Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

An Overview of the Recent Developments and Patents in the Field of Pharmaceutical Nanotechnology

Author(s): Deepika Purohit, Deeksha Manchanda, Manish Makhija, Jyoti Rathi, Ravinder Verma, Deepak Kaushik and Parijat Pandey*

Volume 15, Issue 1, 2021

Published on: 09 September, 2020

Page: [15 - 34] Pages: 20

DOI: 10.2174/1872210514666200909154409

Price: $65

Abstract

Background: Compared to traditional dosage methods, the Novel Drug Delivery Systems (NDDS) provide various advantages. In the last few years, the interest shifted to works focused on the novel drug delivery methods for small and large molecular drug carriers utilizing particulate drug delivery systems as well. It is evident from the last decade as observed in increased number of patents in this field that the technology has evolved tremendously.

Objective: Drug carriers utilized by this novel technology include liposomes, dendrimers, polymeric nanoparticles, magnetic nanoparticles, solid lipid nanoparticles, and carbon nanomaterials. Various forms of polymers have been used in the production of nanocarriers.

Methods: Nanocarriers are colloidal systems varying in size from 10 to 1000 nm. This technology is now used to identify, manage and monitor numerous diseases and physical methods to alter and enhance the pharmacokinetic and pharmacodynamic properties of specific types of drug molecules.

Results: Nanoparticles can be formulated by a number of techniques including ionic gelation, crosslinking, coacervation/precipitation, nanoprecipitation, spray drying, emulsion- droplet coalescence, nano sonication techniques, etc. Several methods are used with which these nanoparticles can be characterized. These methods include nuclear magnetic resonance, optical microscopy, atomic force microscopy, photon correlation spectroscopy and electron microscopy, surface charge, in-vitro drug release, etc.

Conclusion: In the present review, the authors have tried to summarize recent advances in the field of pharmaceutical nanotechnology and also focused on the application and new patents in the area related to NDDS.

Keywords: Pharmaceutical nanotechnology, nanocarriers, characterization, application, patents, recent advancements.

Graphical Abstract

[1]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71-9.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[2]
Kookana RS, Williams M, Boxall AB, et al. Potential ecological footprints of active pharmaceutical ingredients: An examination of risk factors in low-, middle- and high-income countries. Philos Trans R Soc Lond B Biol Sci 2014; 369(1656): 1-16.
[http://dx.doi.org/10.1098/rstb.2013.0586] [PMID: 25405973]
[3]
Utreja P, Jain S, Tiwary AK. Novel drug delivery systems for sustained and targeted delivery of anti- cancer drugs: Current status and future prospects. Curr Drug Deliv 2010; 7(2): 152-61.
[http://dx.doi.org/10.2174/156720110791011783] [PMID: 20158482]
[4]
Moncalvo F, Martinez Espinoza MI, Cellesi F. Nanosized delivery systems for therapeutic proteins: Clinically validated technologies and advanced development strategies. Front Bioeng Biotechnol 2020; 8: 89.
[http://dx.doi.org/10.3389/fbioe.2020.00089] [PMID: 32117952]
[5]
Pisal DS, Kosloski MP, Balu-Iyer SV. Delivery of therapeutic proteins. J Pharm Sci 2010; 99(6): 2557-75.
[http://dx.doi.org/10.1002/jps.22054] [PMID: 20049941]
[6]
Bandawane A, Saudagar R. a review on novel drug delivery system: A recent trend. J Drug Deliv Ther 2019; 9(3): 517-21.
[7]
Tiwari G, Tiwari R, Sriwastawa B, et al. Drug delivery systems: An updated review. Int J Pharm Investig 2012; 2(1): 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[8]
Homayun B, Lin X, Choi H-J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 2019; 11(3): 129-57.
[http://dx.doi.org/10.3390/pharmaceutics11030129] [PMID: 30893852]
[9]
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018; 3: 7-16.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[10]
Prasanth VV, Jayaprakash R, Sam TM. Colon specific drug delivery systems: A review on various pharmaceutical approaches. J Appl Pharm Sci 2012; 2(1): 163-9.
[11]
Hussan D, Santanu R, Bhandari V. A review on recent advances of enteric coating. IOSR J Phar 2012; 2(6): 5-11.
[http://dx.doi.org/10.9790/3013-2610511]
[12]
Gahlyan M, Jain S. Oral controlled release drug delivery system- A review. Pharm Tutor 2014; 2(8): 170-8.
[13]
Siwach R, Pandey P, Chawla V, Dureja H. Role of nanotechnology in diabetic management. Recent Pat Nanotechnol 2019; 13(1): 28-37.
[http://dx.doi.org/10.2174/1872210513666190104122032] [PMID: 30608045]
[14]
Pandey P, Dureja H. Recent patents on polymeric nanoparticles for cancer therapy. Recent Pat Nanotechnol 2018; 12(2): 155-69.
[http://dx.doi.org/10.2174/1872210512666180327120648] [PMID: 29589551]
[15]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[16]
Grasso G, Zane D, Dragone R. Microbial nanotechnology: Challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials (Basel) 2019; 10(1): 1-20.
[http://dx.doi.org/10.3390/nano10010011] [PMID: 31861471]
[17]
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J Nanotechnol 2018; 9: 1050-74.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[18]
Pandey P, Purohit D, Dureja H. Nanosponges – A promising novel drug delivery system. Recent Pat Nanotechnol 2018; 12(3): 180-91.
[http://dx.doi.org/10.2174/1872210512666180925102842] [PMID: 30251614]
[19]
Pandey P, Dua K, Dureja H. Erlotinib loaded chitosan nanoparticles: Formulation, physicochemical characterization and cytotoxic potential. Int J Biol Macromol 2019; 139: 1304-16.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.084] [PMID: 31404602]
[20]
Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm J 2011; 19(3): 129-41.
[http://dx.doi.org/10.1016/j.jsps.2011.04.001] [PMID: 23960751]
[21]
Sharma A, Anghore D, Awasthi R. A review on current carbon nanomaterials and other nanoparticles technology and their applications in biomedicine. World J Pharm Sci 2015; 4(12): 1088-133.
[22]
Pandey P, Chellappan DK, Tambuwala MM, Bakshi HA, Dua K, Dureja H. Central composite designed formulation, characterization and in vitro cytotoxic effect of erlotinib loaded chitosan nanoparticulate system. Int J Biol Macromol 2019; 141: 596-610.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.023] [PMID: 31494160]
[23]
Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 2018; 26(1): 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[24]
Chenthamara D, Subramaniam S, Ramakrishnan SG, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 2019; 23(20): 20.
[http://dx.doi.org/10.1186/s40824-019-0166-x] [PMID: 31832232]
[25]
Musumeci T, Bonaccorso A, Puglisi G. Epilepsy disease and noseto- brain delivery of polymeric nanoparticles: An overview. Pharmaceutics 2019; 11(3): 118-39..
[http://dx.doi.org/10.3390/pharmaceutics11030118] [PMID: 30871237]
[26]
Quijia Quezada C, Azevedo CS, Charneau S, et al. Advances in nanocarriers as drug delivery systems in Chagas disease. Int J Nanomedicine 2019; 14: 6407-24.
[http://dx.doi.org/10.2147/IJN.S206109] [PMID: 31496694]
[27]
Foong LK, Foroughi MM, Mirhosseini AF, et al. Applications of nano-materials in diverse dentistry regimes. RSC Advances 2020; 10: 15430-60.
[http://dx.doi.org/10.1039/D0RA00762E]
[28]
Chattopadhyay S, Chen JY, Chen HW, Hu CJ. Nanoparticle vaccines adopting virus-like features for enhanced immune potentiation. Nanotheranostics 2017; 1(3): 244-60.
[http://dx.doi.org/10.7150/ntno.19796] [PMID: 29071191]
[29]
Wen R, Umeano AC, Kou Y, Xu J, Farooqi AA. Nanoparticle systems for cancer vaccine. Nanomedicine (Lond) 2019; 14(5): 627-48.
[http://dx.doi.org/10.2217/nnm-2018-0147] [PMID: 30806568]
[30]
Xiao Y, Shi K, Qu Y, Chu B, Qian Z. Engineering nanoparticles for targeted delivery of nucleic acid therapeutics in tumor. Mol Ther Methods Clin Dev 2018; 12: 1-18.
[http://dx.doi.org/10.1016/j.omtm.2018.09.002] [PMID: 30364598]
[31]
Peng Y, Chen L, Ye S, et al. Research and development of drug delivery systems based on drug transporter and nano-formulation. Asian J Pharm Sci 2020; 15(2): 220-36.
[http://dx.doi.org/10.1016/j.ajps.2020.02.004] [PMID: 32373201]
[32]
Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale 2018; 10(27): 12871-934.
[http://dx.doi.org/10.1039/C8NR02278J] [PMID: 29926865]
[33]
Duan Y, Dhar A, Patel C, et al. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Adv 2020; 10: 26777-91.
[http://dx.doi.org/10.1039/D0RA03491F]
[34]
Zhang L, Chen Q, Ma Y, et al. Microfluidic methods for fabrication and engineering of nanoparticle drug delivery systems. ACS Appl Bio Mater 2020; 3(1): 107-20.
[http://dx.doi.org/10.1021/acsabm.9b00853]
[35]
Karami K, Jamshidian N, Hajiaghasi A, et al. BSA nanoparticles as controlled release carriers for isophethalaldoxime palladacycle complex; synthesis, characterization, in vitro evaluation, cytotoxicity and release kinetics analysis. New J Chem 2020; 44: 4394-405.
[http://dx.doi.org/10.1039/C9NJ05847H]
[36]
Ealias AM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. Mater Sci Eng 2017; 263: 1-15.
[37]
Berube D, Cummings C, Cacciatore M, Scheufele D, Kalin J. Characteristics and classification of nanoparticles: Expert Delphi survey. Nanotoxicology 2011; 5(2): 236-43.
[http://dx.doi.org/10.3109/17435390.2010.521633] [PMID: 20883087]
[38]
Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 2019; 2019: 1-26.
[http://dx.doi.org/10.1155/2019/3702518]
[39]
Jain AK, Thareja S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif Cells Nanomed Biotechnol 2019; 47(1): 524-39.
[http://dx.doi.org/10.1080/21691401.2018.1561457] [PMID: 30784319]
[40]
Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[41]
Rout GK, Shin H-S, Gouda S, et al. Current advances in nanocarriers for biomedical research and their applications Artif Cells Nanomed Biotechnol 2018; 46(sup2): 1053-62..
[http://dx.doi.org/10.1080/21691401.2018.1478843] [PMID: 29879850]
[42]
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015; 10: 975-99.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[43]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102-12.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[44]
Olusanya TOB, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA. Liposomal drug delivery systems and anticancer drugs. Molecules 2018; 23(4): 907-22.
[http://dx.doi.org/10.3390/molecules23040907] [PMID: 29662019]
[45]
Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, et al. Nanomedicine review: Clinical developments in liposomal applications. Cancer Nano 2019; 10(11): 1-14.
[http://dx.doi.org/10.1186/s12645-019-0055-y]
[46]
Biswas S, Dodwadkar NS, Deshpande PP, Torchilin VP. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Control Release 2012; 159(3): 393-402.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.009] [PMID: 22286008]
[47]
Battaglia L, Ugazio E. Lipid nano- and microparticles: An overview of patent-related research. J Nanomater 2019; 2019: 1-22.
[http://dx.doi.org/10.1155/2019/2834941]
[48]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[49]
Abdel-Mottaleb MM, Neumann D, Lamprecht A. Lipid nanocapsules for dermal application: A comparative study of lipid-based versus polymer-based nanocarriers. Eur J Pharm Biopharm 2011; 79(1): 36-42.
[http://dx.doi.org/10.1016/j.ejpb.2011.04.009] [PMID: 21558002]
[50]
Nayak SN, Zhu H, Varghese N, et al. Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet 2010; 120(7): 1415-41.
[http://dx.doi.org/10.1007/s00122-010-1265-1] [PMID: 20098978]
[51]
Bucolo C, Drago F, Salomone S. Ocular drug delivery: A clue from nanotechnology. Front Pharmacol 2012; 3: 188-203.
[http://dx.doi.org/10.3389/fphar.2012.00188] [PMID: 23125835]
[52]
Lu X, Zhu T, Chen C, Liu Y. Right or left: The role of nanoparticles in pulmonary diseases. Int J Mol Sci 2014; 15(10): 17577-600.
[http://dx.doi.org/10.3390/ijms151017577] [PMID: 25268624]
[53]
Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 2010; 207(8): 1589-97.
[http://dx.doi.org/10.1084/jem.20100035] [PMID: 20643828]
[54]
Uner M, Yener G. Importance of Solid Lipid Nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2007; 2(3): 289-300.
[PMID: 18019829]
[55]
Mishra V, Bansal KK, Verma A, et al. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics 2018; 10(4): 191-204.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[56]
Makoni PA, Wa Kasongo K, Walker RB. Short term stability testing of efavirenz-loaded Solid Lipid Nanoparticle (SLN) and Nanostructured Lipid Carrier (NLC) dispersions. Pharmaceutics 2019; 11(8): 397-418.
[http://dx.doi.org/10.3390/pharmaceutics11080397] [PMID: 31398820]
[57]
Espinoza SM, Patil HI, Martinez ESM, et al. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. Int J Polym Mater Polym Biomater 2020; 69(2): 85-126.
[http://dx.doi.org/10.1080/00914037.2018.1539990]
[58]
Szczęch M, Szczepanowicz K. Polymeric core-shell nanoparticles prepared by spontaneous emulsification solvent evaporation and functionalized by the layer-by-layer method. Nanomaterials (Basel) 2020; 10(3): 496-510.
[http://dx.doi.org/10.3390/nano10030496] [PMID: 32164194]
[59]
Liu Y, Yang G, Zou D, et al. Formulation of nanoparticles using mixing-induced nanoprecipitation for drug delivery. Ind Eng Chem Res 2020; 59(9): 4134-49.
[http://dx.doi.org/10.1021/acs.iecr.9b04747]
[60]
Pandey P, Marwaha RK, Nanda A, et al. Spray-dried Nanoparticles-in-Microparticles System (NiMS) of acetazolamide using central composite design. Nanosci Nanotechnol Asia 2016; 6(2): 146-56.
[http://dx.doi.org/10.2174/2210681206666160402004241]
[61]
Rai R, Alwani S, Badea I. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications. Polymers (Basel) 2019; 11(4): 745-59.
[http://dx.doi.org/10.3390/polym11040745] [PMID: 31027272]
[62]
Yasmina R, Shaha M, Khan SA, Ali R. Gelatin nanoparticles: A potential candidate for medical applications. Nanotechnol Rev 2017; 6(2): 191-207.
[http://dx.doi.org/10.1515/ntrev-2016-0009]
[63]
Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 2012; 64: 72-82.
[http://dx.doi.org/10.1016/j.addr.2012.09.004]
[64]
Cipurković A, Horozić E, Đonlagić N, et al. Biodegradable polymers: Production, properties and application in medicine. Technol Acta (Tuzla) 2018; 11(1): 25-35.
[65]
Nnyigide OS, Lee SG, Hyun K. In silico characterization of the binding modes of surfactants with bovine serum albumin. Sci Rep 2020; 10(1): 6861-77.
[http://dx.doi.org/10.1038/s41598-019-47135-2] [PMID: 31337814]
[66]
Ali I, Alsehli M, Scotti L, et al. Progress in polymeric nano-medicines for theranostic cancer treatment. Polymers (Basel) 2020; 12(3): 598-610.
[http://dx.doi.org/10.3390/polym12030598] [PMID: 32155695]
[67]
Taha MS, Padmakumar S, Singh A, Amiji MM. Critical quality attributes in the development of therapeutic nanomedicines toward clinical translation. Drug Deliv Transl Res 2020; 10(3): 766-90.
[http://dx.doi.org/10.1007/s13346-020-00744-1] [PMID: 32170656]
[68]
Su S, Kang PM. Systemic review of biodegradable nanomaterials in nanomedicine. Nanomaterials (Basel) 2020; 10(4): 656-77.
[http://dx.doi.org/10.3390/nano10040656] [PMID: 32244653]
[69]
Sharma G, Sharma AR, Nam JS, Doss GP, Lee SS, Chakraborty C. Nanoparticle based insulin delivery system: The next generation efficient therapy for Type 1 diabetes. J Nanobiotechnology 2015; 13: 74-90.
[http://dx.doi.org/10.1186/s12951-015-0136-y] [PMID: 26498972]
[70]
Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv 2013; 4(11): 1443-67.
[http://dx.doi.org/10.4155/tde.13.104] [PMID: 24228993]
[71]
Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: Synthesis, applications, and properties. Nanoscale Res Lett 2014; 9(1): 247-56.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[72]
Caminade AM, Majoral JP. Bifunctional phosphorus dendrimers and their properties. Molecules 2016; 21(4): 538-61.
[http://dx.doi.org/10.3390/molecules21040538] [PMID: 27120586]
[73]
Santos A, Veiga F, Figueiras A. Dendrimers as pharmaceutical excipients: Synthesis, properties, toxicity and biomedical applications Mater 2020; 13: 65..
[74]
Araújo RV, Santos SDS, Igne Ferreira E, Giarolla J. New advances in general biomedical applications of PAMAM dendrimers. Molecules 2018; 23(11): 2849-75.
[http://dx.doi.org/10.3390/molecules23112849] [PMID: 30400134]
[75]
Noriega-Luna B, Godínez LA, Rodríguez FJ. Corrigendum to “applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection”. J Nanomater 2020; 1: 1-13.
[http://dx.doi.org/10.1155/2020/3020287]
[76]
Avti PK, Kakkar A. Dendrimers as anti-inflammatory agents. Braz J Pharm Sci 2013; 49: 57-65.
[http://dx.doi.org/10.1590/S1984-82502013000700006]
[77]
Janaszewska A, Lazniewska J, Trzepiński P, Marcinkowska M, Klajnert-Maculewicz B. Cytotoxicity of dendrimers. Biomolecules 2019; 9(8): 330-52.
[http://dx.doi.org/10.3390/biom9080330] [PMID: 31374911]
[78]
Quintanar-Guerrero D, Ganem-Quintanar A, Nava-Arzaluz MG, Piñón-Segundo E. Silica xerogels as pharmaceutical drug carriers. Expert Opin Drug Deliv 2009; 6(5): 485-98.
[http://dx.doi.org/10.1517/17425240902902307] [PMID: 19413456]
[79]
Zhou Y, Quan G, Wu Q, et al. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B 2018; 8(2): 165-77.
[http://dx.doi.org/10.1016/j.apsb.2018.01.007] [PMID: 29719777]
[80]
Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther 2018; 12: 3117-45.
[http://dx.doi.org/10.2147/DDDT.S165440] [PMID: 30288019]
[81]
Li W, Cao Z, Liu R, et al. AuNPs as an important inorganic nanoparticle applied in drug carrier systems. Artif Cells Nanomed Biotechnol 2019; 47(1): 4222-33.
[http://dx.doi.org/10.1080/21691401.2019.1687501] [PMID: 31713452]
[82]
Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharm 2018; 10(3): 118-59.
[83]
Kesse S, Boakye-Yiadom KO, Ochete BO, et al. Mesoporous silica nanomaterials: Versatile nanocarriers for cancer theranostic and drug and gene delivery. Pharm 2019; 11(2): 77-102.
[http://dx.doi.org/10.3390/pharmaceutics11020077]
[84]
Gulzar A, Gai S, Yang P, Li C, Ansari MB, Lin J. Stimuli responsive drug delivery application of polymer and silica in biomedicine. J Mater Chem B Mater Biol Med 2015; 3(44): 8599-622.
[http://dx.doi.org/10.1039/C5TB00757G] [PMID: 32262717]
[85]
Pandele AM, Andronescu C, Ghebaur A, Garea SA, Iovu H. New biocompatible mesoporous silica/polysaccharide hybrid materials as possible drug delivery systems. Materials (Basel) 2018; 12(1): 15-29.
[http://dx.doi.org/10.3390/ma12010015] [PMID: 30577550]
[86]
Sun X, Wang N, Yang LY, Ouyang XK, Huang F. Folic acid and PEI modified mesoporous silica for targeted delivery of curcumin. Pharmaceutics 2019; 11(9): 430-40.
[http://dx.doi.org/10.3390/pharmaceutics11090430] [PMID: 31450762]
[87]
Han C, Huang H, Dong Y, Sui X, Jian B, Zhu W. A comparative study of the use of mesoporous carbon and mesoporous silica as drug carriers for oral delivery of the water-insoluble drug carvedilol. Molecules 2019; 24(9): 1770-83.
[http://dx.doi.org/10.3390/molecules24091770] [PMID: 31067732]
[88]
Moodley T, Singh M. Sterically stabilised polymeric mesoporous silica nanoparticles improve doxorubicin efficiency: Tailored cancer therapy. Molecules 2020; 25(3): 742-63.
[http://dx.doi.org/10.3390/molecules25030742] [PMID: 32046364]
[89]
Huang J, Li Y, Orza A, et al. Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches. Adv Funct Mater 2016; 26(22): 3818-36.
[http://dx.doi.org/10.1002/adfm.201504185] [PMID: 27790080]
[90]
Price PM, Mahmoud WE, Al-Ghamdi AA, Bronstein LM. Magnetic drug delivery: Where the field is going. Front Chem 2018; 6: 619.
[http://dx.doi.org/10.3389/fchem.2018.00619] [PMID: 30619827]
[91]
Farah FH. Magnetic microspheres: A novel drug delivery system. J Anal Pharm Res 2016; 3(5): 67-77.
[92]
Ferreira M, Sousa J, Pais A, Vitorino C. The role of magnetic nanoparticles in cancer nanotheranostics. Materials (Basel) 2020; 13(2): 266-90.
[http://dx.doi.org/10.3390/ma13020266] [PMID: 31936128]
[93]
Doswald S, Stark WJ, Beck-Schimmer B. Biochemical functionality of magnetic particles as nanosensors: How far away are we to implement them into clinical practice? J Nanobiotechnology 2019; 17(1): 73-84.
[http://dx.doi.org/10.1186/s12951-019-0506-y] [PMID: 31151445]
[94]
Kushwaha SKS, Ghoshal S, Rai AK, Singh S. Carbon nanotubes as a novel drug delivery system for anticancer therapy: A review. Braz J Pharm Sci 2013; 1: 529-43.
[http://dx.doi.org/10.1590/S1984-82502013000400002]
[95]
Rahman G, Najaf Z, Mehmood A, et al. An overview of the recent progress in the synthesis and applications of carbon nanotubes. J Carbon Res 2019; 5(3): 1-31.
[http://dx.doi.org/10.3390/c5010003]
[96]
Cho IH, Kim DH, Park S. Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater Res 2020; 24(6): 6.
[http://dx.doi.org/10.1186/s40824-019-0181-y] [PMID: 32042441]
[97]
Chauhan AS. Dendrimers for drug delivery. Molecules 2018; 23(4): 938-47.
[http://dx.doi.org/10.3390/molecules23040938] [PMID: 29670005]
[98]
Chen G, Wang Y, Xie R, Gong S. A review on core-shell structured unimolecular nanoparticles for biomedical applications. Adv Drug Deliv Rev 2018; 130: 58-72.
[http://dx.doi.org/10.1016/j.addr.2018.07.008] [PMID: 30009887]
[99]
Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 2014; 6(3): 139-50.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633]
[100]
Siafaka PI, Üstündağ Okur N, Karavas E, Bikiaris DN. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: Current status and uses. Int J Mol Sci 2016; 17(9): 1440-79.
[http://dx.doi.org/10.3390/ijms17091440] [PMID: 27589733]
[101]
Menezes BRC, Rodrigues KF, Fonseca BCDS, Ribas RG, Montanheiro TLDA, Thim GP. Recent advances in the use of carbon nanotubes as smart biomaterials. J Mater Chem B Mater Biol Med 2019; 7(9): 1343-60.
[http://dx.doi.org/10.1039/C8TB02419G] [PMID: 32255006]
[102]
Mohamed H, Tamer M, Ahmed O. Methods of enzyme immobilization. Int J Curr Pharm Rev Res 2016; 7(6): 385-92.
[103]
Karimi M, Solati N, Ghasemi A, et al. Carbon nanotubes part II: A remarkable carrier for drug and gene delivery. Expert Opin Drug Deliv 2015; 12(7): 1089-105.
[http://dx.doi.org/10.1517/17425247.2015.1004309] [PMID: 25613837]
[104]
Ismail R, Bocsik A, Katona G, Gróf I, Deli MA, Csóka I. Encapsulation in polymeric nanoparticles enhances the enzymatic stability and the permeability of the glp-1 analog, liraglutide, across a culture model of intestinal permeability. Pharmaceutics 2019; 11(11): 599-611.
[http://dx.doi.org/10.3390/pharmaceutics11110599] [PMID: 31726699]
[105]
Biodistribution of carbon nanotubes in the body. Available at:. https://phys.org/news/2014-07-biodistribution-carbon-nanotubes-body.html
[106]
Kobayashi N, Izumi H, Morimoto Y. Review of toxicity studies of carbon nanotubes. J Occup Health 2017; 59(5): 394-407.
[http://dx.doi.org/10.1539/joh.17-0089-RA] [PMID: 28794394]
[107]
Jain S, Singh SR, Pillai S. Toxicity issues related to biomedical applications of carbon nanotubes. J Nanomed Nanotechnol 2012; 3(5): 140-55.
[http://dx.doi.org/10.4172/2157-7439.1000140]
[108]
Simon J, Flahaut E, Golzio M. Overview of carbon nanotubes for biomedical applications. Materials (Basel) 2019; 12(4): 624-45.
[http://dx.doi.org/10.3390/ma12040624] [PMID: 30791507]
[109]
Wahab IF, Abd Razak SI. Bionanocomposite film of kappa-carrageenan/nanotube clay: Growth of hydroxyl apatite and model drug release. Dig J Nanomater Biostruct 2016; 11: 963-72.
[110]
DeFrates K, Markiewicz T, Gallo P, et al. Protein polymer-based nanoparticles: Fabrication and medical applications. Int J Mol Sci 2018; 19(6): 1717-36.
[http://dx.doi.org/10.3390/ijms19061717] [PMID: 29890756]
[111]
Calvo P, Remunan LC, Villa JJL, et al. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 1997; 63: 125-32.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19970103)63:1<125:AID-APP13>3.0.CO;2-4]
[112]
Pandey P, Ramkishan A, Dureja H. Optimizing the formulation variables for erlotinib loaded chitosan nanoparticles. Int J Pharm Sci Res 2018; 9(12): 1000-7.
[113]
Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 2004; 100(1): 5-28.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.010] [PMID: 15491807]
[114]
Patil P, Chavanke D, Wagh M. A review on ionotropic gelation method: Novel approach for controlled gastroretentive gelispheres. Int J Pharma Sci 2012; 4(2): 27-32.
[115]
Kunjachan S, Jose S. Understanding the mechanism of ionic gelation for synthesis of chitosan nanoparticles using qualitative techniques. Asian J Pharm 2010; 4(2): 148-53.
[http://dx.doi.org/10.4103/0973-8398.68467]
[116]
Patel JK, Jivani NP. Chitosan based nanoparticles in drug delivery. Int J Pharm Sci Nanotech 2009; 2(2): 517-22.
[117]
Jayanudin FM, Fahrurrozi M, Wirawan SK. Rochmadi. Preparation of chitosan microcapsules containing red ginger oleoresin using emulsion crosslinking method. J Appl Biomater Funct Mater 2019; 17(1)2280800018809917
[http://dx.doi.org/10.1177/2280800018809917] [PMID: 30803278]
[118]
Marzuki NHC, Wahab RA, Hamid MA. An overview of nanoemulsion: Concepts of development and cosmeceutical applications. Biotechnol Biotechnol Equip 2019; 33(1): 779-97.
[http://dx.doi.org/10.1080/13102818.2019.1620124]
[119]
Vecchione D, Grimaldi AM, Forte E, Bevilacqua P, Netti PA, Torino E. Hybrid core-Shell (HyCoS) nanoparticles produced by complex coacervation for multimodal applications. Sci Rep 2017; 7: 45121-32.
[http://dx.doi.org/10.1038/srep45121] [PMID: 28327584]
[120]
Wang Y, Li P, Truong-Dinh Tran T, Zhang J, Kong L. Manufacturing techniques and surface engineering of polymer-based nanoparticles for targeted drug delivery to cancer. Nanomaterials (Basel) 2016; 6(2): 26-43.
[http://dx.doi.org/10.3390/nano6020026] [PMID: 28344283]
[121]
Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Kiafar F, Jelvehgari M. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Res Pharm Sci 2017; 12(1): 1-14.
[http://dx.doi.org/10.4103/1735-5362.199041] [PMID: 28255308]
[122]
Tao J, Chow SF, Zheng Y. Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles. Acta Pharm Sin B 2019; 9(1): 4-18.
[http://dx.doi.org/10.1016/j.apsb.2018.11.001] [PMID: 30766774]
[123]
Guarino V, Altobelli R, Ambrosio L. Chitosan microgels and nanoparticles via electrofluidodynamic techniques for biomedical applications. Gels 2016; 2(1): 2-11.
[http://dx.doi.org/10.3390/gels2010002] [PMID: 30674134]
[124]
Vandervoort J, Ludwig A. Biocompatible stabilizers in the preparation of PLGA nanoparticles: A factorial design study Int J Pharm 2002; 238(1-2): 77-92..
[http://dx.doi.org/10.1016/S0378-5173(02)00058-3] [PMID: 11996812]
[125]
Janes KA, Calvo P, Alonso MJ. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 2001; 47(1): 83-97.
[http://dx.doi.org/10.1016/S0169-409X(00)00123-X] [PMID: 11251247]
[126]
Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today 2003; 8(24): 1112-20.
[http://dx.doi.org/10.1016/S1359-6446(03)02903-9] [PMID: 14678737]
[127]
Tamayo-Esquivel D, Ganem-Quintanar A, Martínez AL, Navarrete-Rodríguez M, Rodríguez-Romo S, Quintanar-Guerrero D. Evaluation of the enhanced oral effect of omapatrilat-monolein nanoparticles prepared by the emulsification-diffusion method. J Nanosci Nanotechnol 2006; 6(9-10): 3134-8.
[http://dx.doi.org/10.1166/jnn.2006.474] [PMID: 17048528]
[128]
Kulkarni AD, Vanjari YH, Sancheti KH, et al. Polyelectrolyte complexes: Mechanisms, critical experimental aspects, and applications. Artif Cells Nanomed Biotechnol 2016; 44(7): 1615-25.
[http://dx.doi.org/10.3109/21691401.2015.1129624] [PMID: 26757773]
[129]
Lankalapalli S, Kolapalli VR. Polyelectrolyte complexes: A review of their applicability in drug delivery technology. Indian J Pharm Sci 2009; 71(5): 481-7.
[http://dx.doi.org/10.4103/0250-474X.58165] [PMID: 20502564]
[130]
Yavvari PS, Awasthi AK, Sharma A, Bajaj A, Srivastava A. Emerging biomedical applications of polyaspartic acid-derived biodegradable polyelectrolytes and polyelectrolyte complexes. J Mater Chem B Mater Biol Med 2019; 7(13): 2102-22.
[http://dx.doi.org/10.1039/C8TB02962H] [PMID: 32073569]
[131]
Pekar M. Hydrogels with micellar hydrophobic (nano) domains. Front Mater 2015; 1: 1-14.
[132]
Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F, Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine (Lond) 2006; 2(1): 8-21.
[http://dx.doi.org/10.1016/j.nano.2005.12.003] [PMID: 17292111]
[133]
Jung J, Perrut M. Particle design using supercritical fluids: literature and patent survey. J Supercrit Fluids 2001; 20: 179-219.
[http://dx.doi.org/10.1016/S0896-8446(01)00064-X]
[134]
Thote AJ, Gupta RB. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release. Nanomedicine 2005; 1(1): 85-90.
[http://dx.doi.org/10.1016/j.nano.2004.12.001] [PMID: 17292062]
[135]
Chakravarty P, Famili A, Nagapudi K, Al-Sayah MA. Using supercritical fluid technology as a green alternative during the preparation of drug delivery systems. Pharmaceutics 2019; 11(12): 629-60.
[http://dx.doi.org/10.3390/pharmaceutics11120629] [PMID: 31775292]
[136]
Ghasem N. Chemical absorption of CO2 enhanced by nanoparticles using a membrane contactor: Modeling and simulation. Membranes (Basel) 2019; 9(11): 150-65.
[http://dx.doi.org/10.3390/membranes9110150] [PMID: 31717984]
[137]
Gupta S, Kesarla R, Chotai N, Misra A, Omri A. Systematic approach for the formulation and optimization of solid lipid nanoparticles of efavirenz by high pressure homogenization using design of experiments for brain targeting and enhanced bioavailability. BioMed Res Int 2017; 20175984014
[http://dx.doi.org/10.1155/2017/5984014] [PMID: 28243600]
[138]
Gomathi T, Sudha PN, Florence JAK, Venkatesan J, Anil S. Fabrication of letrozole formulation using chitosan nanoparticles through ionic gelation method . Int J Biol Macromol 2017; 104(Pt B): 1820-32..
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.147 ] [PMID: 28185930]
[139]
Hao J, Wang F, Wang X, et al. Development and optimization of baicalin-loaded solid lipid nanoparticles prepared by coacervation method using central composite design. Eur J Pharm Sci 2012; 47(2): 497-505.
[http://dx.doi.org/10.1016/j.ejps.2012.07.006] [PMID: 22820033]
[140]
Khayata N, Abdelwahed W, Chehna MF, Charcosset C, Fessi H. Preparation of vitamin E loaded nanocapsules by the nanoprecipitation method: From laboratory scale to large scale using a membrane contactor. Int J Pharm 2012; 423(2): 419-27.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.016] [PMID: 22197757]
[141]
Pourshahab PS, Gilani K, Moazeni E, Eslahi H, Fazeli MR, Jamalifar H. Preparation and characterization of spray dried inhalable powders containing chitosan nanoparticles for pulmonary delivery of isoniazid. J Microencapsul 2011; 28(7): 605-13.
[http://dx.doi.org/10.3109/02652048.2011.599437] [PMID: 21793647]
[142]
Galindo-Rodríguez SA, Puel F, Briançon S, Allémann E, Doelker E, Fessi H. Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur J Pharm Sci 2005; 25(4-5): 357-67.
[http://dx.doi.org/10.1016/j.ejps.2005.03.013] [PMID: 15916889]
[143]
Urbán-Morlán Z, Ganem-Rondero A, Melgoza-Contreras LM, Escobar-Chávez JJ, Nava-Arzaluz MG, Quintanar-Guerrero D. Preparation and characterization of solid lipid nanoparticles containing cyclosporine by the emulsification-diffusion method. Int J Nanomedicine 2010; 5: 611-20.
[PMID: 20856836]
[144]
Zhang L, Wang J, Ni C, Zhang Y, Shi G. Preparation of polyelectrolyte complex nanoparticles of chitosan and poly(2-acry1amido-2-methylpropanesulfonic acid) for doxorubicin release. Mater Sci Eng C 2016; 58: 724-9.
[http://dx.doi.org/10.1016/j.msec.2015.09.044] [PMID: 26478364]
[145]
Vrignaud S, Anton N, Gayet P, Benoit JP, Saulnier P. Reverse micelle-loaded lipid nanocarriers: A novel drug delivery system for the sustained release of doxorubicin hydrochloride. Eur J Pharm Biopharm 2011; 79(1): 197-204.
[http://dx.doi.org/10.1016/j.ejpb.2011.02.015] [PMID: 21345371]
[146]
Varshosaz J, Hassanzadeh F, Mahmoudzadeh M, et al. Preparation of cefuroxime axetil nanoparticles by rapid expansion of supercritical fluid technology. Powder Technol 2009; 189(1): 97-102.
[http://dx.doi.org/10.1016/j.powtec.2008.06.009]
[147]
Aljaeid BM, Hosny KM. Miconazole-loaded solid lipid nanoparticles: formulation and evaluation of a novel formula with high bioavailability and antifungal activity. Int J Nanomedicine 2016; 11: 441-7.
[http://dx.doi.org/10.2147/IJN.S100625] [PMID: 26869787]
[148]
Schwartz I, Rosskopf J, Schmitt S, et al. Blueprint for nanoscale NMR. Sci Rep 2019; 9(1): 6938-49.
[http://dx.doi.org/10.1038/s41598-019-43404-2] [PMID: 31061430]
[149]
Smits J, Damron JT, Kehayias P, et al. Two-dimensional nuclear magnetic resonance spectroscopy with a microfluidic diamond quantum sensor. Sci Adv 2019; 5(7)eaaw7895
[http://dx.doi.org/10.1126/sciadv.aaw7895] [PMID: 31360769]
[150]
Ichimura T, Jin T, Fujita H, Higuchi H, Watanabe TM. Nano-scale measurement of biomolecules by optical microscopy and semiconductor nanoparticles. Front Physiol 2014; 5: 273-85.
[http://dx.doi.org/10.3389/fphys.2014.00273] [PMID: 25120488]
[151]
Wang W. Imaging the chemical activity of single nanoparticles with optical microscopy. Chem Soc Rev 2018; 47(7): 2485-508.
[http://dx.doi.org/10.1039/C7CS00451F] [PMID: 29542749]
[152]
Sharma S, Jaiswal S, Duffy B, Jaiswal AK. Nanostructured materials for food applications: Spectroscopy, microscopy and physical properties. Bioengineering (Basel) 2019; 6(1): 26-43.
[http://dx.doi.org/10.3390/bioengineering6010026] [PMID: 30893761]
[153]
Fazal-ur-Rehman M. Qayyum I, Rehman R. Nanotechnology: A great innovation in scientific research and technology-A review. Austin J Nanomed Nanotechnol 2019; 7(1): 1051-60.
[154]
Noble JM, Roberts LM, Vidavsky N, et al. Direct comparison of optical and electron microscopy methods for structural characterization of extracellular vesicles. J Struct Biol 2020; 210(1): 107474-81.
[http://dx.doi.org/10.1016/j.jsb.2020.107474] [PMID: 32032755]
[155]
Yu X-Y, Arey B, Chatterjee S, et al. Improving in situ liquid SEM imaging of particles. Surf Interface Anal 2019; 51: 1325-31.
[http://dx.doi.org/10.1002/sia.6700]
[156]
Anton N, Benoit J-P, Saulnier P. TEM makes distinction among nanoparticles, nano-capsules and emulsion droplets in conjunction with freeze-fracture methods. J Control Release 2008; 128(3): 185-99.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.007] [PMID: 18374443]
[157]
Abd El Hady WE, Mohamed EA, Soliman OAE, El-Sabbagh HM. In vitro-in vivo evaluation of chitosan-PLGA nanoparticles for potentiated gastric retention and anti-ulcer activity of diosmin. Int J Nanomedicine 2019; 14: 7191-213.
[http://dx.doi.org/10.2147/IJN.S213836] [PMID: 31564873]
[158]
Matsuura Y, Ouchi N, Nakamura A, Kato H. Determination of an accurate size distribution of nanoparticles using particle tracking analysis corrected for the adverse effect of random Brownian motion. Phys Chem Chem Phys 2018; 20(26): 17839-46.
[http://dx.doi.org/10.1039/C7CP08332G] [PMID: 29923555]
[159]
Pandey P, Dahiya M. A brief review on inorganic nanoparticles. J Crit Rev 2016; 3(3): 18-26.
[160]
Carvalho PM, Felício MR, Santos NC, Gonçalves S, Domingues MM. Application of light scattering techniques to nanoparticle characterization and development. Front Chem 2018; 6: 237-53.
[http://dx.doi.org/10.3389/fchem.2018.00237] [PMID: 29988578]
[161]
Hui F, Lanza M. Scanning probe microscopy for advanced nanoelectronics. Nat Electron 2019; 2: 221-9.
[http://dx.doi.org/10.1038/s41928-019-0264-8]
[162]
Hui F, Chen S, Liang X, et al. Graphene coated nanoprobes: A review. Crystals (Basel) 2017; 7: 269-90.
[http://dx.doi.org/10.3390/cryst7090269]
[163]
Zhou M, Wei Z, Qiao H, et al. Particle size and pore structure characterization of silver nanoparticles prepared by confined Arc plasma. J Nanomater 2009; 1: 1-6.
[http://dx.doi.org/10.1155/2009/968058]
[164]
Khandel P, Shahi SK. Mycogenic nanoparticles and their bio-prospective applications: Current status and future challenges. J Nanostruct Chem 2018; 8: 369-91.
[http://dx.doi.org/10.1007/s40097-018-0285-2]
[165]
Bhosale RR, Kulkarni AS, Glida SS, et al. Innovative eco-friendly approaches for green synthesis of silver nanoparticles. Int J Pharm Sci Nanotechnol 2014; 7(1): 2328-37.
[166]
Rasmussen K, Rauscher H, Mech A, et al. Physico-chemical properties of manufactured nanomaterials - Characterisation and relevant methods. An outlook based on the OECD Testing Programme. Regul Toxicol Pharmacol 2018; 92: 8-28.
[http://dx.doi.org/10.1016/j.yrtph.2017.10.019] [PMID: 29074277]
[167]
Elzoghby AO, Samy WM, Elgindy NA. Novel spray-dried genipin-crosslinked casein nanoparticles for prolonged release of alfuzosin hydrochloride. Pharm Res 2013; 30(2): 512-22.
[http://dx.doi.org/10.1007/s11095-012-0897-z] [PMID: 23135815]
[168]
Russo Krauss I, Merlino A, Vergara A, Sica F. An overview of biological macromolecule crystallization. Int J Mol Sci 2013; 14(6): 11643-91.
[http://dx.doi.org/10.3390/ijms140611643] [PMID: 23727935]
[169]
Saroha A, Pandey P, Kaushik D. Development of timolol maleate loaded chitosan nanoparticles for improved ocular delivery. Pharm Nanotechnol 2017; 5(4): 310-6.
[PMID: 28847270]
[170]
Montenegro L, Castelli F, Sarpietro MG. Differential scanning calorimetry analyses of idebenone-loaded solid lipid nanoparticles interactions with a model of bio-membrane: A comparison with in vitro skin permeation data. Pharmaceuticals (Basel) 2018; 11(4): 138-51.
[http://dx.doi.org/10.3390/ph11040138] [PMID: 30558360]
[171]
Kabri TH, Arab-Tehrany E, Belhaj N, Linder M. Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3. J Nanobiotechnol 2011; 9: 41-9.
[http://dx.doi.org/10.1186/1477-3155-9-41] [PMID: 21936893]
[172]
Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 2012; 7: 2767-81.
[PMID: 22745541]
[173]
D’Souza S. A review of in vitro drug release test methods for nano-sized dosage forms. Adv Pharm 2014; 1: 1-12.
[174]
Verma R, Kaushik D. Design and optimization of candesartan loaded self-nanoemulsifying drug delivery system for improving its dissolution rate and pharmacodynamic potential. Drug Deliv 2020; 27(1): 756-71.
[http://dx.doi.org/10.1080/10717544.2020.1760961] [PMID: 32397771]
[175]
Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK. Application of nanotechnology in food science: Perception and overview. Front Microbiol 2017; 8: 1501.
[http://dx.doi.org/10.3389/fmicb.2017.01501] [PMID: 28824605]
[176]
Smith DM, Simon JK, Baker JR Jr. Applications of nanotechnology for immunology. Nat Rev Immunol 2013; 13(8): 592-605.
[http://dx.doi.org/10.1038/nri3488] [PMID: 23883969]
[177]
Bradbury MS, Wiesner U, Medina OP, Burns A, Lewis JS, Larson . S.M. Multimodal silica based nanoparticles. US Patent 10548998B2, . 2020.
[178]
Harris TJ, Kim AAC. Ultrasound delivery of nanoparticles US Patent 10537640B2, . 2020.
[179]
Last SJ, Raboisson B, Rombouts G, Verschueren WG, Raboisson PJMB. Sulfamoyl-arylamides and the use thereof as medicaments for the treatment of Hepatitis B. AU Patent 2020201203A1,. 2020.
[180]
Cho SW, Kim JS, Kim JM, et al. Composition for cleaving a target DNA comprising a guide RNA specific for the target DNA and CAS protein-encoding nucleic acid or Cas protein, and use thereof. AU Patent 2020201485A1, . 2020.
[181]
Mirkin CA, Gilijohann DA, Seferos DS. Nucleic acid functionalized nanoparticles for therapeutic applications. US Patent 0370656B2, . 2019.
[182]
Valencia PM, Pridgen EM, Gadde S, et al. Karnik R, Langer RS, Lippard SJ, Farokhzad, OC. Nanoparticles for targeted delivery of multiple therapeutic agents and methods for use. US9931410B2, . 2018.
[183]
Stehr J, Buersgens F, Ullerich L. Method for the amplification ofnucleic acids using heat transfer for nanoparticles. US Patent 9926594B2,. 2018.
[184]
John V, McPherson G. Hollow nanoparticles with hybrid double layers. US Patent 20180071225A1,. 2018.
[185]
Desai NP, Soon-Shiong P. Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxanes. US Patent 9724323B2,. 2017.
[186]
Myrick JJ. Nanoparticles, compositions, manufacture and applications. US Patent 9765271B2, . 2017.
[187]
Kotyla T. Amphiphilic entity nanoparticles US Patent 9724299B2,. 2017.
[188]
Harris TJ, Kim AAC. Thermal treatment of the skin surface with metal nanoparticles in surfactant containing solution. US Patent 9439965B2, . 2016.
[189]
Edelson J, Kotyla T. Peptide nanoparticles and uses therefor. US Patent 9486409B2,. 2016.
[190]
Podobinski J, Ramstack JM, Dickey DS. Methods and systems for generating nanoparticles. US Patent 8618240B2,. 2013.
[191]
Hainfeld JF, Slatkin DN. Methods of enhancing radiation effects with metal nanoparticles. US8033977B2,. 2011.
[192]
Sung H-W, Lin Y-H, Tu H. Nanoparticles for drug delivery. US Patent 7879361B2,. 2011.
[193]
Kortshagen U, Thimsen EJ, Mangolini L, Bapat A, Jurbergs D. Process and apparatus for forming nanoparticles using radiofrequency plasmas. US Patent 7446335B2,. 2008.
[194]
Maccora D, Dini V, Battocchio C. Gold nanoparticles and nanorods in nuclear medicine: A mini review. Appl Sci (Basel) 2019; 9: 3232-43.
[http://dx.doi.org/10.3390/app9163232]
[195]
Clanton R, Gonzalez A, Shankar S, Akabani G. Rapid synthesis of 125I integrated gold nanoparticles for use in combined neoplasm imaging and targeted radionuclide therapy. Appl Radiat Isot 2018; 131: 49-57.
[http://dx.doi.org/10.1016/j.apradiso.2017.10.030] [PMID: 29121597]
[196]
Pandey P, Dureja H. Gold nanoparticles: A new path towards treatment of cancer Nanoparticles for the delivery of anticancer agents. Germany: Lap Lambert Academic Publishing 2016; pp. 96-129.
[197]
Chang CC, Chen CP, Wu TH, Yang CH, Lin CW, Chen CY. Gold nanoparticle-based colorimetric strategies for chemical and biological sensing applications. Nanomaterials (Basel) 2019; 9(6): 861-77.
[http://dx.doi.org/10.3390/nano9060861] [PMID: 31174348]
[198]
Lee YJ, Song K, Cha SH, Cho S, Kim YS, Park Y. Sesquiterpenoids from tussilago farfara flower bud extract for the eco-friendly synthesis of silver and gold nanoparticles possessing antibacterial and anticancer activities. Nanomaterials (Basel) 2019; 9(6): 819-32.
[http://dx.doi.org/10.3390/nano9060819] [PMID: 31151313]
[199]
Fratoddi I, Venditti I, Battocchio C, et al. Highly hydrophilic gold nanoparticles as carrier for anticancer copper (I) complexes: loading and release studies for biomedical applications. Nanomaterials (Basel) 2019; 9(5): 772-87.
[http://dx.doi.org/10.3390/nano9050772] [PMID: 31137492]
[200]
Fratoddi I, Benassi L, Botti E, et al. Effects of topical methotrexate loaded gold nanoparticle in cutaneous inflammatory mouse model. Nanomedicine (Lond) 2019; 17: 276-86.
[http://dx.doi.org/10.1016/j.nano.2019.01.006] [PMID: 30708054]
[201]
Zhang W, Caldarola M, Lu X, Pradhan B, Orrit M. Single-molecule fluorescence enhancement of a near-infrared dye by gold nanorods using DNA transient binding. Phys Chem Chem Phys 2018; 20(31): 20468-75.
[http://dx.doi.org/10.1039/C8CP03114B] [PMID: 30043814]
[202]
Chen Z, Choi CKK, Wang Q. Origin of the plasmonic chirality of gold nanorod trimers templated by DNA origami. ACS Appl Mater Interfaces 2018; 10(32): 26835-40.
[http://dx.doi.org/10.1021/acsami.8b11167] [PMID: 30073831]
[203]
González López MA, Gutiérrez Cárdenas EM, Sánchez Cruz C, et al. Reducing the effective dose of cisplatin using gold nanoparticles as carriers. Cancer Nano 2020; 11(4): 1-15.
[http://dx.doi.org/10.1186/s12645-020-00060-w]
[204]
Mangadlao JD, Wang X, McCleese C, et al. Prostate-specific membrane antigen targeted gold nanoparticles for theranostic of prostate cancer. ACS Nano 2018; 12(4): 3714-25.
[http://dx.doi.org/10.1021/acsnano.8b00940] [PMID: 29641905]
[205]
Durazzo A, Nazhand A, Lucarini M, et al. An updated overview on nanonutraceuticals: Focus on nanoprebiotics and nanoprobiotics. Int J Mol Sci 2020; 21(7): 2285-302.
[http://dx.doi.org/10.3390/ijms21072285] [PMID: 32225036]
[206]
Kim WS, Han GG, Hong L, et al. Novel production of natural bacteriocin via internalization of dextran nanoparticles into probiotics Biomaterials 2019; 218: 119360-85..
[http://dx.doi.org/10.1016/j.biomaterials.2019.119360] [PMID: 31336278]
[207]
Hong L, Kim WS, Lee SM, Kang SK, Choi YJ, Cho CS. Pullulan nanoparticles as prebiotics enhance the antibacterial properties of Lactobacillus plantarum through the induction of mild stress in probiotics. Front Microbiol 2019; 10: 142-62.
[http://dx.doi.org/10.3389/fmicb.2019.00142] [PMID: 30787918]
[208]
Khan ST, Saleem S, Ahamed M, Ahmad J. Survival of probiotic bacteria in the presence of food grade nanoparticles from chocolates: An in vitro and in vivo study. Appl Microbiol Biotechnol 2019; 103(16): 6689-700.
[http://dx.doi.org/10.1007/s00253-019-09918-5] [PMID: 31201450]
[209]
Liu JM, Zhao N, Wang ZH, Lv SW, Li CY, Wang SS. In-taken labeling and in vivo tracing foodborne probiotics via DNA-encapsulated persistent luminescence nanoprobe assisted autofluorescence-free bioimaging. J Agric Food Chem 2019; 67(1): 514-9.
[http://dx.doi.org/10.1021/acs.jafc.8b05937] [PMID: 30563334]
[210]
United States Patent Application. Available at:. http://www.freepatentsonline.com/y2020/0138727.html
[211]
United States Patent Application. Available at:. http://www.freepatentsonline.com/y2020/0147029.html
[212]
United States Patent Application. Available at:. http://www.freepatentsonline.com/y2020/0146995.html

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy