Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

General Review Article

Progress of Stimuli-Responsive Nanoscale Metal Organic Frameworks as Controlled Drug Delivery Systems

Author(s): Ailing Feng*, Yanni Wang, Jinzi Ding, Rong Xu and Xiaodong Li

Volume 18, Issue 3, 2021

Published on: 17 September, 2020

Page: [297 - 311] Pages: 15

DOI: 10.2174/1567201817666200917120201

Price: $65

Abstract

Background: Development of controlled drug delivery systems can improve the pharmacokinetic characteristics of drug molecules in the human body, thereby significantly improving the utilization rate of drugs and reducing toxicity and side effects caused by their high concentrations, which can occur when delivery is not controlled. Metal organic frameworks are a new class of very promising crystalline microporous materials, especially when the size is reduced to the nanometer range. Metal-organic frameworks exhibit large specific surface areas, tunable compositions, and easy functionalization. In recent years, an increasing number of studies have reported the remarkable advances in multifunctional nanoscale metal-organic frameworks in drug delivery.

Objective: To review the latest research involving advances in stimuli-responsive nanoscale metal organic frameworks as drug delivery systems in controlled-release drugs.

Discussion: We first introduce the two main strategies associated with nanoscale metal organic frameworks used in drug loading: direct assembly and post-encapsulation. We next focus on the latest discoveries of nanoscale metal-organic framework-based stimulus response systems for drug delivery, including pH, magnetics, light, ion, temperature, and other stimuli, as well as multiple stimulus- responsive drug delivery systems. Finally, we discuss the challenges and future developmental directions of nanoscale metal-organic framework-based controlled drug release.

Keywords: Drug Delivery System (DDS), stimuli-responsive, Nanoscale Metal Organic Framework (NMOF), encapsulation strategy, controlled-release drug, active pharmaceutical ingredient.

Graphical Abstract

[1]
Wang, Y.; Wang, Y.; Wang, J.; Lei, W.; Li, K.; Wu, D.; Wang, X. Pharmacokinetics, biodistribution, and bioavailability of gossypol-loaded Pluronic® F127 nanoparticles. J. Drug Deliv. Sci. Technol., 2018, 45, 388-396.
[2]
Stohs, S.J.; Ji, J.; Bucci, L.R.; Preuss, H.G. A comparative pharmacokinetic assessment of a novel highly bioavailable curcumin formulation with 95% curcumin: a randomized, double-blind, crossover study. J. Am. Coll. Nutr., 2018, 37(1), 51-59.
[PMID: 29043927]
[3]
Xu, P.; Zuo, H.; Chen, B.; Wang, R.; Ahmed, A.; Hu, Y.; Ouyang, J. Doxorubicin-loaded platelets as a smart drug delivery system: an improved therapy for lymphoma. Sci. Rep., 2017, 7, 42632.
[PMID: 28198453]
[4]
Wei, Y.; Zhou, F.; Zhang, D.; Chen, Q.; Xing, D. A graphene oxide based smart drug delivery system for tumor mitochondria- targeting photodynamic therapy. Nanoscale, 2016, 8(6), 3530-3538.
[PMID: 26799192]
[5]
Qu, J.; Zhao, X.; Ma, P.X.; Guo, B. Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized “smart” drug release. Acta Biomater., 2018, 72, 55-69.
[PMID: 29555459]
[6]
Zhang, G.; Li, X.; Liao, Q.; Liu, Y.; Xi, K.; Huang, W.; Jia, X. Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery. Nat. Commun., 2018, 9(1), 2785.
[PMID: 30018290]
[7]
Yaghi, O.M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal-organic framework. Nature, 1995, 378, 703-706.
[8]
Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yagh, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402, 276-279.
[9]
Esrafili, L.; Tehrani, A.A.; Morsali, A.; Carlucci, L.; Proserpio, D.M. Ultrasound and solvothermal synthesis of a new urea-based metal-organic framework as a precursor for fabrication of cadmium(ii) oxide nanostructures. Inorg. Chim. Acta, 2019, 484, 386-393.
[10]
Hu, Z.; Nalaparaju, A.; Peng, Y.; Jiang, J.; Zhao, D. Modulated hydrothermal synthesis of UiO-66 (hf)-type metal-organic frameworks for optimal carbon dioxide separation. Inorg. Chem., 2016, 55(3), 1134-1141.
[PMID: 26751503]
[11]
Sun, W.; Zhai, X.; Zhao, L. Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions. Chem. Eng. J., 2016, 289, 59-64.
[12]
Vakili, R.; Xu, S.; Al-Janabi, N.; Gorgojo, P.; Holmes, S.M.; Fan, X. Microwave-assisted synthesis of zirconium-based Metal Organic Frameworks (MOFs): optimization and gas adsorption. Microporous Mesoporous Mater., 2018, 260, 45-53.
[13]
Lin, R-G.; Lin, R-B.; Chen, B. A Microporous metal-organic framework for selective C2H2 and CO2 separation. J. Solid State Chem., 2017, 252, 138-141.
[14]
Zhao, Y.; Wang, L.; Fan, N.; Han, M.; Yang, G.; Ma, L. Porous Zn(II)-based metal-organic frameworks decorated with carboxylate groups exhibiting high gas adsorption and separation of organic dyes. Cryst. Growth Des., 2018, 18, 7114-7121.
[15]
Lv, S-W.; Liu, J.; Li, C.; Zhao, N.; Wang, Z.; Wang, S. A novel and universal metal-organic frameworks sensing platform for selective detection and efficient removal of heavy metal ions. Chem. Eng. J., 2019, 375, 122111.
[16]
Yan, W.; Zhang, C.; Chen, S.; Han, L.; Zheng, H. Two Lanthanide Metal-Organic Frameworks as Remarkably Selective and Sensitive Bifunctional Luminescence Sensor for Metal Ions and Small Organic Molecules. ACS Appl. Mater. Interfaces, 2017, 9(2), 1629-1634.
[PMID: 28001348]
[17]
Xia, Q.; Li, Z.; Tan, C.; Liu, Y.; Gong, W.; Cui, Y. Multivariate metal-organic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions. J. Am. Chem. Soc., 2017, 139(24), 8259-8266.
[PMID: 28537723]
[18]
Yang, Q.; Liu, W.; Wang, B.; Zhang, W.; Zeng, X.; Zhang, C.; Qin, Y.; Sun, X.; Wu, T.; Liu, J.; Huo, F.; Lu, J. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nat. Commun., 2017, 8, 14429.
[PMID: 28195131]
[19]
Cai, X.; Xie, Z.; Li, D.; Kassymova, M.; Zang, S.Q.; Jiang, H.L. Nano-sized metal-organic frameworks: synthesis and applications. Coord. Chem. Rev., 2020, 417, 213366.
[20]
Carrillo-Carrión, C. Nanoscale metal-organic frameworks as key players in the context of drug delivery: evolution toward theranostic platforms. Anal. Bioanal. Chem., 2020, 412(1), 37-54.
[PMID: 31734711]
[21]
Ma, X.; Li, L.; Chen, R.; Wang, C.; Li, H.; Wang, S. Heteroatom- doped nanoporous carbon derived from MOF-5 for CO2 capture. Appl. Surf. Sci., 2018, 435, 494-502.
[22]
Xu, J.; Liu, J.; Li, Z.; Wang, X.; Xu, Y.; Chen, S.; Wang, Z. Optimized synthesis of Zr(iv) metal organic frameworks (MOFs-808) for efficient hydrogen storage. New J. Chem., 2019, 43, 4092-4099.
[23]
Dalapati, R.; Kökçam-Demir, Ü.; Janiak, C.; Biswas, S. The effect of functional groups in the aqueous-phase selective sensing of Fe(iii) ions by thienothiophene-based zirconium metal-organic frameworks and the design of molecular logic gates. Dalton Trans., 2018, 47(4), 1159-1170.
[PMID: 29292426]
[24]
Li, Y.; Zheng, Y.; Lai, X.; Chu, Y.; Chen, Y. Biocompatible surface modification of nano-scale zeolitic imidazolate frameworks for enhanced drug delivery. RSC Adv., 2018, 8, 23623-23628.
[25]
Wu, Q.; Niu, M.; Chen, X.; Tan, L.; Fu, C.; Ren, X.; Ren, J.; Li, L.; Xu, K.; Zhong, H.; Meng, X. Biocompatible and biodegradable zeolitic imidazolate framework/polydopamine nanocarriers for dual stimulus triggered tumor thermo-chemotherapy. Biomaterials, 2018, 162, 132-143.
[PMID: 29448141]
[26]
Della Rocca, J.; Liu, D.; Lin, W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res., 2011, 44(10), 957-968.
[PMID: 21648429]
[27]
Miller, S.R.; Heurtaux, D.; Baati, T.; Horcajada, P.; Grenèche, J.M.; Serre, C. Biodegradable therapeutic MOFs for the delivery of bioactive molecules. Chem. Commun. (Camb.), 2010, 46(25), 4526-4528.
[PMID: 20467672]
[28]
Duan, Y.; Ye, F.; Huang, Y.; Qin, Y.; He, C.; Zhao, S. One-pot synthesis of a metal-organic framework-based drug carrier for intelligent glucose-responsive insulin delivery. Chem. Commun. (Camb.), 2018, 54(42), 5377-5380.
[PMID: 29745409]
[29]
Su, H.; Sun, F.; Jia, J.; He, H.; Wang, A.; Zhu, G. A highly porous medical metal-organic framework constructed from bioactive curcumin. Chem. Commun. (Camb.), 2015, 51(26), 5774-5777.
[PMID: 25722997]
[30]
Lyu, F.; Zhang, Y.; Zare, R.N.; Ge, J.; Liu, Z. One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities. Nano Lett., 2014, 14(10), 5761-5765.
[PMID: 25211437]
[31]
Giles-Mazón, E.A.; Germán-Ramos, I.; Romero-Romero, F.; Reinheimer, E.; Toscano, R.A.; Lopez, N.; Barrera-Díaz, C.E.; Varela-Guerrero, V.; Ballesteros-Rivas, M.F. Synthesis and characterization of a bio-mof based on mixed adeninate/tricarboxylate ligands and zinc ions. Inorg. Chim. Acta, 2018, 469, 306-311.
[32]
Zhang, J.H.; Nong, R.Y.; Xie, S.M.; Wang, B.J.; Ai, P.; Yuan, L.M. Homochiral metal-organic frameworks based on amino acid ligands for HPLC separation of enantiomers. Electrophoresis, 2017, 38(19), 2513-2520.
[PMID: 28678407]
[33]
Katsoulidis, A.P.; Park, K.S.; Antypov, D.; Martí-Gastaldo, C.; Miller, G.J.; Warren, J.E.; Robertson, C.M.; Blanc, F.; Darling, G.R.; Berry, N.G.; Purton, J.A.; Adams, D.J.; Rosseinsky, M.J. Guest-adaptable and water-stable peptide-based porous materials by imidazolate side chain control. Angew. Chem. Int. Ed. Engl., 2014, 53(1), 193-198.
[PMID: 24302659]
[34]
Imaz, I.; Rubio-Martínez, M.; An, J.; Solé-Font, I.; Rosi, N.L.; Maspoch, D. Metal-Biomolecule Frameworks (MBioFs). Chem. Commun. (Camb.), 2011, 47(26), 7287-7302.
[PMID: 21503346]
[35]
Rieter, W.J.; Pott, K.M.; Taylor, K.M.; Lin, W. Nanoscale coordination polymers for platinum-based anticancer drug delivery. J. Am. Chem. Soc., 2008, 130(35), 11584-11585.
[PMID: 18686947]
[36]
Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. Engl., 2006, 45(36), 5974-5978.
[PMID: 16897793]
[37]
Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; Ragon, F.; Serre, C.; Blanco-Prieto, M.J.; Horcajada, P. Cytotoxicity of nanoscaled metal-organic frameworks. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(3), 262-271.
[PMID: 32261505]
[38]
Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.S.; Hwang, Y.K.; Marsaud, V.; Bories, P.N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater., 2010, 9(2), 172-178.
[PMID: 20010827]
[39]
Chen, Q.; Chen, Q.; Zhuang, C.; Tang, P.; Lin, N.; Wei, L. Controlled release of drug molecules in metal-organic framework material HKUST-1. Inorg. Chem. Commun., 2017, 79, 78-81.
[40]
He, C.; Lu, K.; Liu, D.; Lin, W. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc., 2014, 136(14), 5181-5184.
[PMID: 24669930]
[41]
Cherkasov, V.R.; Mochalova, E.N.; Babenyshev, A.V.; Rozenberg, J.M.; Sokolov, I.L.; Nikitin, M.P. Antibody-directed metal-organic framework nanoparticles for targeted drug delivery. Acta Biomater., 2020, 103, 223-236.
[PMID: 31843718]
[42]
Engin, K.; Leeper, D.B.; Cater, J.R.; Thistlethwaite, A.J.; Tupchong, L.; McFarlane, J.D. Extracellular pH distribution in human tumours. Int. J. Hyperthermia, 1995, 11(2), 211-216.
[PMID: 7790735]
[43]
Jung, J.; Lee, I.H.; Lee, E.; Park, J.; Jon, S. pH-sensitive polymer nanospheres for use as a potential drug delivery vehicle. Biomacromolecules, 2007, 8(11), 3401-3407.
[PMID: 17939711]
[44]
Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA, 2006, 103(27), 10186-10191.
[PMID: 16798880]
[45]
Sun, C.Y.; Qin, C.; Wang, X.L.; Yang, G.S.; Shao, K.Z.; Lan, Y.Q.; Su, Z.M.; Huang, P.; Wang, C.G.; Wang, E.B. Zeolitic Imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans., 2012, 41(23), 6906-6909.
[PMID: 22580798]
[46]
Bian, R.; Wang, T.; Zhang, L.; Li, L.; Wang, C. A combination of tri-modal cancer imaging and in vivo drug delivery by metal-organic framework based composite nanoparticles. Biomater. Sci., 2015, 3(9), 1270-1278.
[PMID: 26236784]
[47]
Shu, F.; Lv, D.; Song, X.; Huang, B.; Wang, C.; Yu, Y.; Zhao, S. Fabrication of a hyaluronic acid conjugated metal organic framework for targeted drug delivery and magnetic resonance imaging. RSC Adv., 2018, 8, 6581-6589.
[48]
Wang, X.G.; Dong, Z.Y.; Cheng, H.; Wan, S.S.; Chen, W.H.; Zou, M.Z.; Huo, J.W.; Deng, H.X.; Zhang, X.Z. A multifunctional metal-organic framework based tumor targeting drug delivery system for cancer therapy. Nanoscale, 2015, 7(38), 16061-16070.
[PMID: 26372069]
[49]
Lin, W.; Hu, Q.; Jiang, K.; Yang, Y.; Yang, Y.; Cui, Y.; Qian, G. A porphyrin-based metal-organic framework as a pH-responsive drug carrier. J. Solid State Chem., 2016, 237, 307-312.
[50]
Jurgons, R.; Seliger, C.; Hilpert, A.; Trahms, L.; Odenbach, S.; Alexiou, C. Drug loaded magnetic nanoparticles for cancer therapy. J. Phys. Condens. Matter, 2006, 18, S2893-S2902.
[51]
Hergt, R.; Dutz, S.; Müller, R.; Zeisberger, M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys. Condens. Matter, 2006, 18, S2919-S2934.
[52]
Lee, N.; Hyeon, T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem. Soc. Rev., 2012, 41(7), 2575-2589.
[PMID: 22138852]
[53]
Kumar, C.S.S.R.; Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev., 2011, 63(9), 789-808.
[PMID: 21447363]
[54]
Schejn, A.; Mazet, T.; Falk, V.; Balan, L.; Aranda, L.; Medjahdi, G.; Schneider, R. Fe3O4@ZIF-8: magnetically recoverable catalysts by loading Fe3O4 nanoparticles inside a zinc imidazolate framework. Dalton Trans., 2015, 44(22), 10136-10140.
[PMID: 25955275]
[55]
Freeman, M.W.; Arrott, A.; Watson, J.H.L. Magnetism in medicine. Ir. Med. J., 1960, 31, S404-S405.
[56]
Zhang, T.; Zhan, X.; Yan, X.; Kong, L.; Zhang, G.; Liu, H.; Qiu, J.; Yeung, K.L. Synthesis of Fe3O4@ZIF-8 magnetic core-shell microspheres and their potential application in a capillary microreactor. Chem. Eng. J., 2013, 228, 398-404.
[57]
Arruebo, M.; Fernández-Pacheco, R.; Ibarra, M.R.; Santamaría, J. Magnetic nanoparticles for drug delivery. Nano Today, 2007, 2, 22-32.
[58]
Ke, F.; Yuan, Y.; Qiu, L.; Shen, Y.; Xie, A.; Zhu, J.; Tian, X.; Zhang, L. Facile fabrication of magnetic metal-organic framework nanocomposites for potential targeted drug delivery. J. Mater. Chem., 2011, 21, 3843-3848.
[59]
Wu, Y.N.; Zhou, M.; Li, S.; Li, Z.; Li, J.; Wu, B.; Li, G.; Li, F.; Guan, X. Magnetic metal-organic frameworks: γ-Fe2O3@MOFs via confined in situ pyrolysis method for drug delivery. Small, 2014, 10(14), 2927-2936.
[PMID: 24644065]
[60]
Ray Chowdhuri, A.; Bhattacharya, D.; Sahu, S.K. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans., 2016, 45(7), 2963-2973.
[PMID: 26754449]
[61]
Zhao, H.X.; Zou, Q.; Sun, S.K.; Yu, C.; Zhang, X.; Li, R.J.; Fu, Y.Y. Theranostic metal-organic framework core-shell composites for magnetic resonance imaging and drug delivery. Chem. Sci. (Camb.), 2016, 7(8), 5294-5301.
[PMID: 30155180]
[62]
Falcaro, P.; Buso, D.; Hill, A.J.; Doherty, C.M. Patterning techniques for metal organic frameworks. Adv. Mater., 2012, 24(24), 3153-3168.
[PMID: 22641395]
[63]
Mejías, R.; Gutiérrez, L.; Salas, G.; Pérez-Yagüe, S.; Zotes, T.M.; Lázaro, F.J.; Morales, M.P.; Barber, D.F. Long term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications. J. Control. Release, 2013, 171(2), 225-233.
[PMID: 23906866]
[64]
Grzybowski, A.; Sak, J.; Pawlikowski, J. A brief report on the history of phototherapy. Clin. Dermatol., 2016, 34(5), 532-537.
[PMID: 27638430]
[65]
Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3(5), 380-387.
[PMID: 12724736]
[66]
Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev., 2014, 114(21), 10869-10939.
[PMID: 25260098]
[67]
Tang, R.; Habimana-Griffin, L.M.; Lane, D.D.; Egbulefu, C.; Achilefu, S. Nanophotosensitive drugs for light-based cancer therapy: what does the future hold? Nanomedicine (Lond.), 2017, 12(10), 1101-1105.
[PMID: 28447872]
[68]
Zheng, X.; Wang, L.; Pei, Q.; He, S.; Liu, S.; Xie, Z. Metal-organic frameworks@porous organic polymers nanocomposite for photodynamic therapy. Chem. Mater., 2017, 29, 2374-2381.
[69]
Lu, K.; He, C.; Lin, W. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc., 2014, 136(48), 16712-16715.
[PMID: 25407895]
[70]
Yang, Y.; Zhu, W.; Dong, Z.; Chao, Y.; Xu, L.; Chen, M.; Liu, Z. 1D coordination polymer nanofibers for low-temperature photothermal therapy. Adv. Mater., 2017, 29(40), 1703588.
[PMID: 28833643]
[71]
Nazari, M.; Rubio-Martinez, M.; Tobias, G.; Barrio, J.P.; Babarao, R.; Nazari, F.; Konstas, K.; Muir, B.W.; Collins, S.F.; Hill, A.J.; Duke, M.C.; Hill, M.R. Metal-organic-framework-coated optical fibers as light-triggered drug delivery vehicles. Adv. Funct. Mater., 2016, 26, 3244-3249.
[72]
Lu, K.; He, C.; Lin, W. A chlorin-based nanoscale metal-organic framework for photodynamic therapy of colon cancers. J. Am. Chem. Soc., 2015, 137(24), 7600-7603.
[PMID: 26068094]
[73]
Hori, S.S.; Tummers, W.S.; Gambhir, S.S. Cancer diagnostics: On-target probes for early detection Nat. Biomed. Eng, 2017, 1, e0062.
[74]
Zheng, X.; Mao, H.; Huo, D.; Wu, W.; Liu, B.; Jiang, X. Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia. Nat. Biomed. Eng., 2017, 1, 1-9.
[75]
Li, T.; Sullivan, J.E.; Rosi, N.L. Design and preparation of a core-shell metal-organic framework for selective CO2 capture. J. Am. Chem. Soc., 2013, 135(27), 9984-9987.
[PMID: 23795996]
[76]
Li, X.; Yu, S.; Lee, D.; Kim, G.; Lee, B.; Cho, Y.; Zheng, B.Y.; Ke, M.R.; Huang, J.D.; Nam, K.T.; Chen, X.; Yoon, J. Facile supramolecular approach to nucleic-acid-driven activatable nanotheranostics that overcome drawbacks of photodynamic therapy. ACS Nano, 2018, 12(1), 681-688.
[PMID: 29232105]
[77]
Gao, S.; Zheng, P.; Li, Z.; Feng, X.; Yan, W.; Chen, S.; Guo, W.; Liu, D.; Yang, X.; Wang, S.; Liang, X-J.; Zhang, J. Biomimetic O2-Evolving metal-organic framework nanoplatform for highly efficient photodynamic therapy against hypoxic tumor. Biomaterials, 2018, 178, 83-94.
[PMID: 29913389]
[78]
Gellci, K.; Mehrmohammadi, M. Photothermal therapy Encycl. Cancer, 2014, 3566-3570.
[79]
Sheng, J.; Wang, L.; Han, Y.; Chen, W.; Liu, H.; Zhang, M.; Deng, L.; Liu, Y.N. Dual roles of protein as a template and a sulfur provider: a general approach to metal sulfides for efficient photothermal therapy of cancer. Small, 2018, 14(1), 1702529.
[PMID: 29148623]
[80]
Zhang, K.; Yu, Z.; Meng, X.; Zhao, W.; Shi, Z.; Yang, Z.; Dong, H.; Zhang, X. A bacteriochlorin-based metal-organic framework nanosheet superoxide radical generator for photoacoustic imaging-guided highly efficient photodynamic therapy. Adv. Sci. (Weinh.), 2019, 6(14), 1900530.
[PMID: 31380214]
[81]
Yang, D.; Yang, G.; Gai, S.; He, F.; An, G.; Dai, Y.; Lv, R.; Yang, P. Au25 cluster functionalized metal-organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light. Nanoscale, 2015, 7(46), 19568-19578.
[PMID: 26540558]
[82]
Jiang, W.; Zhang, H.; Wu, J.; Zhai, G.; Li, Z.; Luan, Y.; Garg, S. CuS@MOF-based well-designed quercetin delivery system for chemo-photothermal therapy. ACS Appl. Mater. Interfaces, 2018, 10(40), 34513-34523.
[PMID: 30215253]
[83]
Mutruc, D.; Goulet-Hanssens, A.; Fairman, S.; Wahl, S.; Zimathies, A.; Knie, C.; Hecht, S. Modulating guest uptake in core-shell MOFs with visible light. Angew. Chem. Int. Ed. Engl., 2019, 58(37), 12862-12867.
[PMID: 31183909]
[84]
Juliano, R.L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res., 2016, 44(14), 6518-6548.
[PMID: 27084936]
[85]
Dowdy, S.F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol., 2017, 35(3), 222-229.
[PMID: 28244992]
[86]
Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev., 2003, 55(3), 329-347.
[PMID: 12628320]
[87]
Koch-Weser, J.; Klein, S.W. Procainamide dosage schedules, plasma concentrations, and clinical effects. JAMA, 1971, 215(9), 1454-1460.
[PMID: 5107621]
[88]
An, J.; Geib, S.J.; Rosi, N.L. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. J. Am. Chem. Soc., 2009, 131(24), 8376-8377.
[PMID: 19489551]
[89]
Hu, Q.; Yu, J.; Liu, M.; Liu, A.; Dou, Z.; Yang, Y. A low cytotoxic cationic metal-organic framework carrier for controllable drug release. J. Med. Chem., 2014, 57(13), 5679-5685.
[PMID: 24922463]
[90]
Karimi, M.; Zangabad, P.S.; Ghasemi, A.; Amiri, M.; Bahrami, M.; Malekzad, H.; Asl, H.G.; Mahdieh, Z.; Bozorgomid, M.; Ghasemi, A.; Boyuk, M.R.R.T.; Hamblin, M.R. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances ACS Appl. Mater. Interfaces, 2016, 8, 21107-21133.
[91]
Roy, D.; Brooks, W.L.A.; Sumerlin, B.S. New directions in thermoresponsive polymers. Chem. Soc. Rev., 2013, 42(17), 7214-7243.
[PMID: 23450220]
[92]
Nagata, S.; Kokado, K.; Sada, K. Metal-organic framework tethering PNIPAM for ON-OFF controlled release in solution. Chem. Commun. (Camb.), 2015, 51(41), 8614-8617.
[PMID: 25896867]
[93]
Kujawa, P.; Segui, F.; Shaban, S.; Diab, C.; Okada, Y.; Tanaka, F.; Winnik, F.M. Impact of end-group association and main-chain hydration on the thermosensitive properties of hydrophobically modified telechelic poly(N-isopropylacrylamides) in water. Macromolecules, 2006, 39, 341-348.
[94]
Wang, X.; Qiu, X.; Wu, C. Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly(n-isopropylacrylamide) homopolymer chain in water. Macromolecules, 1998, 31, 2972-2976.
[95]
Xia, Y.; Burke, N.A.D.; Stöver, H.D.H. End group effect on the thermal response of narrow-dispersepoly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules, 2006, 39, 2275-2283.
[96]
Lin, W.; Hu, Q.; Yu, J.; Jiang, K.; Yang, Y.; Xiang, S.; Cui, Y.; Yang, Y.; Wang, Z.; Qian, G. Low cytotoxic metal-organic frameworks as temperature-responsive drug carriers. ChemPlusChem, 2016, 81(8), 804-810.
[PMID: 31968821]
[97]
Jiang, K.; Zhang, L.; Hu, Q.; Zhang, Q.; Lin, W.; Cui, Y.; Yang, Y.; Qian, G. Thermal stimuli-triggered drug release from a biocompatible porous metal-organic framework. Chemistry, 2017, 23(42), 10215-10221.
[PMID: 28682004]
[98]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[PMID: 24150417]
[99]
Yang, Y.; Hu, Q.; Zhang, Q.; Jiang, K.; Lin, W.; Yang, Y.; Cui, Y.; Qian, G. A large capacity cationic metal-organic framework nanocarrier for physiological pH responsive drug delivery. Mol. Pharm., 2016, 13(8), 2782-2786.
[PMID: 27414996]
[100]
Tan, L.L.; Li, H.; Zhou, Y.; Zhang, Y.; Feng, X.; Wang, B.; Yang, Y.W. Zn2+-triggered drug release from biocompatible zirconium mofs equipped with supramolecular gates. Small, 2015, 11(31), 3807-3813.
[PMID: 25919865]
[101]
Liu, F.; Kozlovskaya, V.; Medipelli, S.; Xue, B.; Ahmad, F.; Saeed, M.; Cropek, D.; Kharlampieva, E. Temperature-sensitive polymersomes for controlled delivery of anticancer drugs. Chem. Mater., 2015, 27, 7945-7956.
[102]
Lin, W.; Hu, Q.; Jiang, K.; Cui, Y.; Yang, Y.; Qian, G. A porous Zn-based metal-organic framework for pH and temperature dual-responsive controlled drug release. Microporous Mesoporous Mater., 2017, 249, 55-60.
[103]
Lin, W.; Cui, Y.; Yang, Y.; Hu, Q.; Qian, G. A biocompatible metal-organic framework as a pH and temperature dual-responsive drug carrier. Dalton Trans., 2018, 47(44), 15882-15887.
[PMID: 30362496]
[104]
Xing, K.; Fan, R.; Wang, F.; Nie, H.; Du, X.; Gai, S.; Wang, P.; Yang, Y. Dual-stimulus-triggered programmable drug release and luminescent ratiometric ph sensing from chemically stable biocompatible zinc metal-organic framework. ACS Appl. Mater. Interfaces, 2018, 10(26), 22746-22756.
[PMID: 29877692]
[105]
Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J.D.; Doonan, C.J. Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev., 2016, 307, 237-254.
[106]
Lohe, M.R.; Gedrich, K.; Freudenberg, T.; Kockrick, E.; Dellmann, T.; Kaskel, S. Heating and separation using nanomagnet- functionalized metal-organic frameworks. Chem. Commun. (Camb.), 2011, 47(11), 3075-3077.
[PMID: 21293827]
[107]
Figuerola, A.; Di Corato, R.; Manna, L.; Pellegrino, T. From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol. Res., 2010, 62(2), 126-143.
[PMID: 20044004]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy