Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Mitophagy: A Novel Therapeutic Target for Treating DN

Author(s): Ming Yang, Chenrui Li, Shikun Yang, Ying Xiao, Wei Chen, Peng Gao, Na Jiang, Shan Xiong, Ling Wei, Qin Zhang, Jinfei Yang, Lingfeng Zeng and Lin Sun*

Volume 28, Issue 14, 2021

Published on: 06 October, 2020

Page: [2717 - 2728] Pages: 12

DOI: 10.2174/0929867327666201006152656

Price: $65

Abstract

Diabetic nephropathy (DN) is a common microvascular complication of diabetes and one of the leading causes of end-stage renal disease. Tubular damage is an early change and characteristic of DN, and mitochondrial dysfunction plays an important role in the development of DN. Therefore, the timely removal of damaged mitochondria in tubular cells is an effective treatment strategy for DN. Mitophagy is a type of selective autophagy that ensures the timely elimination of damaged mitochondria to protect cells from oxidative stress. In this review, we summarize our understanding of mitochondrial dysfunction and dynamic disorders in tubular cells in DN and the molecular mechanism of mitophagy. Finally, the role of mitophagy in DN and its feasibility as a therapeutic target for DN are discussed.

Keywords: Mitophagy, Diabetic nephropathy, Tubular cells, Mitochondria, Oxidative stress, Autophagy.

[1]
Rowley, W.R.; Bezold, C.; Arikan, Y.; Byrne, E.; Krohe, S. Diabetes 2030: insights from yesterday, today, and future trends. Popul. Health Manag., 2017, 20(1), 6-12.
[http://dx.doi.org/10.1089/pop.2015.0181] [PMID: 27124621]
[2]
Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract., 2010, 87(1), 4-14.
[http://dx.doi.org/10.1016/j.diabres.2009.10.007] [PMID: 19896746]
[3]
Iwai, T.; Miyazaki, M.; Yamada, G.; Nakayama, M.; Yamamoto, T.; Satoh, M.; Sato, H.; Ito, S. Diabetes mellitus as a cause or comorbidity of chronic kidney disease and its outcomes: the Gonryo study. Clin. Exp. Nephrol., 2018, 22(2), 328-336.
[http://dx.doi.org/10.1007/s10157-017-1451-4] [PMID: 28752289]
[4]
Fiseha, T.; Tamir, Z. Urinary markers of tubular injury in early diabetic nephropathy. Int. J. Nephrol., 2016, 2016, 4647685.
[http://dx.doi.org/10.1155/2016/4647685] [PMID: 27293888]
[5]
Bonventre, J.V. Can we target tubular damage to prevent renal function decline in diabetes? Semin. Nephrol., 2012, 32(5), 452-462.
[http://dx.doi.org/10.1016/j.semnephrol.2012.07.008] [PMID: 23062986]
[6]
Vaidya, V.S.; Niewczas, M.A.; Ficociello, L.H.; Johnson, A.C.; Collings, F.B.; Warram, J.H.; Krolewski, A.S.; Bonventre, J.V. Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl-β-D-glucosaminidase. Kidney Int., 2011, 79(4), 464-470.
[http://dx.doi.org/10.1038/ki.2010.404] [PMID: 20980978]
[7]
Yang, P.Y.; Li, P.C.; Feng, B. Protective effects of gliclazide on high glucose and AGEs-induced damage of glomerular mesangial cells and renal tubular epithelial cells via inhibiting RAGE-p22phox-NF-kB pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(20), 9099-9107.
[http://dx.doi.org/10.26355/eurrev_201910_19313] [PMID: 31696501]
[8]
Li, X.; Xu, L.; Hou, X.; Geng, J.; Tian, J.; Liu, X.; Bai, X. Advanced oxidation protein products aggravate tubulointerstitial fibrosis through protein kinase C-dependent mitochondrial injury in early diabetic nephropathy. Antioxid. Redox Signal., 2019, 30(9), 1162-1185.
[http://dx.doi.org/10.1089/ars.2017.7208] [PMID: 29482336]
[9]
Hou, Y.; Shi, Y.; Han, B.; Liu, X.; Qiao, X.; Qi, Y.; Wang, L. The antioxidant peptide SS31 prevents oxidative stress, downregulates CD36 and improves renal function in diabetic nephropathy. Nephrol. Dial. Transplant., 2018, 33(11), 1908-1918.
[http://dx.doi.org/10.1093/ndt/gfy021] [PMID: 30388276]
[10]
Gao, C.; Chen, J.; Fan, F.; Long, Y.; Tang, S.; Jiang, C.; Wang, J.; Xu, Y.; Xu, Y. RIPK2-mediated autophagy and negatively regulated ROS-NLRP3 inflammasome signaling in GMCs stimulated with high glucose. Mediators Inflamm., 2019, 2019, 6207563.
[http://dx.doi.org/10.1155/2019/6207563] [PMID: 31485193]
[11]
Lisowski, P.; Kannan, P.; Mlody, B.; Prigione, A. Mitochondria and the dynamic control of stem cell homeostasis. EMBO Rep., 2018, 19(5), 19.
[http://dx.doi.org/10.15252/embr.201745432] [PMID: 29661859]
[12]
Lindblom, R.; Higgins, G.; Coughlan, M.; de Haan, J.B. Targeting mitochondria and reactive oxygen species-driven pathogenesis in diabetic nephropathy. Rev. Diabet. Stud., 2015, 12(1-2), 134-156.
[http://dx.doi.org/10.1900/RDS.2015.12.134] [PMID: 26676666]
[13]
Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[14]
Cadenas, S. Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim. Biophys. Acta Bioenerg., 2018, 1859(9), 940-950.
[http://dx.doi.org/10.1016/j.bbabio.2018.05.019] [PMID: 29859845]
[15]
Habich, M.; Salscheider, S.L.; Riemer, J. Cysteine residues in mitochondrial intermembrane space proteins: more than just import. Br. J. Pharmacol., 2019, 176(4), 514-531.
[http://dx.doi.org/10.1111/bph.14480] [PMID: 30129023]
[16]
Yoo, S-M.; Jung, Y.K. A molecular approach to mitophagy and mitochondrial dynamics. Mol. Cells, 2018, 41(1), 18-26.
[http://dx.doi.org/10.1016/j.livres.2017.08.003] [PMID: 29370689]
[17]
Wu, L.; Xu, W.; Xu, L.; Kong, Q.; Fang, J. Mitophagy is increased during erythroid differentiation in β-thalassemia. Int. J. Hematol., 2017, 105(2), 162-173.
[http://dx.doi.org/10.1007/s12185-016-2114-z] [PMID: 27796739]
[18]
Chourasia, A.H.; Macleod, K.F. Tumor suppressor functions of BNIP3 and mitophagy. Autophagy, 2015, 11(10), 1937-1938.
[http://dx.doi.org/10.1080/15548627.2015.1085136] [PMID: 26315353]
[19]
Fritsch, L.E.; Moore, M.E.; Sarraf, S.A.; Pickrell, A.M. Ubiquitin and receptor-dependent mitophagy pathways and their implication in neurodegeneration. J. Mol. Biol., 2020, 432(8), 2510-2524.
[http://dx.doi.org/10.1016/j.jmb.2019.10.015] [PMID: 31689437]
[20]
Sheng, J.; Li, H.; Dai, Q.; Lu, C.; Xu, M.; Zhang, J.; Feng, J. NR4A1 promotes diabetic nephropathy by activating Mff-mediated mitochondrial fission and suppressing parkin-mediated mitophagy. Cell. Physiol. Biochem., 2018, 48(4), 1675-1693.
[http://dx.doi.org/10.1159/000492292] [PMID: 30077998]
[21]
Chen, K.; Feng, L.; Hu, W.; Chen, J.; Wang, X.; Wang, L.; He, Y. Optineurin inhibits NLRP3 inflammasome activation by enhancing mitophagy of renal tubular cells in diabetic nephropathy. FASEB J., 2019, 33(3), 4571-4585.
[http://dx.doi.org/10.1096/fj.201801749RRR] [PMID: 30571313]
[22]
Higgins, G.C.; Coughlan, M.T. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br. J. Pharmacol., 2014, 171(8), 1917-1942.
[http://dx.doi.org/10.1111/bph.12503] [PMID: 24720258]
[23]
Tervaert, T.W.; Mooyaart, A.L.; Amann, K.; Cohen, A.H.; Cook, H.T.; Drachenberg, C.B.; Ferrario, F.; Fogo, A.B.; Haas, M.; de Heer, E.; Joh, K.; Noël, L.H.; Radhakrishnan, J.; Seshan, S.V.; Bajema, I.M.; Bruijn, J.A. Renal pathology society. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol., 2010, 21(4), 556-563.
[http://dx.doi.org/10.1681/ASN.2010010010] [PMID: 20167701]
[24]
Slyne, J.; Slattery, C.; McMorrow, T.; Ryan, M.P. New developments concerning the proximal tubule in diabetic nephropathy: in vitro models and mechanisms. Nephrol. Dial. Transplant., 2015, 30(Suppl. 4), iv60-iv67.
[http://dx.doi.org/10.1093/ndt/gfv264] [PMID: 26209740]
[25]
Zeng, L.F.; Xiao, Y.; Sun, L. A glimpse of the mechanisms related to renal fibrosis in diabetic nephropathy. Adv. Exp. Med. Biol., 2019, 1165, 49-79.
[http://dx.doi.org/10.1007/978-981-13-8871-2_4] [PMID: 31399961]
[26]
Yang, M.; Zhao, L.; Gao, P.; Zhu, X.; Han, Y.; Chen, X.; Li, L.; Xiao, Y.; Wei, L.; Li, C.; Xiao, L.; Yuan, S.; Liu, F.; Dong, L.Q.; Kanwar, Y.S.; Sun, L. DsbA-L ameliorates high glucose induced tubular damage through maintaining MAM integrity. EBioMedicine, 2019, 43, 607-619.
[http://dx.doi.org/10.1016/j.ebiom.2019.04.044] [PMID: 31060900]
[27]
Chen, X.; Han, Y.; Gao, P.; Yang, M.; Xiao, L.; Xiong, X.; Zhao, H.; Tang, C.; Chen, G.; Zhu, X.; Yuan, S.; Liu, F.; Dong, L.Q.; Liu, F.; Kanwar, Y.S.; Sun, L. Disulfide-bond A oxidoreductase-like protein protects against ectopic fat deposition and lipid-related kidney damage in diabetic nephropathy. Kidney Int., 2019, 95(4), 880-895.
[http://dx.doi.org/10.1016/j.kint.2018.10.038] [PMID: 30791996]
[28]
Castellanos, E.; Lanning, N.J. Phosphorylation of OXPHOS machinery subunits: functional implications in cell biology and disease. Yale J. Biol. Med., 2019, 92(3), 523-531.
[PMID: 31543713]
[29]
Konari, N.; Nagaishi, K.; Kikuchi, S.; Fujimiya, M. Mitochondria transfer from mesenchymal stem cells structurally and functionally repairs renal proximal tubular epithelial cells in diabetic nephropathy in vivo. Sci. Rep., 2019, 9(1), 5184.
[http://dx.doi.org/10.1038/s41598-019-40163-y] [PMID: 30914727]
[30]
Chen, X.; Fang, M. Oxidative stress mediated mitochondrial damage plays roles in pathogenesis of diabetic nephropathy rat. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(16), 5248-5254.
[http://dx.doi.org/10.26355/eurrev_201808_15723] [PMID: 30178848]
[31]
Han, Y.; Xu, X.; Tang, C.; Gao, P.; Chen, X.; Xiong, X.; Yang, M.; Yang, S.; Zhu, X.; Yuan, S.; Liu, F.; Xiao, L.; Kanwar, Y.S.; Sun, L. Reactive oxygen species promote tubular injury in diabetic nephropathy: the role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol., 2018, 16, 32-46.
[http://dx.doi.org/10.1016/j.redox.2018.02.013] [PMID: 29475133]
[32]
Chen, X.L.; Tang, W.X.; Tang, X.H.; Qin, W.; Gong, M. Downregulation of uncoupling protein-2 by genipin exacerbates diabetes-induced kidney proximal tubular cells apoptosis. Ren. Fail., 2014, 36(8), 1298-1303.
[http://dx.doi.org/10.3109/0886022X.2014.930650] [PMID: 24964191]
[33]
Ha, H.; Lee, H.B. Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney. Nephrology (Carlton), 2005, (10 Suppl), S7-S10.
[http://dx.doi.org/10.1111/j.1440-1797.2005.00448.x] [PMID: 16174288]
[34]
Xu, Z.; Zhao, Y.; Zhong, P.; Wang, J.; Weng, Q.; Qian, Y.; Han, J.; Zou, C.; Liang, G. EGFR inhibition attenuates diabetic nephropathy through decreasing ROS and endoplasmic reticulum stress. Oncotarget, 2017, 8(20), 32655-32667.
[http://dx.doi.org/10.18632/oncotarget.15948] [PMID: 28427241]
[35]
Liu, J.; Wang, C.; Liu, F.; Lu, Y.; Cheng, J. Metabonomics revealed xanthine oxidase-induced oxidative stress and inflammation in the pathogenesis of diabetic nephropathy. Anal. Bioanal. Chem., 2015, 407(9), 2569-2579.
[http://dx.doi.org/10.1007/s00216-015-8481-0] [PMID: 25636229]
[36]
Brezniceanu, M.L.; Liu, F.; Wei, C.C.; Tran, S.; Sachetelli, S.; Zhang, S.L.; Guo, D.F.; Filep, J.G.; Ingelfinger, J.R.; Chan, J.S. Catalase overexpression attenuates angiotensinogen expression and apoptosis in diabetic mice. Kidney Int., 2007, 71(9), 912-923.
[http://dx.doi.org/10.1038/sj.ki.5002188] [PMID: 17342175]
[37]
Wei, T.; Shu, Q.; Ning, J.; Wang, S.; Li, C.; Zhao, L.; Zheng, H.; Gao, H. The protective effect of basic fibroblast growth factor on diabetic nephropathy through remodeling metabolic phenotype and suppressing oxidative stress in mice. Front. Pharmacol., 2020, 11, 66.
[http://dx.doi.org/10.3389/fphar.2020.00066] [PMID: 32153399]
[38]
Vásquez-Trincado, C.; García-Carvajal, I.; Pennanen, C.; Parra, V.; Hill, J.A.; Rothermel, B.A.; Lavandero, S. Mitochondrial dynamics, mitophagy and cardiovascular disease. J. Physiol., 2016, 594(3), 509-525.
[http://dx.doi.org/10.1113/JP271301] [PMID: 26537557]
[39]
Jiang, H.; Shao, X.; Jia, S.; Qu, L.; Weng, C.; Shen, X.; Wang, Y.; Huang, H.; Wang, Y.; Wang, C.; Feng, S.; Wang, M.; Feng, H.; Geekiyanage, S.; Davidson, A.J.; Chen, J. The mitochondria-targeted metabolic tubular injury in diabetic kidney disease. Cell. Physiol. Biochem., 2019, 52(2), 156-171.
[http://dx.doi.org/10.33594/000000011] [PMID: 30816665]
[40]
Tang, W.X.; Wu, W.H.; Zeng, X.X.; Bo, H.; Huang, S.M. Early protective effect of mitofusion 2 overexpression in STZ-induced diabetic rat kidney. Endocrine, 2012, 41(2), 236-247.
[http://dx.doi.org/10.1007/s12020-011-9555-1] [PMID: 22095488]
[41]
Ravanan, P.; Srikumar, I.F.; Talwar, P. Autophagy: the spotlight for cellular stress responses. Life Sci., 2017, 188, 53-67.
[http://dx.doi.org/10.1016/j.lfs.2017.08.029] [PMID: 28866100]
[42]
Parzych, K.R.; Klionsky, D.J. An overview of autophagy: morphology, mechanism, and regulation. Antioxid. Redox Signal., 2014, 20(3), 460-473.
[http://dx.doi.org/10.1089/ars.2013.5371] [PMID: 23725295]
[43]
Chen, G.; Liu, H.; Zhang, Y.; Liang, J.; Zhu, Y.; Zhang, M.; Yu, D.; Wang, C.; Hou, J. Silencing PFKP inhibits starvation-induced autophagy, glycolysis, and epithelial mesenchymal transition in oral squamous cell carcinoma. Exp. Cell Res., 2018, 370(1), 46-57.
[http://dx.doi.org/10.1016/j.yexcr.2018.06.007] [PMID: 29894707]
[44]
Rabinowitz, J.D.; White, E. Autophagy and metabolism. Science, 2010, 330(6009), 1344-1348.
[http://dx.doi.org/10.1126/science.1193497] [PMID: 21127245]
[45]
Kim, K.H.; Lee, M.S. Autophagy--a key player in cellular and body metabolism. Nat. Rev. Endocrinol., 2014, 10(6), 322-337.
[http://dx.doi.org/10.1038/nrendo.2014.35] [PMID: 24663220]
[46]
Joachim, J.; Jefferies, H.B.; Razi, M.; Frith, D.; Snijders, A.P.; Chakravarty, P.; Judith, D.; Tooze, S.A. Activation of ULK kinase and autophagy by GABARAP trafficking from the centrosome is regulated by WAC and GM130. Mol. Cell, 2015, 60(6), 899-913.
[http://dx.doi.org/10.1016/j.molcel.2015.11.018] [PMID: 26687599]
[47]
Xu, J.; Fotouhi, M.; McPherson, P.S. Phosphorylation of the exchange factor DENND3 by ULK in response to starvation activates Rab12 and induces autophagy. EMBO Rep., 2015, 16(6), 709-718.
[http://dx.doi.org/10.15252/embr.201440006] [PMID: 25925668]
[48]
Ravikumar, B.; Sarkar, S.; Davies, J.E.; Futter, M.; Garcia-Arencibia, M.; Green-Thompson, Z.W.; Jimenez-Sanchez, M.; Korolchuk, V.I.; Lichtenberg, M.; Luo, S.; Massey, D.C.; Menzies, F.M.; Moreau, K.; Narayanan, U.; Renna, M.; Siddiqi, F.H.; Underwood, B.R.; Winslow, A.R.; Rubinsztein, D.C. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev., 2010, 90(4), 1383-1435.
[http://dx.doi.org/10.1152/physrev.00030.2009] [PMID: 20959619]
[49]
Sciarretta, S.; Maejima, Y.; Zablocki, D.; Sadoshima, J. The role of autophagy in the heart. Annu. Rev. Physiol., 2018, 80, 1-26.
[http://dx.doi.org/10.1146/annurev-physiol-021317-121427] [PMID: 29068766]
[50]
Fivenson, E.M.; Lautrup, S.; Sun, N.; Scheibye-Knudsen, M.; Stevnsner, T.; Nilsen, H.; Bohr, V.A.; Fang, E.F. Mitophagy in neurodegeneration and aging. Neurochem. Int., 2017, 109, 202-209.
[http://dx.doi.org/10.1016/j.neuint.2017.02.007] [PMID: 28235551]
[51]
Sin, J.; Andres, A.M.; Taylor, D.J.; Weston, T.; Hiraumi, Y.; Stotland, A.; Kim, B.J.; Huang, C.; Doran, K.S.; Gottlieb, R.A. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy, 2016, 12(2), 369-380.
[http://dx.doi.org/10.1080/15548627.2015.1115172] [PMID: 26566717]
[52]
Ashrafi, G.; Schwarz, T.L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ., 2013, 20(1), 31-42.
[http://dx.doi.org/10.1038/cdd.2012.81] [PMID: 22743996]
[53]
Sandoval, H.; Thiagarajan, P.; Dasgupta, S.K.; Schumacher, A.; Prchal, J.T.; Chen, M.; Wang, J. Essential role for Nix in autophagic maturation of erythroid cells. Nature, 2008, 454(7201), 232-235.
[http://dx.doi.org/10.1038/nature07006] [PMID: 18454133]
[54]
Al Rawi, S.; Louvet-Vallée, S.; Djeddi, A.; Sachse, M.; Culetto, E.; Hajjar, C.; Boyd, L.; Legouis, R.; Galy, V. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science, 2011, 334(6059), 1144-1147.
[http://dx.doi.org/10.1126/science.1211878] [PMID: 22033522]
[55]
Um, J.H.; Yun, J. Emerging role of mitophagy in human diseases and physiology. BMB Rep., 2017, 50(6), 299-307.
[http://dx.doi.org/10.5483/BMBRep.2017.50.6.056] [PMID: 28366191]
[56]
Eiyama, A.; Okamoto, K. PINK1/Parkin-mediated mitophagy in mammalian cells. Curr. Opin. Cell Biol., 2015, 33, 95-101.
[http://dx.doi.org/10.1016/j.ceb.2015.01.002] [PMID: 25697963]
[57]
Leites, E.P.; Morais, V.A. Mitochondrial quality control pathways: PINK1 acts as a gatekeeper. Biochem. Biophys. Res. Commun., 2018, 500(1), 45-50.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.096] [PMID: 28647367]
[58]
Wang, Y.; Cai, J.; Tang, C.; Dong, Z. Mitophagy in acute kidney injury and kidney repair. Cells, 2020, 9(2), 338.
[http://dx.doi.org/10.3390/cells9020338] [PMID: 32024113]
[59]
Kuang, Y.; Ma, K.; Zhou, C.; Ding, P.; Zhu, Y.; Chen, Q.; Xia, B. Structural basis for the phosphorylation of FUNDC1 LIR as a molecular switch of mitophagy. Autophagy, 2016, 12(12), 2363-2373.
[http://dx.doi.org/10.1080/15548627.2016.1238552] [PMID: 27653272]
[60]
Lv, M.; Wang, C.; Li, F.; Peng, J.; Wen, B.; Gong, Q.; Shi, Y.; Tang, Y. Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy. Protein Cell, 2017, 8(1), 25-38.
[http://dx.doi.org/10.1007/s13238-016-0328-8] [PMID: 27757847]
[61]
Ma, K.; Zhang, Z.; Chang, R.; Cheng, H.; Mu, C.; Zhao, T.; Chen, L.; Zhang, C.; Luo, Q.; Lin, J.; Zhu, Y.; Chen, Q. Dynamic PGAM5 multimers dephosphorylate BCL-xL or FUNDC1 to regulate mitochondrial and cellular fate. Cell Death Differ., 2020, 27(3), 1036-1051.
[http://dx.doi.org/10.1038/s41418-019-0396-4] [PMID: 31367011]
[62]
Chen, M.; Chen, Z.; Wang, Y.; Tan, Z.; Zhu, C.; Li, Y.; Han, Z.; Chen, L.; Gao, R.; Liu, L.; Chen, Q. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy, 2016, 12(4), 689-702.
[http://dx.doi.org/10.1080/15548627.2016.1151580] [PMID: 27050458]
[63]
Sugo, M.; Kimura, H.; Arasaki, K.; Amemiya, T.; Hirota, N.; Dohmae, N.; Imai, Y.; Inoshita, T.; Shiba-Fukushima, K.; Hattori, N.; Cheng, J.; Fujimoto, T.; Wakana, Y.; Inoue, H.; Tagaya, M. Syntaxin 17 regulates the localization and function of PGAM5 in mitochondrial division and mitophagy. EMBO J., 2018, 37(21), 37.
[http://dx.doi.org/10.15252/embj.201798899] [PMID: 30237312]
[64]
Sentelle, R.D.; Senkal, C.E.; Jiang, W.; Ponnusamy, S.; Gencer, S.; Selvam, S.P.; Ramshesh, V.K.; Peterson, Y.K.; Lemasters, J.J.; Szulc, Z.M.; Bielawski, J.; Ogretmen, B. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat. Chem. Biol., 2012, 8(10), 831-838.
[http://dx.doi.org/10.1038/nchembio.1059] [PMID: 22922758]
[65]
Strappazzon, F.; Nazio, F.; Corrado, M.; Cianfanelli, V.; Romagnoli, A.; Fimia, G.M.; Campello, S.; Nardacci, R.; Piacentini, M.; Campanella, M.; Cecconi, F. AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Differ., 2015, 22(3), 419-432.
[http://dx.doi.org/10.1038/cdd.2014.139] [PMID: 25215947]
[66]
Di Rita, A.; Peschiaroli, A.D. A.P.; Strobbe, D.; Hu, Z.; Gruber, J.; Nygaard, M.; Lambrughi, M.; Melino, G.; Papaleo, E.; Dengjel, J.; El, A.S.; Campanella, M.; Dotsch, V.; Rogov, V.V.; Strappazzon, F.; Cecconi, F. HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKalpha. Nat. Commun., 2018, 9(1), 3755.
[http://dx.doi.org/10.1038/s41467-018-05722-3] [PMID: 30217973]
[67]
Vara-Perez, M.; Felipe-Abrio, B.; Agostinis, P. Mitophagy in cancer: a tale of adaptation. Cells, 2019, 8(5), 493.
[http://dx.doi.org/10.3390/cells8050493] [PMID: 31121959]
[68]
Zhu, L.; Qi, B.; Hou, D. Roles of HIF1α- and HIF2α-regulated BNIP3 in hypoxia-induced injury of neurons. Pathol. Res. Pract., 2019, 215(4), 822-827.
[http://dx.doi.org/10.1016/j.prp.2019.01.022] [PMID: 30704780]
[69]
Yu, H.; Chen, B.; Ren, Q. Baicalin relieves hypoxia-aroused H9c2 cell apoptosis by activating Nrf2/HO-1-mediated HIF1α/BNIP3 pathway. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3657-3663.
[http://dx.doi.org/10.1080/21691401.2019.1657879] [PMID: 31478766]
[70]
Chaanine, A.H.; Kohlbrenner, E.; Gamb, S.I.; Guenzel, A.J.; Klaus, K.; Fayyaz, A.U.; Nair, K.S.; Hajjar, R.J.; Redfield, M.M. FOXO3a regulates BNIP3 and modulates mitochondrial calcium, dynamics, and function in cardiac stress. Am. J. Physiol. Heart Circ. Physiol., 2016, 311(6), H1540-H1559.
[http://dx.doi.org/10.1152/ajpheart.00549.2016] [PMID: 27694219]
[71]
Shaw, J.; Yurkova, N.; Zhang, T.; Gang, H.; Aguilar, F.; Weidman, D.; Scramstad, C.; Weisman, H.; Kirshenbaum, L.A. Antagonism of E2F-1 regulated Bnip3 transcription by NF-kappaB is essential for basal cell survival. Proc. Natl. Acad. Sci. USA, 2008, 105(52), 20734-20739.
[http://dx.doi.org/10.1073/pnas.0807735105] [PMID: 19088195]
[72]
Shaw, J.; Zhang, T.; Rzeszutek, M.; Yurkova, N.; Baetz, D.; Davie, J.R.; Kirshenbaum, L.A. Transcriptional silencing of the death gene BNIP3 by cooperative action of NF-kappaB and histone deacetylase 1 in ventricular myocytes. Circ. Res., 2006, 99(12), 1347-1354.
[http://dx.doi.org/10.1161/01.RES.0000251744.06138.50] [PMID: 17082476]
[73]
Esteban-Martínez, L.; Boya, P. BNIP3L/NIX-dependent mitophagy regulates cell differentiation via metabolic reprogramming. Autophagy, 2018, 14(5), 915-917.
[http://dx.doi.org/10.1080/15548627.2017.1332567] [PMID: 28614042]
[74]
East, D.A.; Campanella, M. Mitophagy and the therapeutic clearance of damaged mitochondria for neuroprotection. Int. J. Biochem. Cell Biol., 2016, 79, 382-387.
[http://dx.doi.org/10.1016/j.biocel.2016.08.019] [PMID: 27586258]
[75]
Roberts, R.F.; Tang, M.Y.; Fon, E.A.; Durcan, T.M. Defending the mitochondria: the pathways of mitophagy and mitochondrial-derived vesicles. Int. J. Biochem. Cell Biol., 2016, 79, 427-436.
[http://dx.doi.org/10.1016/j.biocel.2016.07.020] [PMID: 27443527]
[76]
Wang, J.L.; Luo, X.; Liu, L. Targeting CARD6 attenuates spinal cord injury (SCI) in mice through inhibiting apoptosis, inflammation and oxidative stress associated ROS production. Aging (Albany NY), 2019, 11(24), 12213-12235.
[http://dx.doi.org/10.18632/aging.102561] [PMID: 31841440]
[77]
Li, L.; Tan, J.; Miao, Y.; Lei, P.; Zhang, Q. ROS and autophagy: interactions and molecular regulatory mechanisms. Cell. Mol. Neurobiol., 2015, 35(5), 615-621.
[http://dx.doi.org/10.1007/s10571-015-0166-x] [PMID: 25722131]
[78]
Song, S.B.; Jang, S-Y.; Kang, H.T.; Wei, B.; Jeoun, U-W.; Yoon, G.S.; Hwang, E.S. Modulation of mitochondrial membrane potential and ROS generation by nicotinamide in a manner independent of SIRT1 and mitophagy. Mol. Cells, 2017, 40(7), 503-514.
[http://dx.doi.org/10.14348/molcells.2017.0081] [PMID: 28736426]
[79]
Lin, Q.; Li, S.; Jiang, N.; Shao, X.; Zhang, M.; Jin, H.; Zhang, Z.; Shen, J.; Zhou, Y.; Zhou, W.; Gu, L.; Lu, R.; Ni, Z. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol., 2019, 26, 101254.
[http://dx.doi.org/10.1016/j.redox.2019.101254] [PMID: 31229841]
[80]
Kang, X.; Wang, H.; Li, Y.; Xiao, Y.; Zhao, L.; Zhang, T.; Zhou, S.; Zhou, X.; Li, Y.; Shou, Z.; Chen, C.; Li, B. Alantolactone induces apoptosis through ROS-mediated AKT pathway and inhibition of PINK1-mediated mitophagy in human HepG2 cells. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1961-1970.
[http://dx.doi.org/10.1080/21691401.2019.1593854] [PMID: 31116036]
[81]
Howitz, K.T.; Bitterman, K.J.; Cohen, H.Y.; Lamming, D.W.; Lavu, S.; Wood, J.G.; Zipkin, R.E.; Chung, P.; Kisielewski, A.; Zhang, L.L.; Scherer, B.; Sinclair, D.A. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 2003, 425(6954), 191-196.
[http://dx.doi.org/10.1038/nature01960] [PMID: 12939617]
[82]
Sebori, R.; Kuno, A.; Hosoda, R.; Hayashi, T.; Horio, Y. Resveratrol decreases oxidative stress by restoring mitophagy and improves the pathophysiology of dystrophin-deficient mdx mice. Oxid. Med. Cell. Longev., 2018, 2018, 9179270.
[http://dx.doi.org/10.1155/2018/9179270] [PMID: 30510631]
[83]
Fan, P.; Xie, X.H.; Chen, C.H.; Peng, X.; Zhang, P.; Yang, C.; Wang, Y.T. Molecular regulation mechanisms and interactions between reactive oxygen species and mitophagy. DNA Cell Biol., 2019, 38(1), 10-22.
[http://dx.doi.org/10.1089/dna.2018.4348] [PMID: 30556744]
[84]
Wu, J.; Li, Y.; Yang, P.; Huang, Y.; Lu, S.; Xu, F. Novel role of carbon monoxide in improving neurological outcome after cardiac arrest in aged rats: involvement of inducing mitochondrial autophagy. J. Am. Heart Assoc., 2019, 8(9), e011851.
[http://dx.doi.org/10.1161/JAHA.118.011851] [PMID: 31030597]
[85]
Movafagh, S.; Crook, S.; Vo, K. Regulation of hypoxia-inducible factor-1a by reactive oxygen species: new developments in an old debate. J. Cell. Biochem., 2015, 116(5), 696-703.
[http://dx.doi.org/10.1002/jcb.25074] [PMID: 25546605]
[86]
Lizama-Manibusan, B.; McLaughlin, B. Redox modification of proteins as essential mediators of CNS autophagy and mitophagy. FEBS Lett., 2013, 587(15), 2291-2298.
[http://dx.doi.org/10.1016/j.febslet.2013.06.007] [PMID: 23773928]
[87]
Frank, M.; Duvezin-Caubet, S.; Koob, S.; Occhipinti, A.; Jagasia, R.; Petcherski, A.; Ruonala, M.O.; Priault, M.; Salin, B.; Reichert, A.S. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim. Biophys. Acta, 2012, 1823(12), 2297-2310.
[http://dx.doi.org/10.1016/j.bbamcr.2012.08.007] [PMID: 22917578]
[88]
Kageyama, Y.; Hoshijima, M.; Seo, K.; Bedja, D.; Sysa-Shah, P.; Andrabi, S.A.; Chen, W.; Höke, A.; Dawson, V.L.; Dawson, T.M.; Gabrielson, K.; Kass, D.A.; Iijima, M.; Sesaki, H. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J., 2014, 33(23), 2798-2813.
[http://dx.doi.org/10.15252/embj.201488658] [PMID: 25349190]
[89]
Liao, C.; Ashley, N.; Diot, A.; Morten, K.; Phadwal, K.; Williams, A.; Fearnley, I.; Rosser, L.; Lowndes, J.; Fratter, C.; Ferguson, D.J.; Vay, L.; Quaghebeur, G.; Moroni, I.; Bianchi, S.; Lamperti, C.; Downes, S.M.; Sitarz, K.S.; Flannery, P.J.; Carver, J.; Dombi, E.; East, D.; Laura, M.; Reilly, M.M.; Mortiboys, H.; Prevo, R.; Campanella, M.; Daniels, M.J.; Zeviani, M.; Yu-Wai-Man, P.; Simon, A.K.; Votruba, M.; Poulton, J. Dysregulated mitophagy and mitochondrial organization in optic atrophy due to OPA1 mutations. Neurology, 2017, 88(2), 131-142.
[http://dx.doi.org/10.1212/WNL.0000000000003491] [PMID: 27974645]
[90]
Gomes, L.C.; Scorrano, L. Mitochondrial morphology in mitophagy and macroautophagy. Biochim. Biophys. Acta, 2013, 1833(1), 205-212.
[http://dx.doi.org/10.1016/j.bbamcr.2012.02.012] [PMID: 22406072]
[91]
Yang, S.; Han, Y.; Liu, J.; Song, P.; Xu, X.; Zhao, L.; Hu, C.; Xiao, L.; Liu, F.; Zhang, H.; Sun, L. Mitochondria: a novel therapeutic target in diabetic nephropathy. Curr. Med. Chem., 2017, 24(29), 3185-3202.
[http://dx.doi.org/10.2174/0929867324666170509121003] [PMID: 28486920]
[92]
Blanco, F.J.; Rego-Pérez, I. Mitochondria and mitophagy: biosensors for cartilage degradation and osteoarthritis. Osteoarthritis Cartilage, 2018, 26(8), 989-991.
[http://dx.doi.org/10.1016/j.joca.2018.05.018] [PMID: 29857157]
[93]
Zhan, M.; Usman, I.M.; Sun, L.; Kanwar, Y.S. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease. J. Am. Soc. Nephrol., 2015, 26(6), 1304-1321.
[http://dx.doi.org/10.1681/ASN.2014050457] [PMID: 25270067]
[94]
Zhao, Y.; Sun, M. Metformin rescues Parkin protein expression and mitophagy in high glucose-challenged human renal epithelial cells by inhibiting NF-κB via PP2A activation. Life Sci., 2020, 246, 117382.
[http://dx.doi.org/10.1016/j.lfs.2020.117382] [PMID: 32004509]
[95]
Xiao, L.; Xu, X.; Zhang, F.; Wang, M.; Xu, Y.; Tang, D.; Wang, J.; Qin, Y.; Liu, Y.; Tang, C.; He, L.; Greka, A.; Zhou, Z.; Liu, F.; Dong, Z.; Sun, L. The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biol., 2017, 11, 297-311.
[http://dx.doi.org/10.1016/j.redox.2016.12.022] [PMID: 28033563]
[96]
Liu, X.; Wang, W.; Song, G.; Wei, X.; Zeng, Y.; Han, P.; Wang, D.; Shao, M.; Wu, J.; Sun, H.; Xiong, G.; Li, S. Astragaloside IV ameliorates diabetic nephropathy by modulating the mitochondrial quality control network. PLoS One, 2017, 12(8), e0182558.
[http://dx.doi.org/10.1371/journal.pone.0182558] [PMID: 28767702]
[97]
Georgakopoulos, N.D.; Wells, G.; Campanella, M. The pharmacological regulation of cellular mitophagy. Nat. Chem. Biol., 2017, 13(2), 136-146.
[http://dx.doi.org/10.1038/nchembio.2287] [PMID: 28103219]
[98]
Narendra, D.; Tanaka, A.; Suen, D.F.; Youle, R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol., 2008, 183(5), 795-803.
[http://dx.doi.org/10.1083/jcb.200809125] [PMID: 19029340]
[99]
Hytti, M.; Korhonen, E.; Hyttinen, J.M.T.; Roehrich, H.; Kaarniranta, K.; Ferrington, D.A.; Kauppinen, A. Antimycin A-induced mitochondrial damage causes human RPE cell death despite activation of autophagy. Oxid. Med. Cell. Longev., 2019, 2019, 1583656.
[http://dx.doi.org/10.1155/2019/1583656] [PMID: 31007832]
[100]
Li, J.; Qi, W.; Chen, G.; Feng, D.; Liu, J.; Ma, B.; Zhou, C.; Mu, C.; Zhang, W.; Chen, Q.; Zhu, Y. Mitochondrial outer-membrane E3 ligase MUL1 ubiquitinates ULK1 and regulates selenite-induced mitophagy. Autophagy, 2015, 11(8), 1216-1229.
[http://dx.doi.org/10.1080/15548627.2015.1017180] [PMID: 26018823]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy