Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Synthesis and Evaluation of Cytotoxic Activity of Certain Benzo[h]chromene Derivatives

Author(s): Samir M. Awad, Mosaad S. Mohamed, Marwa Abd El-Fattah Khodair and Rania H. Abd El-Hameed*

Volume 21, Issue 8, 2021

Published on: 25 September, 2020

Page: [963 - 986] Pages: 24

DOI: 10.2174/1871520620666200925103742

Price: $65

Abstract

Background: Benzo[h]chromenes attracted great attention because of their widespread biological activities, including anti-proliferate activity, and the discovery of novel effective anti-cancer agents is imperative.

Objective: The main objective was to synthesize new benzo[h]chromene derivatives and some reported derivatives, and then test all of them for their anti-cancer activities.

Methods: The structures of the newly synthesized derivatives were confirmed by elemental and spectral analysis (IR, Mass, 1H-NMR and 13C-NMR). 35 compounds were selected by the National Cancer Institute (NCI) for single-dose testing against 60 cell lines and 3 active compounds were selected for 5-doses testing. Also, these 3 compounds were tested as EGFR-inhibitors; using sorafenib as standard, and as Tubulin polymerization inhibitors using colchicines as a standard drug. Moreover, molecular docking study for the most active derivative on these 2 enzymes was also carried out.

Results: Compounds 1a, 1c and 2b have the highest activities among all 35 tested compounds especially compound 1c.

Conclusion: compound 1c has promising anti-cancer activities compared to the used standards and may need further modification and investigations.

Keywords: Benzo[h]chromene, synthesis, anti-cancer activity, 5-doses testing, EGFR-inhibitors, tubulin polymerization inhibitors.

« Previous
Graphical Abstract

[1]
Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends-An update. Cancer Epidemiol. Biomarkers Prev., 2016, 25(1), 16-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578] [PMID: 26667886]
[2]
Kanavos, P. The rising burden of cancer in the developing world. Annals Oncol, 2006, 17(8), viii15-viii23.
[3]
World health organization website/ Fact sheets/ Detail/ Cancer: https://www.who.int/en/news-room/fact-sheets/detail/cancer
[4]
Azad, I.; Nasibullah, M.; Khan, T.; Hassan, F.; Akhter, Y. Exploring the novel heterocyclic derivatives as lead molecules for design and development of potent anticancer agents. J. Mol. Graph. Model., 2018, 81, 211-228.
[http://dx.doi.org/10.1016/j.jmgm.2018.02.013] [PMID: 29609141]
[5]
Bingi, C.; Emmadi, N.R.; Chennapuram, M.; Poornachandra, Y.; Kumar, C.G.; Nanubolu, J.B.; Atmakur, K. One-pot catalyst free synthesis of novel kojic acid tagged 2-aryl/alkyl substituted-4H-chromenes and evaluation of their antimicrobial and anti-biofilm activities. Bioorg. Med. Chem. Lett., 2015, 25(9), 1915-1919.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.034] [PMID: 25838145]
[6]
Vala, N.D.; Jardosh, H.H.; Patel, M.P. PS-TBD triggered general protocol for the synthesis of 4H-chromene, pyrano[4,3-b]pyran and pyrano[3,2-c]chromene derivatives of 1H-pyrazole and their biological activities. Chin. Chem. Lett., 2016, 27(01), 168-172.
[http://dx.doi.org/10.1016/j.cclet.2015.09.020]
[7]
Singh, G.; Sharma, A.; Kaur, H.; Ishar, M.P. Chromanyl-isoxazolidines as antibacterial agents: Synthesis, biological evaluation, quantitative structure activity relationship, and molecular docking studies. Chem. Biol. Drug Des., 2016, 87(2), 213-223.
[http://dx.doi.org/10.1111/cbdd.12653] [PMID: 26301627]
[8]
Killander, D.; Sterner, O. Synthesis of the bioactive benzochromenes pulchrol and pulchral, metabolites of Bourreria pulchra. Eur. J. Org. Chem., 2014, 2014, 1594-1596.
[http://dx.doi.org/10.1002/ejoc.201301792]
[9]
Afifi, T.H.; Okasha, R.M.; Ahmed, H.E.A.; Ilaš, J.; Saleh, T.; Abd-El-Aziz, A.S. Structure-activity relationships and molecular docking studies of chromene and chromene based azo chromophores: A novel series of potent antimicrobial and anticancer agents. EXCLI J., 2017, 16, 868-902.
[PMID: 28828001]
[10]
Foroumadi, A.; Emami, S.; Sorkhi, M.; Nakhjiri, M.; Nazarian, Z.; Heydari, S.; Ardestani, S.K.; Poorrajab, F.; Shafiee, A. Chromene-based synthetic chalcones as potent antileishmanial agents: Synthesis and biological activity. Chem. Biol. Drug Des., 2010, 75(6), 590-596.
[http://dx.doi.org/10.1111/j.1747-0285.2010.00959.x] [PMID: 20337782]
[11]
Tanaka, J.C.A.; da Silva, C.C.; Ferreira, I.C.P.; Machado, G.M.C.; Leon, L.L.; de Oliveira, A.J.B. Antileishmanial activity of indole alkaloids from Aspidosperma ramiflorum. Phytomedicine, 2007, 14(6), 377-380.
[http://dx.doi.org/10.1016/j.phymed.2006.09.002] [PMID: 17140782]
[12]
Fadda, A.A.; Berghot, M.A.; Amer, F.A.; Badawy, D.S.; Bayoumy, N.M. Synthesis and antioxidant and antitumor activity of novel pyridine, chromene, thiophene and thiazole derivatives. Arch. Pharm. (Weinheim), 2012, 345(5), 378-385.
[http://dx.doi.org/10.1002/ardp.201100335] [PMID: 22189501]
[13]
Jain, N.; Xu, J.; Kanojia, R.M.; Du, F.; Jian-Zhong, G.; Pacia, E.; Lai, M.T.; Musto, A.; Allan, G.; Reuman, M.; Li, X.; Hahn, D.; Cousineau, M.; Peng, S.; Ritchie, D.; Russell, R.; Lundeen, S.; Sui, Z. Identification and structure-activity relationships of chromene-derived selective estrogen receptor modulators for treatment of postmenopausal symptoms. J. Med. Chem., 2009, 52(23), 7544-7569.
[http://dx.doi.org/10.1021/jm900146e] [PMID: 19366247]
[14]
Kasibhatla, S.; Gourdeau, H.; Meerovitch, K.; Drewe, J.; Reddy, S.; Qiu, L.; Zhang, H.; Bergeron, F.; Bouffard, D.; Yang, Q.; Herich, J.; Lamothe, S.; Cai, S.X.; Tseng, B. Discovery and mechanism of action of a novel series of apoptosis inducers with potential vascular targeting activity. Mol. Cancer Ther., 2004, 3(11), 1365-1374.
[PMID: 15542775]
[15]
Jain, N.; Kanojia, R.M.; Xu, J.; Jian-Zhong, G.; Pacia, E.; Lai, M.T.; Du, F.; Musto, A.; Allan, G.; Hahn, D.; Lundeen, S.; Sui, Z. Novel chromene-derived selective estrogen receptor modulators useful for alleviating hot flushes and vaginal dryness. J. Med. Chem., 2006, 49(11), 3056-3059.
[http://dx.doi.org/10.1021/jm060353u] [PMID: 16722623]
[16]
Lee, K.S.; Khil, L.Y.; Chae, S.H.; Kim, D.; Lee, B.H.; Hwang, G.S.; Moon, C.H.; Chang, T.S.; Moon, C.K. Effects of DK-002, a synthesized (6aS,cis)-9,10-Dimethoxy-7,11b-dihydro-indeno[2,1-c]chromene-3,6a-diol, on platelet activity. Life Sci., 2006, 78(10), 1091-1097.
[http://dx.doi.org/10.1016/j.lfs.2005.06.017] [PMID: 16153663]
[17]
Ali, T.E.S.; Ibrahim, M.A. Synthesis and antimicrobial activity of chromone-linked 2-pyridone fused with 1,2,4-triazoles, 1,2,4-triazines and 1,2,4-triazepines ring systems. J. Braz. Chem. Soc., 2010, 21, 1007-1016.
[http://dx.doi.org/10.1590/S0103-50532010000600010]
[18]
Sashidhara, K.V.; Kumar, M.; Modukuri, R.K.; Srivastava, A.; Puri, A. Discovery and synthesis of novel substituted benzocoumarins as orally active lipid modulating agents. Bioorg. Med. Chem. Lett., 2011, 21(22), 6709-6713.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.053] [PMID: 21983443]
[19]
Cai, S.X.; Drewe, J.; Kemnitzer, W. Discovery of 4-aryl-4H-chromenes as potent apoptosis inducers using a cell- and caspase-based Anti-cancer Screening Apoptosis Program (ASAP): SAR studies and the identification of novel vascular disrupting agents. Anticancer. Agents Med. Chem., 2009, 9(4), 437-456.
[http://dx.doi.org/10.2174/1871520610909040437] [PMID: 19442043]
[20]
Kemnitzer, W.; Jiang, S.; Zhang, H.; Kasibhatla, S.; Crogan-Grundy, C.; Blais, C.; Attardo, G.; Denis, R.; Lamothe, S.; Gourdeau, H.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery of 4-aryl-2-oxo-2H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. Bioorg. Med. Chem. Lett., 2008, 18(20), 5571-5575.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.011] [PMID: 18805007]
[21]
Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Crogan-Grundy, C.; Labreque, D.; Bubenick, M.; Attardo, G.; Denis, R.; Lamothe, S.; Gourdeau, H.; Tseng, B.; Kasibhatla, S.; Cai, S.X. Discovery of 4-Aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high throughput screening assay. 4. Structure-activity relationships of N-alkyl substituted pyrrole fused at the 7,8-positions. J. Med. Chem., 2008, 51, 417.
[http://dx.doi.org/10.1021/jm7010657] [PMID: 18197614]
[22]
Doshi, J.M.; Tian, D.; Xing, C. Ethyl-2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H- chromene-3-carboxylate (HA 14-1), a prototype small-molecule antagonist against antiapoptotic Bcl-2 proteins, decomposes to generate reactive oxygen species that induce apoptosis. Mol. Pharm., 2007, 4(6), 919-928.
[http://dx.doi.org/10.1021/mp7000846] [PMID: 17874842]
[23]
Patil, S.A.; Patil, R.; Pfeffer, L.M.; Miller, D.D. Chromenes: Potential new chemotherapeutic agents for cancer. Future Med. Chem., 2013, 5(14), 1647-1660.
[http://dx.doi.org/10.4155/fmc.13.126] [PMID: 24047270]
[24]
Wang, J.L.; Liu, D.; Zhang, Z.J.; Shan, S.; Han, X.; Srinivasula, S.M.; Croce, C.M.; Alnemri, E.S.; Huang, Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7124-7129.
[http://dx.doi.org/10.1073/pnas.97.13.7124] [PMID: 10860979]
[25]
Doshi, J.M.; Tian, D.; Xing, C. Structure-activity relationship studies of ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (HA 14-1), an antagonist for antiapoptotic Bcl-2 proteins to overcome drug resistance in cancer. J. Med. Chem., 2006, 49(26), 7731-7739.
[http://dx.doi.org/10.1021/jm060968r] [PMID: 17181155]
[26]
Patil, S.A.; Wang, J.; Li, X.S.; Chen, J.; Jones, T.S.; Hosni-Ahmed, A.; Patil, R.; Seibel, W.L.; Li, W.; Miller, D.D. New substituted 4H-chromenes as anticancer agents. Bioorg. Med. Chem. Lett., 2012, 22(13), 4458-4461.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.074] [PMID: 22608389]
[27]
Panda, D.; Singh, J.P.; Wilson, L. Suppression of microtubule dynamics by LY290181. A potential mechanism for its antiproliferative action. J. Biol. Chem., 1997, 272(12), 7681-7687.
[http://dx.doi.org/10.1074/jbc.272.12.7681] [PMID: 9065425]
[28]
Wood, D.L.; Panda, D.; Wiernicki, T.R.; Wilson, L.; Jordan, M.A.; Singh, J.P. Inhibition of mitosis and microtubule function through direct tubulin binding by a novel antiproliferative naphthopyran LY290181. Mol. Pharmacol., 1997, 52(3), 437-444.
[http://dx.doi.org/10.1124/mol.52.3.437] [PMID: 9281606]
[29]
Rafinejad, A.; Fallah-Tafti, A.; Tiwari, R.; Shirazi, A.N.; Mandal, S.; Shafiee, A.; Parang, K.; Foroumadi, A.; Akbarzadeh, T. 4-Aryl-4Hnaphthopyrans derivatives: One-pot synthesis, evaluation of Src kinase inhibitory and anti-proliferative activities. Daru, 2012, 20(1), 1-7.
[PMID: 23226110]
[30]
Dell, C.P. Antiproliferative naphthopyrans: biological activity, mechanistic studies and therapeutic potential. Curr. Med. Chem., 1998, 5(3), 179-194.
[PMID: 9562601]
[31]
Kulshrestha, A.; Katara, G.K.; Ibrahim, S.A.; Patil, R.; Patil, S.A.; Beaman, K.D. Microtubule inhibitor, SP-6-27 inhibits angiogenesis and induces apoptosis in ovarian cancer cells. Oncotarget, 2017, 8(40), 67017-67028.
[http://dx.doi.org/10.18632/oncotarget.17549] [PMID: 28978013]
[32]
Abdelatef, S.A.; El-Saadi, M.T.; Amin, N.H.; Abdelazeem, A.H.; Omar, H.A.; Abdellatif, K.R.A. Design, synthesis and anticancer evaluation of novel spirobenzo[h]chromene and spirochromane derivatives with dual EGFR and B-RAF inhibitory activities. Eur. J. Med. Chem., 2018, 150, 567-578.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.001] [PMID: 29549841]
[33]
Fatahala, S.S.; Mohamed, M.S.; Youns, M.; Abd-El Hameed, R.H. Synthesis and evaluation of cytotoxic activity of some pyrroles and fused pyrroles. Anticancer. Agents Med. Chem., 2017, 17(7), 1014-1025.
[http://dx.doi.org/10.2174/1871520617666170102152928] [PMID: 28042776]
[34]
Abd El-Hameed, R.H.; Sayed, A.I. Synthesis of novel pyrrolopyrimidine derivatives as CDK2 inhibitors. Pharmacophore, 2018, 9(5), 29-49.
[35]
Kamdar, N.R.; Haveliwala, D.D.; Mistry, P.T.; Patel, S.K. Synthesis and evaluation of in vitro antitubercular activity and antimicrobial activity of some novel 4H-chromeno[2,3-d] pyrimidine via 2-amino-4-phenyl-4H-chromene-3-carbonitriles. Med. Chem. Res., 2011, 20, 854-864.
[http://dx.doi.org/10.1007/s00044-010-9399-x]
[36]
Kamdar, N.R.; Haveliwala, D.D.; Mistry, P.T.; Patel, S.K. Design, synthesis and in vitro evaluation of antitubercular and antimicrobial activity of some novel pyranopyrimidines. Eur. J. Med. Chem., 2010, 45(11), 5056-5063.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.014] [PMID: 20805011]
[37]
Lin, Z.; Zhang, J.; Gao, Y. An efficient synthesis of tetracyclic pyrano[2,3-d]pyrimidines. J. Heterocycl. Chem., 2017, 54, 596-602.
[http://dx.doi.org/10.1002/jhet.2630]
[38]
Solhy, A.; Elmakssoudi, A.; Tahir, R.; Karkouri, M.; Larzek, M.; Bousmina, M.; Zahouily, M. Clean chemical synthesis of 2-amino-chromenes in water catalyzed by nanostructured diphosphate Na2CaP2O7. Green Chem., 2010, 12, 2261-2267.
[http://dx.doi.org/10.1039/c0gc00387e]
[39]
Evans, B.E.; Rittle, K.E.; Bock, M.G.; DiPardo, R.M.; Freidinger, R.M.; Whitter, W.L.; Lundell, G.F.; Veber, D.F.; Anderson, P.S.; Chang, R.S.L.; Lotti, V.J.; Cerino, D.J.; Chen, T.B.; Kling, P.J.; Kunkel, K.A.; Springer, J.P.; Hirshfield, J. Methods for drug discovery: Development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem., 1988, 31(12), 2235-2246.
[http://dx.doi.org/10.1021/jm00120a002] [PMID: 2848124]
[40]
National cancer institute - Developmental therapeutic program (DTP) website: https://dtp.cancer.gov/
[41]
National Cancer Institute. NCI-60 Screening Methodology / NCI- 60 Human Tumor Cell Lines Screen / Discovery amp Development Services / Developmental Therapeutics Program (DTP), https://dtp.cancer.gov/discovery_development/nci-60/
[42]
Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer, 2006, 6(10), 813-823.
[http://dx.doi.org/10.1038/nrc1951] [PMID: 16990858]
[43]
Boyd, M.R.; Paull, K.D. Some practical considerations and applications of The National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev. Res., 1995, 34(2), 91-109.
[http://dx.doi.org/10.1002/ddr.430340203]
[44]
Kalalbandi, V.K.A.; Seetharamappa, J. 1-[(2E)-3-Phenylprop-2-enoyl]-1H-benz-imidazoles as anticancer agents: Synthesis, crystal structureanalysis and binding studies of the most potent anticancer molecule with serum albumin. MedChemComm, 2015, 6(11), 1942-1953.
[http://dx.doi.org/10.1039/C5MD00293A]
[45]
Bonne, D.; Heuséle, C.; Simon, C.; Pantaloni, D. 4′,6-Diamidino-2-phenylindole, a fluorescent probe for tubulin and microtubules. J. Biol. Chem., 1985, 260(5), 2819-2825.
[PMID: 3972806]
[46]
Hyman, A.A.; Middleton, K.; Centola, M.; Mitchison, T.J.; Carbon, J. Microtubule-motor activity of a yeast centromere-binding protein complex. Nature, 1992, 359(6395), 533-536.
[http://dx.doi.org/10.1038/359533a0] [PMID: 1406970]
[47]
Walker, R.A.; Salmon, E.D.; Endow, S.A. The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature, 1990, 347(6295), 780-782.
[http://dx.doi.org/10.1038/347780a0] [PMID: 2146510]
[48]
Amos, L.; Klug, A. Arrangement of subunits in flagellar microtubules. J. Cell Sci., 1974, 14(3), 523-549.
[PMID: 4830832]
[49]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[50]
Grant, S.K. Therapeutic protein kinase inhibitors. Cell. Mol. Life Sci., 2009, 66(7), 1163-1177.
[http://dx.doi.org/10.1007/s00018-008-8539-7] [PMID: 19011754]
[51]
Molecular Operating Environment (MOE) Chemical Computing Group Available online: http://www. chemcomp.com (Accessed on: 30 February 2013)
[52]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[53]
Mohamed, M.S.; El-Domany, R.A.; Abd El-Hameed, R.H. Synthesis of certain pyrrole derivatives as antimicrobial agents. Acta Pharm., 2009, 59(2), 145-158.
[http://dx.doi.org/10.2478/v10007-009-0016-9] [PMID: 19564140]
[54]
Mohamed, M.S.; Awad, S.M.; Sayed, A.I. Synthesis of certain pyrimidine derivatives as antimicrobial agents and anti-inflammatory agents. Molecules, 2010, 15(3), 1882-1890.
[http://dx.doi.org/10.3390/molecules15031882] [PMID: 20336018]
[55]
Mohamed, M.S. Abd El-Hameed, R.H.; Sayed, A.I.; Soror S.H. Novel antiviral compounds against gastroenteric viral infections. Arch. Pharm. Chem. Life Sci., 2015, 348, 1-12.
[http://dx.doi.org/10.1002/ardp.201400387]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy