[1]
Palani TK, Parvathavarthini B, Chitra K. Segmentation of brain regions by integrating meta heuristic multilevel threshold with Markov random field. Curr Med Imaging 2016; 12(1): 4-12.
[2]
Rajinikanth V, Raja NSM, Kamalanand K. Firefly algorithm assisted segmentation of tumor from brain MRI using Tsallis function and Markov random field. J Contr Engineer Appl Inform 2018; 19(3): 97-106.
[3]
Dey N, Rajinikanth V, Ashour AS, Tavares JMRS. Social group optimization supported segmentation and evaluation of skin melanoma images. Symmetry 2018; 10(2): 51.
[4]
Ramsha B, Maryam B, Anmol H, Sumaira K, Shahzad K. Deep learning approaches towards skin lesion segmentation and classification from dermoscopic images-a review. Curr Med Imaging 2020; 16(5): 513-33.
[5]
Bajwa UI, Alam S. Nuhman ul Haq, Ratyal NI, Anwar W. Skin disease classification using neural network. Curr Med Imaging 2020; 16(6): 711-9.
[6]
Zhi H, Ou B, Luo BM, Feng X, Wen YL, Yang HY. Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. J Ultras Med 2007; 26(6): 807-15.
[7]
Raja NSM, Rajinikanth V, Fernandes SL, Satapathy SC. Segmentation of breast thermal images using Kapur’s entropy and hidden Markov random field. J Med Imaging Health Inform 2017; 7(8): 1825-9.
[8]
Schwendicke F, Golla T, Dreher M, Krois J. Convolutional neural networks for dental image diagnostics: a scoping review. J Dentistry 2019; 91 103226.
[9]
Fernandes SL, Rajinikanth V, Kadry S. A hybrid framework to evaluate breast abnormality using infrared thermal images. IEEE Consum Electr Mag 2019; 8(5): 31-6.