[1]
Wang, Y.; Wang, Y.; Wang, J.; Lei, W.; Li, K.; Wu, D.; Wang, X. Pharmacokinetics, biodistribution, and bioavailability of gossypol-loaded Pluronic® F127 nanoparticles. J. Drug Deliv. Sci. Technol., 2018, 45, 388-396.
[7]
Yaghi, O.M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal-organic framework. Nature, 1995, 378, 703-706.
[8]
Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yagh, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402, 276-279.
[9]
Esrafili, L.; Tehrani, A.A.; Morsali, A.; Carlucci, L.; Proserpio, D.M. Ultrasound and solvothermal synthesis of a new urea-based metal-organic framework as a precursor for fabrication of cadmium(ii) oxide nanostructures. Inorg. Chim. Acta, 2019, 484, 386-393.
[11]
Sun, W.; Zhai, X.; Zhao, L. Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions. Chem. Eng. J., 2016, 289, 59-64.
[12]
Vakili, R.; Xu, S.; Al-Janabi, N.; Gorgojo, P.; Holmes, S.M.; Fan, X. Microwave-assisted synthesis of zirconium-based Metal Organic Frameworks (MOFs): optimization and gas adsorption. Microporous Mesoporous Mater., 2018, 260, 45-53.
[13]
Lin, R-G.; Lin, R-B.; Chen, B. A Microporous metal-organic framework for selective C2H2 and CO2 separation. J. Solid State Chem., 2017, 252, 138-141.
[14]
Zhao, Y.; Wang, L.; Fan, N.; Han, M.; Yang, G.; Ma, L. Porous Zn(II)-based metal-organic frameworks decorated with carboxylate groups exhibiting high gas adsorption and separation of organic dyes. Cryst. Growth Des., 2018, 18, 7114-7121.
[15]
Lv, S-W.; Liu, J.; Li, C.; Zhao, N.; Wang, Z.; Wang, S. A novel and universal metal-organic frameworks sensing platform for selective detection and efficient removal of heavy metal ions. Chem. Eng. J., 2019, 375, 122111.
[19]
Cai, X.; Xie, Z.; Li, D.; Kassymova, M.; Zang, S.Q.; Jiang, H.L. Nano-sized metal-organic frameworks: synthesis and applications. Coord. Chem. Rev., 2020, 417, 213366.
[21]
Ma, X.; Li, L.; Chen, R.; Wang, C.; Li, H.; Wang, S. Heteroatom- doped nanoporous carbon derived from MOF-5 for CO2 capture. Appl. Surf. Sci., 2018, 435, 494-502.
[22]
Xu, J.; Liu, J.; Li, Z.; Wang, X.; Xu, Y.; Chen, S.; Wang, Z. Optimized synthesis of Zr(iv) metal organic frameworks (MOFs-808) for efficient hydrogen storage. New J. Chem., 2019, 43, 4092-4099.
[24]
Li, Y.; Zheng, Y.; Lai, X.; Chu, Y.; Chen, Y. Biocompatible surface modification of nano-scale zeolitic imidazolate frameworks for enhanced drug delivery. RSC Adv., 2018, 8, 23623-23628.
[31]
Giles-Mazón, E.A.; Germán-Ramos, I.; Romero-Romero, F.; Reinheimer, E.; Toscano, R.A.; Lopez, N.; Barrera-Díaz, C.E.; Varela-Guerrero, V.; Ballesteros-Rivas, M.F. Synthesis and characterization of a bio-mof based on mixed adeninate/tricarboxylate ligands and zinc ions. Inorg. Chim. Acta, 2018, 469, 306-311.
[39]
Chen, Q.; Chen, Q.; Zhuang, C.; Tang, P.; Lin, N.; Wei, L. Controlled release of drug molecules in metal-organic framework material HKUST-1. Inorg. Chem. Commun., 2017, 79, 78-81.
[47]
Shu, F.; Lv, D.; Song, X.; Huang, B.; Wang, C.; Yu, Y.; Zhao, S. Fabrication of a hyaluronic acid conjugated metal organic framework for targeted drug delivery and magnetic resonance imaging. RSC Adv., 2018, 8, 6581-6589.
[49]
Lin, W.; Hu, Q.; Jiang, K.; Yang, Y.; Yang, Y.; Cui, Y.; Qian, G. A porphyrin-based metal-organic framework as a pH-responsive drug carrier. J. Solid State Chem., 2016, 237, 307-312.
[50]
Jurgons, R.; Seliger, C.; Hilpert, A.; Trahms, L.; Odenbach, S.; Alexiou, C. Drug loaded magnetic nanoparticles for cancer therapy. J. Phys. Condens. Matter, 2006, 18, S2893-S2902.
[51]
Hergt, R.; Dutz, S.; Müller, R.; Zeisberger, M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys. Condens. Matter, 2006, 18, S2919-S2934.
[55]
Freeman, M.W.; Arrott, A.; Watson, J.H.L. Magnetism in medicine. Ir. Med. J., 1960, 31, S404-S405.
[56]
Zhang, T.; Zhan, X.; Yan, X.; Kong, L.; Zhang, G.; Liu, H.; Qiu, J.; Yeung, K.L. Synthesis of Fe3O4@ZIF-8 magnetic core-shell microspheres and their potential application in a capillary microreactor. Chem. Eng. J., 2013, 228, 398-404.
[57]
Arruebo, M.; Fernández-Pacheco, R.; Ibarra, M.R.; Santamaría, J. Magnetic nanoparticles for drug delivery. Nano Today, 2007, 2, 22-32.
[58]
Ke, F.; Yuan, Y.; Qiu, L.; Shen, Y.; Xie, A.; Zhu, J.; Tian, X.; Zhang, L. Facile fabrication of magnetic metal-organic framework nanocomposites for potential targeted drug delivery. J. Mater. Chem., 2011, 21, 3843-3848.
[68]
Zheng, X.; Wang, L.; Pei, Q.; He, S.; Liu, S.; Xie, Z. Metal-organic frameworks@porous organic polymers nanocomposite for photodynamic therapy. Chem. Mater., 2017, 29, 2374-2381.
[71]
Nazari, M.; Rubio-Martinez, M.; Tobias, G.; Barrio, J.P.; Babarao, R.; Nazari, F.; Konstas, K.; Muir, B.W.; Collins, S.F.; Hill, A.J.; Duke, M.C.; Hill, M.R. Metal-organic-framework-coated optical fibers as light-triggered drug delivery vehicles. Adv. Funct. Mater., 2016, 26, 3244-3249.
[73]
Hori, S.S.; Tummers, W.S.; Gambhir, S.S. Cancer diagnostics: On-target probes for early detection Nat. Biomed. Eng, 2017, 1, e0062.
[74]
Zheng, X.; Mao, H.; Huo, D.; Wu, W.; Liu, B.; Jiang, X. Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia. Nat. Biomed. Eng., 2017, 1, 1-9.
[78]
Gellci, K.; Mehrmohammadi, M. Photothermal therapy Encycl. Cancer, 2014, 3566-3570.
[90]
Karimi, M.; Zangabad, P.S.; Ghasemi, A.; Amiri, M.; Bahrami, M.; Malekzad, H.; Asl, H.G.; Mahdieh, Z.; Bozorgomid, M.; Ghasemi, A.; Boyuk, M.R.R.T.; Hamblin, M.R. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances ACS Appl. Mater. Interfaces, 2016, 8, 21107-21133.
[93]
Kujawa, P.; Segui, F.; Shaban, S.; Diab, C.; Okada, Y.; Tanaka, F.; Winnik, F.M. Impact of end-group association and main-chain hydration on the thermosensitive properties of hydrophobically modified telechelic poly(N-isopropylacrylamides) in water. Macromolecules, 2006, 39, 341-348.
[94]
Wang, X.; Qiu, X.; Wu, C. Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly(n-isopropylacrylamide) homopolymer chain in water. Macromolecules, 1998, 31, 2972-2976.
[95]
Xia, Y.; Burke, N.A.D.; Stöver, H.D.H. End group effect on the thermal response of narrow-dispersepoly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules, 2006, 39, 2275-2283.
[101]
Liu, F.; Kozlovskaya, V.; Medipelli, S.; Xue, B.; Ahmad, F.; Saeed, M.; Cropek, D.; Kharlampieva, E. Temperature-sensitive polymersomes for controlled delivery of anticancer drugs. Chem. Mater., 2015, 27, 7945-7956.
[102]
Lin, W.; Hu, Q.; Jiang, K.; Cui, Y.; Yang, Y.; Qian, G. A porous Zn-based metal-organic framework for pH and temperature dual-responsive controlled drug release. Microporous Mesoporous Mater., 2017, 249, 55-60.
[105]
Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J.D.; Doonan, C.J. Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev., 2016, 307, 237-254.