Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

General Review Article

Role of Novel Drug Delivery Systems in Coronavirus Disease-2019 (COVID-19): Time to Act Now

Author(s): Neeraj Mittal, Varun Garg, Sanjay Kumar Bhadada and Om Prakash Katare*

Volume 18, Issue 3, 2021

Published on: 16 September, 2020

Page: [289 - 296] Pages: 8

DOI: 10.2174/1567201817666200916090710

Price: $65

Abstract

The Coronavirus disease 2019 (COVID-19) has found its roots from Wuhan (China). COVID-19 is caused by a novel coronavirus SARS-CoV2, previously named as 2019-nCoV. It has spread across the globe and was declared as a pandemic by the World Health Organization (WHO) on 11th March, 2020. Currently, there is no standard drug or vaccine available for the treatment, therefore, repurposing of existing drugs is the only solution. Novel Drug Delivery Systems (NDDS) will be boon for the repurposing of drugs. The role of various NDDS in repurposing of existing drugs for the treatment of various viral diseases and their relevance in COVID-19 has been discussed in this paper. It focuses on the currently ongoing research in the implementation of NDDS in COVID-19. Moreover, it describes the role of NDDS in vaccine development for COVID-19. This paper also emphasizes how NDDS will help to develop the improved delivery systems (dosage forms) of existing therapeutic agents and also explore the new insights to find out the void spaces for potential targeted delivery. Therefore, in these tough times, NDDS and nanotechnology can be a safeguard to humanity.

Keywords: Anti-viral, COVID-19, nanoparticles, novel drug delivery system, repurposing, vaccine.

Graphical Abstract

[1]
World Health Organization (WHO) Coronavirus disease (COVID-19) situation dashboard. https://who.sprinklr.com/ (accessed on August 4, 2020).
[2]
World Health Organization, technical guidance; naming the Corona Virus Disease (COVID-19) and the virus that causes it. https://www.who.int/emergencies/diseases/novel-coronavirus- 2019/technical-guidance/naming-the-coronavirus-disease-(covid- 2019)-and-the-virus-that-causes-it (accessed on April 5, 2020).
[3]
World Health Organization (WHO) director-general's opening remarks at the media briefing on COVID-19 - 11 March 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on April 4, 2020).
[4]
Adhikari, S.P.; Meng, S.; Wu, Y.J.; Mao, Y.P.; Ye, R.X.; Wang, Q.Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; Zhou, H. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect. Dis. Poverty, 2020, 9(1), 29.
[http://dx.doi.org/10.1186/s40249-020-00646-x] [PMID: 32183901]
[5]
Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[6]
Wu, Y.C.; Chen, C.S.; Chan, Y.J. The outbreak of COVID-19: an overview. J. Chin. Med. Assoc., 2020, 83(3), 217-220.
[http://dx.doi.org/10.1097/JCMA.0000000000000270] [PMID: 32134861]
[7]
FDA Website, Coronavirus Disease 2019 (COVID-19): https://www.fda.gov/emergency-preparedness-and-response/mcm-issues/coronavirus-disease-2019-covid-19 (accessed April 2, 2020).
[8]
World Health Organization. Clinical management of severe acute respiratory infection when novel Coronavirus (nCoV) infection is suspected. March 13, 2020. https://www.who.int/publications-detail/clinical-management-of- severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected (accessed April 2, 2020).
[9]
Guidelines for the prevention, diagnosis, and treatment of novel corona virus-induced pneumonia. The 6th Ed., Office of the National Health and Health Commission Office of the State Administration of Traditional Chinese Medicine. February 8, 2020. http://www.nhc.gov.cn/yzygj/s7653p/202002/8334a8326d d94d329df351d7da8aefc2/files/b218cfeb1bc54639af227f9 22bf6b817.pdf (accessed on March 29, 2020 in Chinese). (accessed on April 5, 2020).
[10]
Summary of the Italian Medicines Agency’s (AIFA) press releases and measures on the COVID-19 emergency as of 17 March 2020. https://www.osborneclarke.com/insights/summary-italian-medicines-agencys-aifa-press-releases-measures-covid-19-emergency-17-march-2020/ (accessed March 17, 2020)
[11]
Recommendation for empiric use of hydroxy-chloroquine for prophylaxis of SARS-CoV-2 Infection. ICMR, 2020. https://icmr.nic.in/sites/default/files/upload_documents/HCQ_Recommendation_22March_final_MM_V2.pdf (accessed on March 22, 2020).
[12]
Colson, P.; Rolain, J.M.; Lagier, J.C.; Brouqui, P.; Raoult, D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int. J. Antimicrob. Agents, 2020, 55(4), 105932.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105932] [PMID: 32145363]
[13]
Cortegiani, A.; Ingoglia, G.; Ippolito, M.; Giarratano, A.; Einav, S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care, 2020, S0883-9441(20), 30390-30397.
[14]
New Drugs Approved by CDSCO; https://cdscoonline.gov.in/CDSCO/Drugs (accessed on April 6, 2020).
[15]
Wondafrash, D.Z.; Desalegn, T.Z.; Yimer, E.M.; Tsige, A.G.; Adamu, B.A.; Zewdie, K.A. Potential effect of hydroxychloroquine in diabetes mellitus: a systematic review on preclinical and clinical trial studies. J. Diabetes Res., 2020, e5214751.
[16]
Ohkuma, S.; Chudzik, J.; Poole, B. The effects of basic substances and acidic ionophores on the digestion of exogenous and endogenous proteins in mouse peritoneal macrophages. J. Cell Biol., 1986, 102(3), 959-966.
[http://dx.doi.org/10.1083/jcb.102.3.959] [PMID: 3949884]
[17]
Hillaker, E.; Belfer, J.J.; Bondici, A.; Murad, H.; Dumkow, L.E. Delayed initiation of remdesivir in a COVID‐19 positive patient. Pharmacotherapy, 2020, 40(6), 592-598.
[http://dx.doi.org/10.1002/phar.2403] [PMID: 32281114]
[18]
Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; Diaz, G.; Cohn, A.; Fox, L.; Patel, A.; Gerber, S.I.; Kim, L.; Tong, S.; Lu, X.; Lindstrom, S.; Pallansch, M.A.; Weldon, W.C.; Biggs, H.M.; Uyeki, T.M.; Pillai, S.K. Washington state 2019-ncov case investigation team. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med., 2020, 382(10), 929-936.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[19]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[20]
Korea biomedical review website: http://www.koreabiomed.com/news/articleView.html?idxno=7428 (accessed on April 5, 2020).
[21]
World Health Organization (WHO). Coronavirus: landscape analysis of therapeutics, 2020. https://www.who.int/blueprint/priority-diseases/key action/Table_of_therapeutics_Appendix_17022020.pdf?ua=1 (accessed on March 29, 2020).
[22]
Italian Society of infectious and tropical diseases. Handbook for the care of people with disease-COVI 19. Edition 2.0, https://www.epicentro.iss.it/coronavirus/pdf/rapporto-covid- 19-2-2020.pdf (accessed on April 5, 2020).
[24]
Elfiky, A.A. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci., 2020, 248, 117477.
[http://dx.doi.org/10.1016/j.lfs.2020.117477] [PMID: 32119961]
[25]
Zhang, X.; Song, K.; Tong, F.; Fei, M.; Guo, H.; Lu, Z.; Wang, J.; Zheng, C. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Adv., 2020, 4(7), 1307-1310.
[http://dx.doi.org/10.1182/bloodadvances.2020001907] [PMID: 32243501]
[26]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[27]
Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends, 2020, 14(1), 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[28]
Furuta, Y.; Takahashi, K.; Kuno-Maekawa, M.; Sangawa, H.; Uehara, S.; Kozaki, K.; Nomura, N.; Egawa, H.; Shiraki, K. Mechanism of action of T-705 against influenza virus. Antimicrob. Agents Chemother., 2005, 49(3), 981-986.
[http://dx.doi.org/10.1128/AAC.49.3.981-986.2005] [PMID: 15728892]
[29]
Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y.; Shen, C.; Li, X.; Peng, L.; Huang, D.; Zhang, J.; Zhang, S.; Wang, F.; Liu, J.; Chen, L.; Chen, S.; Wang, Z.; Zhang, Z.; Cao, R.; Zhong, W.; Liu, Y.; Liu, L. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing), 2020, 6(10), 1192-1198.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[30]
Xu, X.; Han, M.; Li, T.; Sun, W.; Wang, D.; Fu, B.; Zhou, Y.; Zheng, X.; Yang, Y.; Li, X.; Zhang, X.; Pan, A.; Wei, H. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. USA, 2020, 117(20), 10970-10975.
[http://dx.doi.org/10.1073/pnas.2005615117] [PMID: 32350134]
[31]
Zhou, M.; Zhang, X.; Qu, J. Coronavirus disease 2019 (COVID-19): a clinical update. Front. Med., 2020, 14(2), 126-135.
[http://dx.doi.org/10.1007/s11684-020-0767-8] [PMID: 32240462]
[32]
NCT04320615: a study to evaluate the safety and efficacy of tocilizumab in patients with severe COVID-19 pneumonia (COVACTA) https://clinicaltrials.gov/ct2/show/NCT04320615 (accessed on July 31, 2020).
[33]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1), 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[34]
Cunningham, A.C.; Goh, H.P.; Koh, D. Treatment of COVID-19: old tricks for new challenges. Crit. Care, 2020, 24(1), 91.
[http://dx.doi.org/10.1186/s13054-020-2818-6] [PMID: 32178711]
[36]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro . Antiviral Res., 2020, 178104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[37]
Zhou, N.; Pan, T.; Zhang, J.; Li, Q.; Zhang, X.; Bai, C.; Huang, F.; Peng, T.; Zhang, J.; Liu, C.; Tao, L.; Zhang, H. Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of Ebola virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV). J. Biol. Chem., 2016, 291(17), 9218-9232.
[http://dx.doi.org/10.1074/jbc.M116.716100] [PMID: 26953343]
[38]
Zhu, Z.; Lu, Z.; Xu, T.; Chen, C.; Yang, G.; Zha, T.; Lu, J.; Xue, Y. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J. Infect., 2020, 81(1), e21-e23.
[http://dx.doi.org/10.1016/j.jinf.2020.03.060] [PMID: 32283143]
[39]
NCT04350684: Umifenovir in hospitalized COVID-19 patients (UAIIC). https://clinicaltrials.gov/ct2/show/NCT04350684 (accessed on July 31, 2020).
[40]
NCT04350684: Umifenovir in hospitalized COVID-19 Patients (UAIIC) https://www.who.int/publications/i/item/clinical-management-of-covid-19 (accessed on July 31, 2020).
[41]
Akram, M.; Tahir, I.M.; Shah, S.M.A.; Mahmood, Z.; Altaf, A.; Ahmad, K.; Munir, N.; Daniyal, M.; Nasir, S.; Mehboob, H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: a systematic review. Phytother. Res., 2018, 32(5), 811-822.
[http://dx.doi.org/10.1002/ptr.6024] [PMID: 29356205]
[42]
Sharma, P.; Chawla, A.; Arora, S.; Pawar, P. Novel drug delivery approaches on antiviral and antiretroviral agents. J. Adv. Pharm. Technol. Res., 2012, 3(3), 147-159.
[http://dx.doi.org/10.4103/2231-4040.101007] [PMID: 23057001]
[43]
Benson, H.A. Transdermal drug delivery: penetration enhancement techniques. Curr. Drug Deliv., 2005, 2(1), 23-33.
[http://dx.doi.org/10.2174/1567201052772915] [PMID: 16305405]
[44]
Chudasama, A.; Patel, V.; Nivsarkar, M.; Vasu, K.; Shishoo, C. Investigation of microemulsion system for transdermal delivery of itraconazole. J. Adv. Pharm. Technol. Res., 2011, 2(1), 30-38.
[http://dx.doi.org/10.4103/2231-4040.79802] [PMID: 22171289]
[45]
Peira, E.; Chirio, D.; Carlotti, M.E.; Spagnolo, R.; Trotta, M. Formulation studies of microemulsions for topical applications of acyclovir. J. Drug Deliv. Sci. Technol., 2009, 19(3), 191-196.
[http://dx.doi.org/10.1016/S1773-2247(09)50035-4]
[46]
Düzgüneş, N.; Simões, S.; Slepushkin, V.; Pretzer, E.; Flasher, D.; Salem, I.I.; Steffan, G.; Konopka, K.; de Lima, P.M.C. Delivery of antiviral agents in liposomes. Methods Enzymol., 2005, 391, 351-373.
[http://dx.doi.org/10.1016/S0076-6879(05)91020-3] [PMID: 15721391]
[47]
Manjunatha, N.; Naidu, G.P.; Sutrave, V.; Patel, K.; Samanta, M.K. Preparation and evaluation of liposomes of an antiviral drug. Indian J. Nov. Drug Deliv., 2009, 1(1), 25-31.
[48]
Owens, D.E. III.; Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm., 2006, 307(1), 93-102.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.010] [PMID: 16303268]
[49]
Zhang, X.G.; Miao, J.; Li, M.W.; Jiang, S.P.; Hu, F.Q.; Du, Y.Z. Solid lipid nanoparticles loading adefovir dipivoxil for antiviral therapy. J. Zhejiang Univ. Sci. B, 2008, 9(6), 506-510.
[http://dx.doi.org/10.1631/jzus.B0820047] [PMID: 18543406]
[50]
Chattopadhyay, N.; Zastre, J.; Wong, H.L.; Wu, X.Y.; Bendayan, R. Solid lipid nanoparticles enhance the delivery of the HIV protease inhibitor, atazanavir, by a human brain endothelial cell line. Pharm. Res., 2008, 25(10), 2262-2271.
[http://dx.doi.org/10.1007/s11095-008-9615-2] [PMID: 18516666]
[51]
Dehghan, M.; Mouzam, M. Advances in iontophoresis for drug delivery. Int. J. Health Res., 2008, 1(3), 115-127.
[52]
Salay, L.C.; Prazeres, E.A.; Huachaca, N.S.M.; Lemos, M.; Piccoli, J.P.; Sanches, P.R.; Cilli, E.M.; Santos, R.S.; Feitosa, E. Molecular interactions between pluronic F127 and the peptide tritrpticin in aqueous solution. Colloid Polym. Sci., 2018, 296(4), 809-817.
[http://dx.doi.org/10.1007/s00396-018-4304-0]
[53]
de Oliveira, R.S.; Huachaca, N.S.M.; Lemos, M.; Santos, N.F.; Feitosa, E.; Salay, L.C. Molecular interactions between Pluronic F127 and saponin in aqueous solution. Colloid Polym. Sci., 2020, 298(2), 113-122.
[http://dx.doi.org/10.1007/s00396-019-04552-z]
[54]
Timin, A.S.; Muslimov, A.R.; Petrova, A.V.; Lepik, K.V.; Okilova, M.V.; Vasin, A.V.; Afanasyev, B.V.; Sukhorukov, G.B. Hybrid inorganic-organic capsules for efficient intracellular delivery of novel siRNAs against influenza A (H1N1) virus infection. Sci. Rep., 2017, 7(1), 102.
[http://dx.doi.org/10.1038/s41598-017-00200-0] [PMID: 28273907]
[55]
Moschwitzer, J.; Muller, R.H. Drug nanocrystals-the universal formulation approach for poorly soluble drugs. In: Drugs Pharmaceut. Sci; , 2007; pp. 71-85.
[56]
Dutta, T.; Agashe, H.B.; Garg, M.; Balakrishnan, P.; Kabra, M.; Jain, N.K. Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro . J. Drug Target., 2007, 15(1), 89-98.
[http://dx.doi.org/10.1080/10611860600965914] [PMID: 17365278]
[57]
Here's how nanoparticles could help us get closer to a treatment for COVID-19; March 5, 2020 https://www.nanowerk.com/nanotechnology-news2/newsid=54710.php (accessed on March 20, 2020).
[58]
Bioavanta-Bosti: chitosan nanoparticles suitable for aerosol treatment of Covid-19 patients. March 26, 2020 https://www.swissbiotech.org/listing/bioavanta-bosti-announces-immediate-availability-of-its-chitosan-nanoparticle-technology-to-formulate-aerosol-anit-covid-19-drugs/ (accessed on March 30, 2020).
[59]
Wallis, J.; Shenton, D.P.; Carlisle, R.C. Novel approaches for the design, delivery and administration of vaccine technologies. Clin. Exp. Immunol., 2019, 196(2), 189-204.
[http://dx.doi.org/10.1111/cei.13287] [PMID: 30963549]
[60]
Balfour, H. European pharmaceutical review; novel thermally-stable COVID-19 vaccine capsule developed. March 19, 2020. https://www.europeanpharmaceuticalreview.com/news/115510/novel-thermally stable-covid-19-vaccine-capsule-developed/ (accessed on April 1, 2020).
[61]
Aquavit pharmaceuticals, Inc. announces filing of new patent applications for a new drug delivery platform and vaccine compositions for immunizing patients against COVID-19 caused by the SARS-CoV-2 coronavirus. March 27, 2020. https://www.ptcommunity.com/wire/aquavit-pharmaceuticals-inc-announces-filing-new-patent-applications-new-drug-delivery-platform (accessed on March 31, 2020).
[62]
Xie, M.; Chen, Q. Insight into 2019 novel coronavirus—an updated intrim review and lessons from SARS-CoV and MERS-CoV. Int. J. Infect. Dis., 2020, S1201-9712(20), 30204-30206.
[63]
Priyadarshini, S. Nasal drop vaccine candidate for coronavirus from India. Published online 3 April 2020; https://www.natureasia.com/en/nindia/article/10.1038/nindia.2020.59 (accessed on April 7, 2020).
[64]
Fan S. A coronavirus-vaccine-could-be-the-first-that-outwits-nature. Singularity Hub, March 24, 2020. https://singularityhub.com/2020/03/24/a-coronavirus-vaccine- could-be-the-first-that-outwits-nature/ (accessed on March 31, 2020).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy