cancer cells. Food Funct., 2018, 9(11), 5580-5587.
[http://dx.doi.org/10.1039/C8FO01523F] [PMID: 30335105]
[64]
Thimon, L.; Peyoux, F.; Maget-Dana, R.; Michel, G. Surface-active properties of antifungal lipopeptides produced by Bacillus subtilis. J. Am. Oil Chem. Soc., 1992, 69, 92-93.
[http://dx.doi.org/10.1007/BF02635884]
[65]
Saini, H.S.; Barragán-Huerta, B.E.; Lebrón-Paler, A.; Pemberton, J.E.; Vázquez, R.R.; Burns, A.M.; Marron, M.T.; Seliga, C.J.; Gunatilaka, A.A.; Maier, R.M. Efficient purification of the biosurfactant viscosin from Pseudomonas libanensis strain M9-3 and its physicochemical and biological properties. J. Nat. Prod., 2008, 71(6), 1011-1015.
[http://dx.doi.org/10.1021/np800069u] [PMID: 18471020]
[66]
Campos-Takaki, G.M.; Sarubbo, L.A.; Albuquerque, C.D.C. Environmentally friendly biosurfactants produced by yeasts. Biosurfactants; NY: Springer, 2010, pp. 250-260.
[http://dx.doi.org/10.1007/978-1-4419-5979-9_19]
[67]
Klosowska-Chomiczewska, I.; Medrzycka, K.; Karpenko, E. Biosurfactants-Biodegradability, toxicity, efficiency in comparison with synthetic surfactants. Adv. Chem. Mech. Eng., 2011, 2, 1-9.
[68]
Rau, U.; Nguyen, L.A.; Schulz, S.; Wray, V.; Nimtz, M.; Roeper, H.; Koch, H.; Lang, S. Formation and analysis of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl. Microbiol. Biotechnol., 2005, 66(5), 551-559.
[http://dx.doi.org/10.1007/s00253-004-1672-9] [PMID: 15248042]
[69]
Kretschmer, A.; Bock, H.; Wagner, F. Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes. Appl. Environ. Microbiol., 1982, 44(4), 864-870.
[http://dx.doi.org/10.1128/AEM.44.4.864-870.1982] [PMID: 16346110]
[70]
Lang, S.; Wagner, F. Bioconversion of oils and sugars to glycolipids Biosurfactants: Production, Properties, Applications, 1993, 48, 205-277.
[71]
MSDS Cremophor EL CAS 61791-12-6 MSDS * Castor oil Available from: http://www.chemcas.com/msds/cas/msds43/61791-12-6.asp
[72]
Yin, Y.M.; Cui, F.D.; Mu, C.F.; Choi, M.K.; Kim, J.S.; Chung, S.J.; Shim, C.K.; Kim, D.D. Docetaxel microemulsion for enhanced oral bioavailability: preparation and in vitro and in vivo evaluation. J. Control. Release, 2009, 140(2), 86-94.
[http://dx.doi.org/10.1016/j.jconrel.2009.08.015] [PMID: 19709639]
[73]
VasanthaKumar, S.; Ahamed, H.N.; Saha, R.N. Nanomedicine I: In vitro and in vivo evaluation of paclitaxel loaded poly-(ε-caprolactone), poly (DL-lactide-co-glycolide) and poly (DL-lactic acid) matrix nanoparticles in wistar rats. Eur. J. Drug Metab. Pharmacokinet., 2015, 40(2), 137-161.
[http://dx.doi.org/10.1007/s13318-014-0189-6] [PMID: 24671895]
[74]
Tween® 80 (Polysorbate), clear, yellow viscous liquid Available from: https://us.vwr.com/store/product/4562112/tween-80-polysorbate-clear-yellow-viscous-liquid
[75]
Maget-Dana, R.; Ptak, M. Interactions of surfactin with membrane models. Biophys. J., 1995, 68(5), 1937-1943.
[http://dx.doi.org/10.1016/S0006-3495(95)80370-X] [PMID: 7612835]
[76]
Morikawa, M.; Ito, M.; Imanaka, T. Isolation of a new surfactin producer Bacillus pumilus A-1, and cloning and nucleotide sequence of the regulator gene, psf-1. J. Ferment. Bioeng., 1992, 74, 255-261.
[http://dx.doi.org/10.1016/0922-338X(92)90055-Y]
[77]
Makkar, R.S.; Cameotra, S.S. Biosurfactant production by a thermophilic Bacillus subtilis strain. J. Ind. Microbiol., 1997, 18, 37-42.
[78]
Velraeds, M.M.; van der Mei, H.C.; Reid, G.; Busscher, H.J. Physicochemical and biochemical characterization of biosurfactants released by Lactobacillus strains. Colloids Surf. B Biointerfaces, 1996, 8, 51-61.
[http://dx.doi.org/10.1016/S0927-7765(96)01297-0]
[79]
Kim, K.M.; Lee, J.Y.; Kim, C.K.; Kang, J.S. Isolation and characterization of surfactin produced by Bacillus polyfermenticus KJS-2. Arch. Pharm. Res., 2009, 32(5), 711-715.
[http://dx.doi.org/10.1007/s12272-009-1509-2] [PMID: 19471885]
[80]
Kim, S.Y.; Kim, J.Y.; Kim, S.H.; Bae, H.J.; Yi, H.; Yoon, S.H.; Koo, B.S.; Kwon, M.; Cho, J.Y.; Lee, C.E.; Hong, S. Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Lett., 2007, 581(5), 865-871.
[http://dx.doi.org/10.1016/j.febslet.2007.01.059] [PMID: 17292358]
[81]
Lee, J.H.; Nam, S.H.; Seo, W.T.; Yun, H.D.; Hong, S.Y.; Kim, M.K.; Cho, K.M. The production of surfactin during the fermentation of cheonggukjang by potential probiotic Bacillus subtilis CSY191 and the resultant growth suppression of MCF-7 human breast cancer cells. Food Chem., 2012, 131, 1347-1354.
[http://dx.doi.org/10.1016/j.foodchem.2011.09.133]
[82]
Cao, X.H.; Zhao, S.S.; Liu, D.Y.; Wang, Z.; Niu, L.L.; Hou, L.H.; Wang, C.L. ROS-Ca(2+) is associated with mitochondria permeability transition pore involved in surfactin-induced MCF-7 cells apoptosis. Chem. Biol. Interact., 2011, 190(1), 16-27.
[http://dx.doi.org/10.1016/j.cbi.2011.01.010] [PMID: 21241685]
[83]
Cao, X.; Wang, A.H.; Jiao, R.Z.; Wang, C.L.; Mao, D.Z.; Yan, L.; Zeng, B. Surfactin induces apoptosis and G(2)/M arrest in human breast cancer MCF-7 cells through cell cycle factor regulation. Cell Biochem. Biophys., 2009, 55(3), 163-171.
[http://dx.doi.org/10.1007/s12013-009-9065-4] [PMID: 19669740]
[84]
Wang, C.L.; Liu, C.; Niu, L.L.; Wang, L.R.; Hou, L.H.; Cao, X.H. Surfactin-induced apoptosis through ROS-ERS-Ca2+-ERK pathways in HepG2 cells. Cell Biochem. Biophys., 2013, 67(3), 1433-1439.
[http://dx.doi.org/10.1007/s12013-013-9676-7] [PMID: 23733672]
[85]
Wang, C.L.; Ng, T.B.; Yuan, F.; Liu, Z.K.; Liu, F. Induction of apoptosis in human leukemia K562 cells by cyclic lipopeptide from Bacillus subtilis natto T-2. Peptides, 2007, 28(7), 1344-1350.
[http://dx.doi.org/10.1016/j.peptides.2007.06.014] [PMID: 17643554]
[86]
Kumar, A.; Saini, S.; Wray, V.; Nimtz, M.; Prakash, A.; Johri, B.N. Characterization of an antifungal compound produced by Bacillus sp. strain A(5) F that inhibits Sclerotinia sclerotiorum. J. Basic Microbiol., 2012, 52(6), 670-678.
[http://dx.doi.org/10.1002/jobm.201100463] [PMID: 22359152]
[87]
Yuan, J.; Raza, W.; Huang, Q.; Shen, Q. The ultrasound-assisted extraction and identification of antifungal substances from B. amyloliquefaciens strain NJN-6 suppressing Fusarium oxysporum. J. Basic Microbiol., 2012, 52(6), 721-730.
[http://dx.doi.org/10.1002/jobm.201100560] [PMID: 22581589]
[88]
Laycock, M.V.; Hildebrand, P.D.; Thibault, P.; Walter, J.A.; Wright, J.L. Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens. J. Agric. Food Chem., 1991, 39, 483-489.
[http://dx.doi.org/10.1021/jf00003a011]
[89]
Gross, H.; Loper, J.E. Genomics of secondary metabolite production by Pseudomonas spp. Nat. Prod. Rep., 2009, 26(11), 1408-1446.
[http://dx.doi.org/10.1039/b817075b] [PMID: 19844639]
[90]
Zhao, H.; Shao, D.; Jiang, C.; Shi, J.; Li, Q.; Huang, Q.; Rajoka, M.S.R.; Yang, H.; Jin, M. Biological activity of lipopeptides from Bacillus. Appl. Microbiol. Biotechnol., 2017, 101(15), 5951-5960.
[http://dx.doi.org/10.1007/s00253-017-8396-0] [PMID: 28685194]
[91]
Sim, L.; Ward, O.P.; Li, Z.Y. Production and characterisation of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J. Ind. Microbiol. Biotechnol., 1997, 19(4), 232-238.
[http://dx.doi.org/10.1038/sj.jim.2900450] [PMID: 9439000]
[92]
Patel, R.M.; Desai, A.J. Biosurfactant production by Pseudomonas aeruginosaGS3 from molasses. Lett. Appl. Microbiol., 1997, 25, 91-94.
[http://dx.doi.org/10.1046/j.1472-765X.1997.00172.x]
[93]
Isoda, H.; Kitamoto, D.; Shinmoto, H.; Matsumura, M.; Nakahara, T. Microbial extracellular glycolipid induction of differentiation and inhibition of the protein kinase C activity of human promyelocytic leukemia cell line HL60. Biosci. Biotechnol. Biochem., 1997, 61(4), 609-614.
[http://dx.doi.org/10.1271/bbb.61.609] [PMID: 9145519]
[94]
Shao, L.; Song, X.; Ma, X.; Li, H.; Qu, Y. Bioactivities of sophorolipid with different structures against human esophageal cancer cells. J. Surg. Res., 2012, 173(2), 286-291.
[http://dx.doi.org/10.1016/j.jss.2010.09.013] [PMID: 21035135]
[95]
Fu, S.L.; Wallner, S.R.; Bowne, W.B.; Hagler, M.D.; Zenilman, M.E.; Gross, R.; Bluth, M.H. Sophorolipids and their derivatives are lethal against human pancreatic cancer cells. J. Surg. Res., 2008, 148(1), 77-82.
[http://dx.doi.org/10.1016/j.jss.2008.03.005] [PMID: 18570934]
[96]
Sajid, M.; Khan, M.S.A.; Cameotra, S.S.; Al-Thubiani, A.S. Biosurfactants: Potential applications as immunomodulator drugs. Immunol. Lett., 2020, 23, 71-77.
[97]
Suresh Kumar, A.; Mody, K.; Jha, B. Evaluation of biosurfactant/bioemulsifier production by a marine bacterium. Bull. Environ. Contam. Toxicol., 2007, 79(6), 617-621.
[http://dx.doi.org/10.1007/s00128-007-9283-7] [PMID: 17924042]
[98]
Lang, S.; Brakemeier, A.; Heckmann, R.; Spockner, S.; Rau, U. Production of native and modified sophorose lipids. Chim. Oggi, 2000, 18, 76-79.
[99]
Glenns, R.N.; Cooper, D.G. Effect of substrate on sophorolipid properties. J. Am. Oil Chem. Soc., 2006, 83, 137-145.
[http://dx.doi.org/10.1007/s11746-006-1186-y]
[100]
Kosaric, N.; Choi, H.Y. Biosurfactant production from Nocardia SFC-D: biosurfactant production in a nitrogen limited hydrocarbon medium from nocardia SFC-D. Tenside Surfactants Deterg., 1990, 27, 294-297.
[101]
Singer, M.E.; Finnerty, W.R.; Tunelid, A. Physical and chemical properties of a biosurfactant synthesized by Rhodococcus species H13-A. Can. J. Microbiol., 1990, 36(11), 746-750.
[http://dx.doi.org/10.1139/m90-128] [PMID: 22049933]
[102]
Abu-Ruwaida, A.S.; Banat, I.M.; Haditirto, S.; Khamis, A. Nutritional requirements and growth characteristics of a biosurfactant-producingRhodococcus bacterium. World J. Microbiol. Biotechnol., 1991, 7(1), 53-60.
[http://dx.doi.org/10.1007/BF02310920] [PMID: 24424869]
[103]
Schulz, D.; Passeri, A.; Schmidt, M.; Lang, S.; Wagner, F.; Wray, V.; Gunkel, W. Marine biosurfactants, I. Screening for biosurfactants among crude oil degrading marine microorganisms from the North Sea. Z. Natforsch. C J. Biosci., 1991, 46(3-4), 197-203.
[http://dx.doi.org/10.1515/znc-1991-3-407] [PMID: 1878106]
[104]
Kundu, D.; Hazra, C.; Dandi, N.; Chaudhari, A. Biodegradation of 4-nitrotoluene with biosurfactant production by Rhodococcus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization. Biodegradation, 2013, 24(6), 775-793.
[http://dx.doi.org/10.1007/s10532-013-9627-4] [PMID: 23389716]
[105]
Kitamoto, D.; Yanagishita, H.; Shinbo, T.; Nakane, T.; Kamisawa, C.; Nakahara, T. Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J. Biotechnol., 1993, 29, 91-96.
[http://dx.doi.org/10.1016/0168-1656(93)90042-L]
[106]
Isoda, H.; Nakahara, T. Mannosylerythritol lipid induces granulocytic differentiation and inhibits the tyrosine phosphorylation of human myelogenous leukemia cell line K562. Cytotechnology, 1997, 25(1-3), 191-195.
[http://dx.doi.org/10.1023/A:1007982909932] [PMID: 22358891]
[107]
Sen, R. Biotechnology in petroleum recovery: the microbial EOR. Pror. Energy Combust. Sci., 2008, 34, 714-724.
[http://dx.doi.org/10.1016/j.pecs.2008.05.001]
[108]
Burd, G.; Ward, O.P. Physicochemical properties of PM-factor, a surface-active agent produced by Pseudomonas marginalis. Can. J. Microbiol., 1996, 42(3), 243-251.
[http://dx.doi.org/10.1139/m96-036] [PMID: 8868231]
[109]
Navon-Venezia, S.; Zosim, Z.; Gottlieb, A.; Legmann, R.; Carmeli, S.; Ron, E.Z.; Rosenberg, E. Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl. Environ. Microbiol., 1995, 61(9), 3240-3244.
[http://dx.doi.org/10.1128/AEM.61.9.3240-3244.1995] [PMID: 7574633]
[110]
Hamley, I.W. Lipopeptides: from self-assembly to bioactivity. Chem. Commun. (Camb.), 2015, 51(41), 8574-8583.
[http://dx.doi.org/10.1039/C5CC01535A] [PMID: 25797909]
[111]
Kirkham, S.; Castelletto, V.; Hamley, I.W.; Inoue, K.; Rambo, R.; Reza, M.; Ruokolainen, J. Self‐assembly of the cyclic lipopeptide daptomycin: spherical micelle formation does not depend on the presence of calcium chloride. ChemPhysChem, 2016, 17(14), 2118-2122.
[http://dx.doi.org/10.1002/cphc.201600308] [PMID: 27043447]
[112]
Yoon, S.H.; Kim, J.B.; Lim, Y.H.; Hong, S.R.; Song, J.K.; Kim, S.S.; Kwon, S.W.; Park, I.C.; Kim, S.J.; Yeo, Y.S.; Koo, B.S. Isolation and characterization of three kinds of lipopeptides produced by Bacillus subtilis JKK238 from Jeot-Kal of Korean traditional fermented fishes. Microbiol. Biotech. Lett., 2005, 33, 295-301.
[113]
Xia, W.; Du, Z.; Cui, Q.; Dong, H.; Wang, F.; He, P.; Tang, Y. Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons. J. Hazard. Mater., 2014, 276, 489-498.
[http://dx.doi.org/10.1016/j.jhazmat.2014.05.062] [PMID: 24929788]
[114]
Muthusamy, K.; Gopalakrishnan, S.; Ravi, T.K.; Sivachidambaram, P. Biosurfactants: properties, commercial production and application. Curr. Sci., 2008, 94, 736-747.
[115]
Kapadia, S.G.; Yagnik, B.N. Current trend and potential for microbial biosurfactants. Asian J. Exp. Biol. Sci., 2013, 4, 1-8.
[116]
Inès, M.; Dhouha, G. Lipopeptide surfactants: Production, recovery and pore forming capacity. Peptides, 2015, 71, 100-112.
[http://dx.doi.org/10.1016/j.peptides.2015.07.006] [PMID: 26189973]
[117]
Raaijmakers, J.M.; De Bruijn, I.; Nybroe, O.; Ongena, M. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev., 2010, 34(6), 1037-1062.
[http://dx.doi.org/10.1111/j.1574-6976.2010.00221.x] [PMID: 20412310]
[118]
Arima, K.; Kakinuma, A.; Tamura, G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun., 1968, 31(3), 488-494.
[http://dx.doi.org/10.1016/0006-291X(68)90503-2] [PMID: 4968234]
[119]
Kakinuma, A.; Sugino, H.; Isono, M.; Tamura, G.; Arima, K. Determination of fatty acid in surfactin and elucidation of the total structure of surfactin. Agric. Biol. Chem., 1969, 33, 973-976.
[http://dx.doi.org/10.1080/00021369.1969.10859409]
[120]
Kakinuma, A.; Ouchida, A.; Shima, T.; Sugino, H.; Isono, M.; Tamura, G.; Arima, K. Confirmation of the structure of surfactin by mass spectrometry. Agric. Biol. Chem., 1969, 33, 1669-1671.
[http://dx.doi.org/10.1080/00021369.1969.10859524]
[121]
Reuter, K.; Mofid, M.R.; Marahiel, M.A.; Ficner, R. Crystal structure of the surfactin synthetase-activating enzyme sfp: a prototype of the 4′-phosphopantetheinyl transferase superfamily. EMBO J., 1999, 18(23), 6823-6831.
[http://dx.doi.org/10.1093/emboj/18.23.6823] [PMID: 10581256]
[122]
Peypoux, F.; Bonmatin, J.M.; Wallach, J. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol., 1999, 51(5), 553-563.
[http://dx.doi.org/10.1007/s002530051432] [PMID: 10390813]
[123]
Cooper, D.G.; Macdonald, C.R.; Duff, S.J.; Kosaric, N. Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl. Environ. Microbiol., 1981, 42(3), 408-412.
[http://dx.doi.org/10.1128/AEM.42.3.408-412.1981] [PMID: 16345840]
[124]
Tsuge, K.; Ano, T.; Shoda, M. Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YB8. Arch. Microbiol., 1996, 165(4), 243-251.
[http://dx.doi.org/10.1007/s002030050322] [PMID: 8639027]
[125]
Wei, Y.H.; Chu, I.M. Mn2+ improves surfactin production by Bacillus subtilis. Biotechnol. Lett., 2002, 24, 479-482.
[http://dx.doi.org/10.1023/A:1014534021276]
[126]
Wei, Y.H.; Wang, L.F.; Chang, J.S. Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis. Biotechnol. Prog., 2004, 20(3), 979-983.
[http://dx.doi.org/10.1021/bp030051a] [PMID: 15176908]
[127]
Yeh, M.S.; Wei, Y.H.; Chang, J.S. Enhanced production of surfactin from Bacillus subtilis by addition of solid carriers. Biotechnol. Prog., 2005, 21(4), 1329-1334.
[http://dx.doi.org/10.1021/bp050040c] [PMID: 16080719]
[128]
Wu, Q.; Zhi, Y.; Xu, Y. Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. Metab. Eng., 2019, 52, 87-97.
[http://dx.doi.org/10.1016/j.ymben.2018.11.004] [PMID: 30453038]
[129]
Singh, P.; Cameotra, S.S. Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol., 2004, 22(3), 142-146.
[http://dx.doi.org/10.1016/j.tibtech.2004.01.010] [PMID: 15036865]
[130]
Kracht, M.; Rokos, H.; Ozel, M.; Kowall, M.; Pauli, G.; Vater, J. Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J. Antibiot. (Tokyo), 1999, 52(7), 613-619.
[http://dx.doi.org/10.7164/antibiotics.52.613] [PMID: 10513840]
[131]
Kameda, Y.; Oira, S.; Matsui, K.; Kanatomo, S.; Hase, T.; Atusaka, T. Antitumor activity of bacillus natto. V. Isolation and characterization of surfactin in the culture medium of Bacillus natto KMD 2311. Chem. Pharm. Bull. (Tokyo), 1974, 22(4), 938-944.
[http://dx.doi.org/10.1248/cpb.22.938] [PMID: 4473150]
[132]
Yamaguchi, H.; Soda, H.; Nakamura, Y.; Takasu, M.; Tomonaga, N.; Nakano, H.; Doi, S.; Nakatomi, K.; Nagashima, S.; Takatani, H.; Fukuda, M.; Hayashi, T.; Tsukamoto, K.; Kohno, S. Serum levels of surfactant protein D predict the anti-tumor activity of gefitinib in patients with advanced non-small cell lung cancer. Cancer Chemother. Pharmacol., 2011, 67(2), 331-338.
[http://dx.doi.org/10.1007/s00280-010-1325-x] [PMID: 20401612]
[133]
Kim, S.D.; Park, S.K.; Cho, J.Y.; Park, H.J.; Lim, J.H.; Yun, H.I.; Park, S.C.; Lee, K.Y.; Kim, S.K.; Rhee, M.H. Surfactin C inhibits platelet aggregation. J. Pharm. Pharmacol., 2006, 58(6), 867-870.
[http://dx.doi.org/10.1211/jpp.58.6.0018] [PMID: 16734989]
[134]
Kim, K.; Jung, S.Y.; Lee, D.K.; Jung, J.K.; Park, J.K.; Kim, D.K.; Lee, C.H. Suppression of inflammatory responses by surfactin, a selective inhibitor of platelet cytosolic phospholipase A2. Biochem. Pharmacol., 1998, 55(7), 975-985.
[http://dx.doi.org/10.1016/S0006-2952(97)00613-8] [PMID: 9605421]
[135]
Hwang, M.H.; Lim, J.H.; Yun, H.I.; Rhee, M.H.; Cho, J.Y.; Hsu, W.H.; Park, S.C. Surfactin C inhibits the lipopolysaccharide-induced transcription of interleukin-1β and inducible nitric oxide synthase and nitric oxide production in murine RAW 264.7 cells. Biotechnol. Lett., 2005, 27(20), 1605-1608.
[http://dx.doi.org/10.1007/s10529-005-2515-1] [PMID: 16245181]
[136]
Hwang, M.H.; Chang, Z.Q.; Kang, E.H.; Lim, J.H.; Yun, H.I.; Rhee, M.H.; Jeong, K.S.; Park, S.C. Surfactin C inhibits Mycoplasma hyopneumoniae-induced transcription of proinflammatory cytokines and nitric oxide production in murine RAW 264.7 cells. Biotechnol. Lett., 2008, 30(2), 229-233.
[http://dx.doi.org/10.1007/s10529-007-9552-x] [PMID: 17928958]
[137]
Byeon, S.E.; Lee, Y.G.; Kim, B.H.; Shen, T.; Lee, S.Y.; Park, H.J.; Park, S.C.; Rhee, M.H.; Cho, J.Y. Surfactin blocks NO production in lipopolysaccharide-activated macrophages by inhibiting NF-kappaB activation. J. Microbiol. Biotechnol., 2008, 18(12), 1984-1989.
[PMID: 19131703]
[138]
Park, S.Y.; Kim, Y. Surfactin inhibits immunostimulatory function of macrophages through blocking NK-kappaB, MAPK and Akt pathway. Int. Immunopharmacol., 2009, 9(7-8), 886-893.
[http://dx.doi.org/10.1016/j.intimp.2009.03.013] [PMID: 19336264]
[139]
Varvaresou, A.; Iakovou, K. Biosurfactants in cosmetics and biopharmaceuticals. Lett. Appl. Microbiol., 2015, 61(3), 214-223.
[http://dx.doi.org/10.1111/lam.12440] [PMID: 25970073]
[140]
He, Z.; Zhao, H.; Lu, Z. Effect of Surfactin as Surfactant on Physical and Oxidation Stability of O/W DHA-Rich Algae Oil Emulsion. Shipin Kexue, 2017, 7, 23.
[141]
Eswari, J.S.; Dhagat, S.; Mishra, P. Biosurfactant assisted silver nanoparticle synthesis: a critical analysis of its drug design aspects. Adv. Nat. Sci. Nanosci. Nanotechnol., 2018, 9, 045007.
[http://dx.doi.org/10.1088/2043-6254/aaec0e]
[142]
Mendrek, B.; Chojniak, J.; Libera, M.; Trzebicka, B.; Bernat, P.; Paraszkiewicz, K.; Płaza, G. Silver nanoparticles formed in bio-and chemical syntheses with biosurfactant as the stabilizing agent. J. Dispers. Sci. Technol., 2017, 38, 1647-1655.
[http://dx.doi.org/10.1080/01932691.2016.1272056]
[143]
Zhang, L.; Gao, Z.; Zhao, X.; Qi, G. A natural lipopeptide of surfactin for oral delivery of insulin. Drug Deliv., 2016, 23(6), 2084-2093.
[http://dx.doi.org/10.3109/10717544.2016.1153745] [PMID: 26982158]
[144]
Xing, X.; Zhao, X.; Ding, J.; Liu, D.; Qi, G. Enteric-coated insulin microparticles delivered by lipopeptides of iturin and surfactin. Drug Deliv., 2018, 25(1), 23-34.
[http://dx.doi.org/10.1080/10717544.2017.1413443] [PMID: 29226733]
[145]
Maget-Dana, R.; Thimon, L.; Peypoux, F.; Ptak, M. Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie, 1992, 74(12), 1047-1051.
[http://dx.doi.org/10.1016/0300-9084(92)90002-V] [PMID: 1292612]
[146]
Sheppard, J.D.; Jumarie, C.; Cooper, D.G.; Laprade, R. Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochim. Biophys. Acta, 1991, 1064(1), 13-23.
[http://dx.doi.org/10.1016/0005-2736(91)90406-X] [PMID: 1709052]
[147]
Huang, W.; Lang, Y.; Hakeem, A.; Lei, Y.; Gan, L.; Yang, X. Surfactin-based nanoparticles loaded with doxorubicin to overcome multidrug resistance in cancers. Int. J. Nanomedicine, 2018, 13, 1723-1736.
[http://dx.doi.org/10.2147/IJN.S157368] [PMID: 29606866]
[148]
Lu, J.K.; Wang, H.M.; Xuan-Rui, X.U. Applications of surfactin in emulsifying composition and thereof U.S. Patent 14/830,556, 2016.
[149]
Mandal, S.M.; Barbosa, A.E.; Franco, O.L. Lipopeptides in microbial infection control: scope and reality for industry. Biotechnol. Adv., 2013, 31(2), 338-345.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.004] [PMID: 23318669]
[150]
Maget-Dana, R.; Peypoux, F. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology, 1994, 87(1-3), 151-174.
[http://dx.doi.org/10.1016/0300-483X(94)90159-7] [PMID: 8160184]
[151]
Kim, P.I.; Ryu, J.; Kim, Y.H.; Chi, Y.T. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol., 2010, 20(1), 138-145.
[http://dx.doi.org/10.4014/jmb.0905.05007] [PMID: 20134245]
[152]
Bonnichsen, L.; Bygvraa Svenningsen, N.; Rybtke, M.; de Bruijn, I.; Raaijmakers, J.M.; Tolker-Nielsen, T.; Nybroe, O. Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms. Microbiology, 2015, 161(12), 2289-2297.
[http://dx.doi.org/10.1099/mic.0.000191] [PMID: 26419730]
[153]
Khattari, Z.; Al-Abdullah, T.; Maghrabi, M.; Khasim, S.; Roy, A.; Fasfous, I. Interaction study of lipopeptide biosurfactant viscosin with DPPC and cholesterol by Langmuir monolayer technique. Soft Mater., 2015, 13, 254-262.
[http://dx.doi.org/10.1080/1539445X.2015.1085873]
[154]
Hiramoto, M.; Okada, K.; Nagai, S.; Kawamoto, H. The structure of viscosin, a peptide antibiotic. I. Syntheses of D- and L-3-hydroxyacyl-L-leucine hydrazides related to viscosin. Chem. Pharm. Bull. (Tokyo), 1971, 19(7), 1308-1314.
[http://dx.doi.org/10.1248/cpb.19.1308] [PMID: 4998540]
[155]
Geudens, N.; Nasir, M.N.; Crowet, J.M.; Raaijmakers, J.M.; Fehér, K.; Coenye, T.; Martins, J.C.; Lins, L.; Sinnaeve, D.; Deleu, M. Membrane interactions of natural cyclic lipodepsipeptides of the viscosin group. Biochim. Biophys. Acta Biomembr., 2017, 1859(3), 331-339.
[http://dx.doi.org/10.1016/j.bbamem.2016.12.013] [PMID: 28007479]
[156]
Neu, T.R.; Härtner, T.; Poralla, K. Surface active properties of viscosin: a peptidolipid antibiotic. Appl. Microbiol. Biotechnol., 1990, 32, 518-520.
[http://dx.doi.org/10.1007/BF00173720]
[157]
Holst, O. Glycolipids: occurrence, significance, and properties. Glycoscience; NY: Springer, 2008, pp. 1603-1627.
[158]
Morita, T.; Fukuoka, T.; Imura, T.; Kitamoto, D. Glycolipid Biosurfactants. Amsterdam: Elsevier; , 2016.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.11565-3]
[159]
Madsen, J.K.; Kaspersen, J.D.; Andersen, C.B.; Nedergaard Pedersen, J.; Andersen, K.K.; Pedersen, J.S.; Otzen, D.E. Glycolipid biosurfactants activate, dimerize, and stabilize Thermomyces lanuginosus lipase in a pH-dependent fashion. Biochemistry, 2017, 56(32), 4256-4268.
[http://dx.doi.org/10.1021/acs.biochem.7b00420] [PMID: 28726390]
[160]
Abdel-Mawgoud, A.M.; Stephanopoulos, G. Simple glycolipids of microbes: Chemistry, biological activity and metabolic engineering. Synth Syst Biotechnol, 2017, 3(1), 3-19.
[http://dx.doi.org/10.1016/j.synbio.2017.12.001] [PMID: 29911195]
[161]
Nguyen, T.T.; Sabatini, D.A. Characterization and emulsification properties of rhamnolipid and sophorolipid biosurfactants and their applications. Int. J. Mol. Sci., 2011, 12(2), 1232-1244.
[http://dx.doi.org/10.3390/ijms12021232] [PMID: 21541055]
[162]
Mnif, I.; Ghribi, D. High molecular weight bioemulsifiers, main properties and potential environmental and biomedical applications. World J. Microbiol. Biotechnol., 2015, 31(5), 691-706.
[http://dx.doi.org/10.1007/s11274-015-1830-5] [PMID: 25739564]
[163]
Inès, M.; Dhouha, G. Glycolipid biosurfactants: Potential related biomedical and biotechnological applications. Carbohydr. Res., 2015, 416, 59-69.
[http://dx.doi.org/10.1016/j.carres.2015.07.016] [PMID: 26359535]
[164]
Abdel-Mawgoud, A.M.; Lépine, F.; Déziel, E. Rhamnolipids: diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol., 2010, 86(5), 1323-1336.
[http://dx.doi.org/10.1007/s00253-010-2498-2] [PMID: 20336292]
[165]
Parra, J.L.; Guinea, J.; Manresa, M.A.; Robert, M.; Mercade, M.E.; Comelles, F.; Bosch, M.P. Chemical characterization and physicochemical behavior of biosurfactants. J. Am. Oil Chem. Soc., 1989, 66, 141-145.
[http://dx.doi.org/10.1007/BF02661805]
[166]
Kłosowska-Chomiczewska, I.E.; Mędrzycka, K.; Hallmann, E.; Karpenko, E.; Pokynbroda, T.; Macierzanka, A.; Jungnickel, C. Rhamnolipid CMC prediction. J. Colloid Interface Sci., 2017, 488, 10-19.
[http://dx.doi.org/10.1016/j.jcis.2016.10.055] [PMID: 27816634]
[167]
Lovaglio, R.B.; dos Santos, F.J.; Jafelicci, M., Jr; Contiero, J. Rhamnolipid emulsifying activity and emulsion stability: pH rules. Colloids Surf. B Biointerfaces, 2011, 85(2), 301-305.
[http://dx.doi.org/10.1016/j.colsurfb.2011.03.001] [PMID: 21454058]
[168]
Khoshdast, H.; Abbasi, H.; Sam, A.; Noghabi, K.A. Frothability and surface behavior of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa MA01. Biochem. Eng. J., 2012, 60, 127-134.
[http://dx.doi.org/10.1016/j.bej.2011.10.015]
[169]
Sekhon Randhawa, K.K.; Rahman, P.K. Rhamnolipid biosurfactants-past, present, and future scenario of global market. Front. Microbiol., 2014, 5, 454.
[http://dx.doi.org/10.3389/fmicb.2014.00454] [PMID: 25228898]
[170]
Clifford, J.S.; Ioannidis, M.A.; Legge, R.L. Enhanced aqueous solubilization of tetrachloroethylene by a rhamnolipid biosurfactant. J. Colloid Interface Sci., 2007, 305(2), 361-365.
[http://dx.doi.org/10.1016/j.jcis.2006.10.026] [PMID: 17081555]
[171]
Nguyen, T.T.; Sabatini, D.A. Formulating alcohol-free microemulsions using rhamnolipid biosurfactant and rhamnolipid mixtures. J. Surfactants Deterg., 2009, 1, 109-115.
[http://dx.doi.org/10.1007/s11743-008-1098-y]
[172]
Bai, L.; McClements, D.J. Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids. J. Colloid Interface Sci., 2016, 479, 71-79.
[http://dx.doi.org/10.1016/j.jcis.2016.06.047] [PMID: 27372634]
[173]
Cheow, W.S.; Hadinoto, K. Lipid-polymer hybrid nanoparticles with rhamnolipid-triggered release capabilities as anti-biofilm drug delivery vehicles. Particuology, 2012, 10, 327-333.
[http://dx.doi.org/10.1016/j.partic.2011.08.007]
[174]
Jiang, L.; Long, X.; Meng, Q. Rhamnolipids enhance epithelial permeability in Caco-2 monolayers. Int. J. Pharm., 2013, 446(1-2), 130-135.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.003] [PMID: 23402975]
[175]
Yi, G.; Son, J.; Yoo, J.; Park, C.; Koo, H. Rhamnolipid nanoparticles for in vivo drug delivery and photodynamic therapy. Nanomedicine (Lond.), 2019, 19, 12-21.
[http://dx.doi.org/10.1016/j.nano.2019.03.015] [PMID: 30981820]
[176]
Li, Y.; Mao, X.M.; Liang, Y.Q. Synthesis and characterization of camptothecin-rhamnolipid-layered double hydroxide nanohybrid and its controlled release property. J. Dispers. Sci. Technol., 2019, 41, 1-8.
[177]
Müller, F.; Hönzke, S.; Luthardt, W.O.; Wong, E.L.; Unbehauen, M.; Bauer, J.; Haag, R.; Hedtrich, S.; Rühl, E.; Rademann, J. Rhamnolipids form drug-loaded nanoparticles for dermal drug delivery. Eur. J. Pharm. Biopharm., 2017, 116, 31-37.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.013] [PMID: 28012989]
[178]
Wei, Y.; Yu, Z.; Lin, K.; Sun, C.; Dai, L.; Yang, S.; Mao, L.; Yuan, F.; Gao, Y. Fabrication and characterization of resveratrol loaded zein-propylene glycol alginate-rhamnolipid composite nanoparticles: Physicochemical stability, formation mechanism and in vitro digestion. Food Hydrocoll., 2019, 95, 336-348.
[http://dx.doi.org/10.1016/j.foodhyd.2019.04.048]
[179]
Khafagy, E.S.; El-Azab, M.F.; ElSayed, M.E.H. Rhamnolipids Enhance in Vivo Oral Bioavailability of Poorly Absorbed Molecules. Pharm. Res., 2017, 34(10), 2197-2210.
[http://dx.doi.org/10.1007/s11095-017-2227-y] [PMID: 28721446]
[180]
Rahimi, K.; Lotfabad, T.B.; Jabeen, F.; Mohammad Ganji, S. Cytotoxic effects of mono- and di-rhamnolipids from Pseudomonas aeruginosa MR01 on MCF-7 human breast cancer cells. Colloids Surf. B Biointerfaces, 2019, 181, 943-952.
[http://dx.doi.org/10.1016/j.colsurfb.2019.06.058] [PMID: 31382344]
[181]
Develter, D.W.G.; Lauryssen, L.M.L. Properties and industrial applications of sophorolipids. Eur. J. Lipid Sci. Technol., 2010, 112, 628-638.
[http://dx.doi.org/10.1002/ejlt.200900153]
[182]
Kjellin, M.; Johansson, I. Surfactants from renewable resources. New York: Wiley & Sons; , 2010.
[http://dx.doi.org/10.1002/9780470686607]
[183]
Gorin, P.A.; Spencer, J.F.; Tulloch, A.P. Hydroxy fatty acid glycosides of sophorose from Torulopsis magnoliae. Can. J. Chem., 1961, 39, 846-855.
[http://dx.doi.org/10.1139/v61-104]
[184]
Tulloch, A.P.; Spencer, J.F.; Deinema, M.H. A new hydroxy fatty acid sophoroside from Candida bogoriensis. Can. J. Chem., 1968, 46, 345-348.
[http://dx.doi.org/10.1139/v68-057]
[185]
Van Bogaert, I.N.; Saerens, K.; De Muynck, C.; Develter, D.; Soetaert, W.; Vandamme, E.J. Microbial production and application of sophorolipids. Appl. Microbiol. Biotechnol., 2007, 76(1), 23-34.
[http://dx.doi.org/10.1007/s00253-007-0988-7] [PMID: 17476500]
[186]
Arab, F. An investigation on the efficiency of sophorolipids in removing arsenic from mine tailings (Doctoral dissertation, Concordia University)
[187]
Koh, A.; Wong, A.; Quinteros, A.; Desplat, C.; Gross, R. Influence of sophorolipid structure on interfacial properties of aqueous-Arabian light crude and related constituent emulsions. J. Am. Oil Chem. Soc., 2017, 94, 107-119.
[http://dx.doi.org/10.1007/s11746-016-2913-7]
[188]
Gaur, V.K.; Regar, R.K.; Dhiman, N.; Gautam, K.; Srivastava, J.K.; Patnaik, S.; Kamthan, M.; Manickam, N. Biosynthesis and characterization of sophorolipid biosurfactant by Candida spp.: Application as food emulsifier and antibacterial agent. Bioresour. Technol., 2019, 285, 121314.
[http://dx.doi.org/10.1016/j.biortech.2019.121314] [PMID: 30992159]
[189]
Shah, M.U.; Sivapragasam, M.; Moniruzzaman, M.; Talukder, M.M.; Yusup, S.B.; Goto, M. Production of sophorolipids by Starmerella bombicola yeast using new hydrophobic substrates. Biochem. Eng. J., 2017, 127, 60-67.
[http://dx.doi.org/10.1016/j.bej.2017.08.005]
[190]
Ernenwein, C.; Reynaud, R.; Guilleret, A.; Podevin, L.; Rannou, A.; Lafosse, F. Biosolubilizer U. S. Patent 16/041,897, 2018.
[191]
Roelants, S.; Solaiman, D.K.; Ashby, R.D.; Lodens, S.; Van Renterghem, L.; Soetaert, W. Production and Applications of Sophorolipids. In: Hayes D.G.; Solaiman, D.K.Y.; Ashby, R.D. Eds. Biobased Surfactants, 2nd ed. US: AOCS Press 2019, pp. 65-119
[192]
Nawale, L.; Dubey, P.; Chaudhari, B.; Sarkar, D.; Prabhune, A. Anti-proliferative effect of novel primary cetyl alcohol derived sophorolipids against human cervical cancer cells HeLa. PLoS One, 2017, 12(4), e0174241.
[http://dx.doi.org/10.1371/journal.pone.0174241] [PMID: 28419101]
[193]
Beach, J.; Banerjee, T.; Kallu, J.; Higginbotham, R.; Gross, R. Combination therapy of prostate cancer utilizing functionalized iron oxide nanoparticles carrying TNF-a and lactonic sophorolipids. 2017, Available from: https://digitalcommons.pittstate.edu/papers_2017/9
[194]
Chen, J.; Song, X.; Zhang, H.; Qu, Y.B.; Miao, J.Y. Sophorolipid produced from the new yeast strain Wickerhamiella domercqiae induces apoptosis in H7402 human liver cancer cells. Appl. Microbiol. Biotechnol., 2006, 72(1), 52-59.
[http://dx.doi.org/10.1007/s00253-005-0243-z] [PMID: 16528516]
[195]
Singh, P.K.; Wani, K.; Kaul-Ghanekar, R.; Prabhune, A.; Ogale, S. From micron to nano-curcumin by sophorolipid co-processing: highly enhanced bioavailability, fluorescence, and anti-cancer efficacy. RSC Advances, 2014, 4, 60334-60341.
[http://dx.doi.org/10.1039/C4RA07300B]
[196]
Peng, S.; Li, Z.; Zou, L.; Liu, W.; Liu, C.; McClements, D.J. Enhancement of curcumin bioavailability by encapsulation in sophorolipid-coated nanoparticles: An in vitro and in vivo study. J. Agric. Food Chem., 2018, 66(6), 1488-1497.
[http://dx.doi.org/10.1021/acs.jafc.7b05478] [PMID: 29378117]
[197]
Dhar, S.; Reddy, E.M.; Prabhune, A.; Pokharkar, V.; Shiras, A.; Prasad, B.L. Cytotoxicity of sophorolipid-gellan gum-gold nanoparticle conjugates and their doxorubicin loaded derivatives towards human glioma and human glioma stem cell lines. Nanoscale, 2011, 3(2), 575-580.
[http://dx.doi.org/10.1039/C0NR00598C] [PMID: 21069248]
[198]
Kanwar, R.; Gradzielski, M.; Mehta, S.K. Biomimetic solid lipid nanoparticles of sophorolipids designed for antileprosy drugs. J. Phys. Chem. B, 2018, 122(26), 6837-6845.
[http://dx.doi.org/10.1021/acs.jpcb.8b03081] [PMID: 29874078]
[199]
Kanwar, R.; Gradzielski, M.; Prevost, S.; Appavou, M.S.; Mehta, S.K. Experimental validation of biocompatible nanostructured lipid carriers of sophorolipid: Optimization, characterization and in-vitro evaluation. Colloids Surf. B Biointerfaces, 2019, 181, 845-855.
[http://dx.doi.org/10.1016/j.colsurfb.2019.06.036] [PMID: 31254745]
[200]
Haque, F.; Sajid, M.; Cameotra, S.S.; Battacharyya, M.S. Anti-biofilm activity of a sophorolipid-amphotericin B niosomal formulation against Candida albicans. Biofouling, 2017, 33(9), 768-779.
[http://dx.doi.org/10.1080/08927014.2017.1363191] [PMID: 28946803]
[201]
Kuyukina, M.S.; Ivshina, I.B.; Baeva, T.A.; Kochina, O.A.; Gein, S.V.; Chereshnev, V.A. Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities. N. Biotechnol., 2015, 32(6), 559-568.
[http://dx.doi.org/10.1016/j.nbt.2015.03.006] [PMID: 25796474]
[202]
Bages-Estopa, S.; White, D.A.; Winterburn, J.B.; Webb, C.; Martin, P.J. Production and separation of a trehalolipid biosurfactant. Biochem. Eng. J., 2018, 139, 85-94.
[http://dx.doi.org/10.1016/j.bej.2018.07.006]
[203]
Arutchelvi, J.I.; Bhaduri, S.; Uppara, P.V.; Doble, M. Mannosylerythritol lipids: a review. J. Ind. Microbiol. Biotechnol., 2008, 35(12), 1559-1570.
[http://dx.doi.org/10.1007/s10295-008-0460-4] [PMID: 18716809]
[204]
Morita, T.; Fukuoka, T.; Imura, T.; Kitamoto, D. Mannosylerythritol lipids: production and applications. J. Oleo Sci., 2015, 64(2), 133-141.
[http://dx.doi.org/10.5650/jos.ess14185] [PMID: 25748373]
[205]
Morita, N.; Nishida, T.; Tanaka, M.; Yano, Y.; Okuyama, H. Enhancement of polyunsaturated fatty acid production by cerulenin treatment in polyunsaturated fatty acid-producing bacteria. Biotechnol. Lett., 2005, 27(6), 389-393.
[http://dx.doi.org/10.1007/s10529-005-1532-4] [PMID: 15834803]
[206]
Hu, Y.; Zhu, Z.; Nielsen, J.; Siewers, V. Engineering Saccharomyces cerevisiae cells for production of fatty acid-derived biofuels and chemicals. Open Biol., 2019, 9(5), 190049.
[http://dx.doi.org/10.1098/rsob.190049] [PMID: 31088249]
[207]
Sheng, J.; Feng, X. Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions. Front. Microbiol., 2015, 6, 554.
[http://dx.doi.org/10.3389/fmicb.2015.00554] [PMID: 26106371]
[208]
Ferreira, R.; Teixeira, P.G.; Siewers, V.; Nielsen, J. Redirection of lipid flux toward phospholipids in yeast increases fatty acid turnover and secretion. Proc. Natl. Acad. Sci. USA, 2018, 115(6), 1262-1267.
[http://dx.doi.org/10.1073/pnas.1715282115] [PMID: 29358378]
[209]
Zhou, Y.J.; Buijs, N.A.; Zhu, Z.; Qin, J.; Siewers, V.; Nielsen, J. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat. Commun., 2016, 7, 11709.
[http://dx.doi.org/10.1038/ncomms11709] [PMID: 27222209]
[210]
Snellman, E.A.; Sullivan, E.R.; Colwell, R.R. Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1. Eur. J. Biochem., 2002, 269(23), 5771-5779.
[http://dx.doi.org/10.1046/j.1432-1033.2002.03235.x] [PMID: 12444965]
[211]
Shively, J.M.; Benson, A.A. Phospholipids of Thiobacillus thiooxidans. J. Bacteriol., 1967, 94(5), 1679-1683.
[http://dx.doi.org/10.1128/JB.94.5.1679-1683.1967] [PMID: 6066049]
[212]
Beebe, J.L.; Umbreit, W.W. Extracellular lipid of Thiobacillus thiooxidans. J. Bacteriol., 1971, 108(1), 612-614.
[http://dx.doi.org/10.1128/JB.108.1.612-614.1971] [PMID: 4330743]
[213]
Karanth, N.G.K.; Deo, P.G.; Veenanadig, N.K. Microbial production of biosurfactants and their importance. Curr. Sci., 1999, 77, 116-126.
[214]
Kawase, T.; Sumida, S.; Oida, T. Hybrid Biosurfactant: Syntheses of Hybrid Corynomycolic Acid and Its Monolayer Formation. Tenside Surfactants Deterg., 2015, 52, 219-229.
[http://dx.doi.org/10.3139/113.110369]
[215]
Gimenez, M.S.; Oliveros, L.B.; Gomez, N.N. Nutritional deficiencies and phospholipid metabolism. Int. J. Mol. Sci., 2011, 12(4), 2408-2433.
[http://dx.doi.org/10.3390/ijms12042408] [PMID: 21731449]
[216]
Bjørndal, B.; Ramsvik, M.S.; Lindquist, C.; Nordrehaug, J.E.; Bruheim, I.; Svardal, A.; Nygård, O.; Berge, R.K. A phospholipid-protein complex from antarctic krill reduced plasma homocysteine levels and increased plasma trimethylamine-N-oxide (TMAO) and carnitine levels in male Wistar rats. Mar. Drugs, 2015, 13(9), 5706-5721.
[http://dx.doi.org/10.3390/md13095706] [PMID: 26371012]
[217]
Cirigliano, M.C.; Carman, G.M. Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol., 1985, 50(4), 846-850.
[http://dx.doi.org/10.1128/AEM.50.4.846-850.1985] [PMID: 16346917]
[218]
Cirigliano, M.C.; Carman, G.M. Isolation of a bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol., 1984, 48(4), 747-750.
[http://dx.doi.org/10.1128/AEM.48.4.747-750.1984] [PMID: 6439118]
[219]
De Almeida, D.G.; Soares Da Silva, R.C.; Luna, J.M.; Rufino, R.D.; Santos, V.A.; Banat, I.M.; Sarubbo, L.A. Biosurfactants: promising molecules for petroleum biotechnology advances. Front. Microbiol., 2016, 7, 1718.
[http://dx.doi.org/10.3389/fmicb.2016.01718] [PMID: 27843439]
[220]
Navon-Venezia, S.; Banin, E.; Ron, E.Z.; Rosenberg, E. The bioemulsifier alasan: role of protein in maintaining structure and activity. Appl. Microbiol. Biotechnol., 1998, 49, 382-384.
[http://dx.doi.org/10.1007/s002530051186]
[221]
Toren, A.; Navon-Venezia, S.; Ron, E.Z.; Rosenberg, E. Emulsifying activities of purified Alasan proteins from Acinetobacter radioresistens KA53. Appl. Environ. Microbiol., 2001, 67(3), 1102-1106.
[http://dx.doi.org/10.1128/AEM.67.3.1102-1106.2001] [PMID: 11229898]
[222]
Singh, S.; Kumar, V.; Singh, S.; Dhanjal, D.S.; Datta, S.; Sharma, D.; Singh, N.K.; Singh, J. Biosurfactant-based bioremediation; In: Biore-mediation of Pollutants; USA: Elsevier. , 2020, pp. 333-358.
[223]
Rubinovitz, C.; Gutnick, D.L.; Rosenberg, E. Emulsan production by Acinetobacter calcoaceticus in the presence of chloramphenicol. J. Bacteriol., 1982, 152(1), 126-132.
[PMID: 6896872]
[224]
Shabtai, Y.; Gutnick, D.L. Exocellular esterase and emulsan release from the cell surface of Acinetobacter calcoaceticus. J. Bacteriol., 1985, 161(3), 1176-1181.
[http://dx.doi.org/10.1128/JB.161.3.1176-1181.1985] [PMID: 3838301]
[225]
Gorkovenko, A.; Zhang, J.; Gross, R.A.; Allen, A.L.; Kaplan, D.L. Bioengineering of emulsifier structure: emulsan analogs. Can. J. Microbiol., 1997, 43(4), 384-390.
[http://dx.doi.org/10.1139/m97-053] [PMID: 9115094]
[226]
De Kruif, C.G.; Tuinier, R. Polysaccharide protein interactions. Food Hydrocoll., 2001, 15, 555-563.
[http://dx.doi.org/10.1016/S0268-005X(01)00076-5]
[227]
Paraszkiewicz, K.; Kanwal, A.; Długonski, J. Emulsifier production by steroid transforming filamentous fungus Curvularia lunata. Growth and product characterization. J. Biotechnol., 2002, 92(3), 287-294.
[http://dx.doi.org/10.1016/S0168-1656(01)00376-5] [PMID: 11689253]
[228]
Luna-Velasco, M.A.; Esparza-García, F.; Cañízares-Villanueva, R.O.; Rodríguez-Vázquez, R. Production and properties of a bioemulsifier synthesized by phenanthrene-degrading Penicillium sp. Process Biochem., 2007, 42, 310-314.
[http://dx.doi.org/10.1016/j.procbio.2006.08.015]
[229]
Chakrabarti, S. Bacterial biosurfactant: Characterization, antimicrobial and metal remediation properties . M.Sc. Thesis. NIT, India, 2012.
[230]
Roy, A. A review on the biosurfactants: Properties, types and its applications. J. Fundam. Renew. Energ. Appl., 2017, 8, 1-14.
[231]
Chakraborty, J.; Das, S. Biosurfactant-based bioremediation of toxic metals In: Das, S. Microbial Biodegradation and Bioremediation; USA: Elsevier, 2014, pp. 167-201.
[http://dx.doi.org/10.1016/B978-0-12-800021-2.00007-8]
[232]
Ueno, Y.; Hirashima, N.; Inoh, Y.; Furuno, T.; Nakanishi, M. Characterization of biosurfactant-containing liposomes and their efficiency for gene transfection. Biol. Pharm. Bull., 2007, 30(1), 169-172.
[http://dx.doi.org/10.1248/bpb.30.169] [PMID: 17202680]
[233]
Ueno, Y.; Inoh, Y.; Furuno, T.; Hirashima, N.; Kitamoto, D.; Nakanishi, M. NBD-conjugated biosurfactant (MEL-A) shows a new pathway for transfection. J. Control. Release, 2007, 123(3), 247-253.
[http://dx.doi.org/10.1016/j.jconrel.2007.08.012] [PMID: 17884224]
[234]
Nguyen, T.T.; Edelen, A.; Neighbors, B.; Sabatini, D.A. Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: formulation and potential applications. J. Colloid Interface Sci., 2010, 348(2), 498-504.
[http://dx.doi.org/10.1016/j.jcis.2010.04.053] [PMID: 20471022]
[235]
Rodrigues, L.R. Microbial surfactants: fundamentals and applicability in the formulation of nano-sized drug delivery vectors. J. Colloid Interface Sci., 2015, 449, 304-316.
[http://dx.doi.org/10.1016/j.jcis.2015.01.022] [PMID: 25655712]
[236]
Vecino, X.; Cruz, J.M.; Moldes, A.B.; Rodrigues, L.R. Biosurfactants in cosmetic formulations: trends and challenges. Crit. Rev. Biotechnol., 2017, 37(7), 911-923.
[http://dx.doi.org/10.1080/07388551.2016.1269053] [PMID: 28076995]
[237]
Savla, R.; Browne, J.; Plassat, V.; Wasan, K.M.; Wasan, E.K. Review and analysis of FDA approved drugs using lipid-based formulations. Drug Dev. Ind. Pharm., 2017, 43(11), 1743-1758.
[http://dx.doi.org/10.1080/03639045.2017.1342654] [PMID: 28673096]
[238]
Kural, F.H.; Gürsoy, R.N. Formulation and Characterization of Surfactin- Containing Self-Microemulsifying Drug Delivery Systems SF-SMEDDS Hacettepe Uni. J. Pharm., 2011, 171-186.
[239]
He, Z.; Zeng, W.; Zhu, X.; Zhao, H.; Lu, Y.; Lu, Z. Influence of surfactin on physical and oxidative stability of microemulsions with docosahexaenoic acid. Colloids Surf. B Biointerfaces, 2017, 151, 232-239.
[http://dx.doi.org/10.1016/j.colsurfb.2016.12.026] [PMID: 28013167]
[240]
Xie, Y.W.; Li, Y.; Ye, R.Q. Effect of alcohols on the phase behavior of microemulsions formed by a biosurfactant—rhamnolipid. J. Dispers. Sci. Technol., 2005, 26, 455-461.
[http://dx.doi.org/10.1081/DIS-200054576]
[241]
Worakitkanchanakul, W.; Imura, T.; Morita, T.; Fukuoka, T.; Sakai, H.; Abe, M.; Rujiravanit, R.; Chavadej, S.; Kitamoto, D. Formation of W/O microemulsion based on natural glycolipid biosurfactant, mannosylerythritol lipid-a. J. Oleo Sci., 2008, 57(1), 55-59.
[http://dx.doi.org/10.5650/jos.57.55] [PMID: 18075224]
[242]
Worakitkanchanakul, W.; Imura, T.; Fukuoka, T.; Morita, T.; Sakai, H.; Abe, M.; Rujiravanit, R.; Chavadej, S.; Minamikawa, H.; Kitamoto, D. Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B. Colloids Surf. B Biointerfaces, 2008, 65(1), 106-112.
[http://dx.doi.org/10.1016/j.colsurfb.2008.03.009] [PMID: 18456469]
[243]
Fukuoka, T.; Yanagihara, T.; Ito, S.; Imura, T.; Morita, T.; Sakai, H.; Abe, M.; Kitamoto, D. Reverse vesicle formation from the yeast glycolipid biosurfactant mannosylerythritol lipid-D. J. Oleo Sci., 2012, 61(5), 285-289.
[http://dx.doi.org/10.5650/jos.61.285] [PMID: 22531056]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy