Abstract
Background: Dopamine Receptor (DR) gene family play an essential role in the regulation of Interleukin- 6 (IL-6) production. Our prior analysis of human prostate biopsy samples demonstrated the increased expression of IL-6 and a downregulating trend for dopamine receptor gene family.
Objective: The objective was to investigate the expression of dopamine receptors, their catabolizing enzyme and IL-6 in prostate cancer cell lines and assess pharmacological effect of dopamine receptor modulators as a novel class of drugs repurposed for the treatment of prostate cancer.
Methods: The therapeutic effect of dopamine, DR agonists, and DR antagonist were examined using LNCaP and PC3 cell lines. Cell viability and proliferation were assessed by MTT assay and proliferating cell nuclear antigen expression analysis, respectively. Furthermore, bax/bcl2 ratio, immunofluorescence assay and flow cytometric assay were performed for apoptosis analysis. RT- qPCR analysis was used to characterize the relative expression of dopamine-related genes, catabolic enzyme Catechol-o-Methyl-Transferase (COMT) and IL-6 before and after treatment to assess the therapeutic effects of drugs.
Results: LNCaP cells express DRD1, DRD2, DRD5 and COMT genes and PC3 cells only express IL-6 gene. In-vitro, dopamine receptor agonists reduced cell viability of LNCaP and PC3 cells. In contrast, dopamine and dopamine receptor antagonist significantly increased tumor growth in PC3 cells.
Conclusion: Our results offer novel suggestion for a pathogenic role of dopamine receptor signaling in prostate cancer adenocarcinoma and indicates that modulators of DR- IL-6 pathway, including FDA-approved drug bromocriptine, might be utilized as novel drug repurposing strategy.
Keywords: Dopamine receptors, agonist, antagonist, prostate cancer, apoptosis, Interleukin-6 (IL-6).
Graphical Abstract
[http://dx.doi.org/10.1101/cshperspect.a030361] [PMID: 29311132]
[http://dx.doi.org/10.5812/ircmj.42071]
[http://dx.doi.org/10.1016/j.bcp.2014.12.023] [PMID: 25593038]
[http://dx.doi.org/10.1016/j.tibs.2016.10.009] [PMID: 27876551]
[http://dx.doi.org/10.1002/(SICI)1097-0045(19991001)41:2<127:AID-PROS7>3.0.CO;2-H] [PMID: 10477909]
(b)Engelhardt, P.F.; Seklehner, S.; Brustmann, H.; Lusuardi, L.; Riedl, C.R. Immunohistochemical expression of interleukin-2 receptor and interleukin-6 in patients with prostate cancer and benign prostatic hyperplasia: Association with asymptomatic inflammatory prostatitis NIH category IV. Scand. J. Urol., 2015, 49(2), 120-126.
[http://dx.doi.org/10.3109/21681805.2014.971427] [PMID: 25363611]
[http://dx.doi.org/10.1111/bju.12452] [PMID: 24053309]
(b)Culig, Z.; Puhr, M. Interleukin-6 and prostate cancer: Current developments and unsolved questions. Mol. Cell. Endocrinol., 2018, 462(Pt A), 25-30.
[http://dx.doi.org/10.1016/j.mce.2017.03.012] [PMID: 28315704]
(c)Kumari, N.; Dwarakanath, B.S.; Das, A.; Bhatt, A.N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol., 2016, 37(9), 11553-11572.
[http://dx.doi.org/10.1007/s13277-016-5098-7] [PMID: 27260630]
[http://dx.doi.org/10.1186/cc2879] [PMID: 15566620]
[http://dx.doi.org/10.1177/1179069518779829] [PMID: 29899667]
[http://dx.doi.org/10.1074/jbc.M111.262790] [PMID: 21846718]
[http://dx.doi.org/10.1158/1055-9965.EPI-17-0453] [PMID: 28939587]
[http://dx.doi.org/10.1126/science.aaq0365] [PMID: 29051365]
[http://dx.doi.org/10.1002/ijc.20410] [PMID: 15352035]
[http://dx.doi.org/10.1126/science.1236361] [PMID: 23846904]
(b)Jobling, P.; Pundavela, J.; Oliveira, S.M.; Roselli, S.; Walker, M.M.; Hondermarck, H. Nerve-cancer cell cross-talk: A novel promoter of tumor progression. Cancer Res., 2015, 75(9), 1777-1781.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3180] [PMID: 25795709]
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[http://dx.doi.org/10.1016/j.pneurobio.2016.03.011] [PMID: 27234980]
[http://dx.doi.org/10.1093/nar/30.1.412] [PMID: 11752352]
(b)Lam, Y.W. Clinical pharmacology of dopamine agonists. Pharmacotherapy, 2000, 20(1 Pt 2), 17S-25S.
[PMID: 10641988]
(c)Kvernmo, T.; Houben, J.; Sylte, I. Receptor-binding and pharmacokinetic properties of dopaminergic agonists. Curr. Top. Med. Chem., 2008, 8(12), 1049-1067.
[http://dx.doi.org/10.2174/156802608785161457] [PMID: 18691132]
[http://dx.doi.org/10.1177/070674370204700106] [PMID: 11873706]
[http://dx.doi.org/10.1016/S0893-133X(96)00187-X]
(b)Christian, A.J.; Goodwin, A.K.; Baker, L.E. Antagonism of the discriminative stimulus effects of (+)-7-OH-DPAT by remoxipride but not PNU-99194A. Pharmacol. Biochem. Behav., 2001, 68(3), 371-377.
[http://dx.doi.org/10.1016/S0091-3057(00)00470-6] [PMID: 11325388]
[http://dx.doi.org/10.1007/s40618-014-0212-4] [PMID: 25421155]
[http://dx.doi.org/10.1186/s12885-015-1267-0] [PMID: 25884948]
[PMID: 7384082]
[PMID: 447482]
[http://dx.doi.org/10.1002/pros.21383] [PMID: 21432867]
[http://dx.doi.org/10.1002/chem.201701384] [PMID: 28512752]
(b)Qian, X-K.; Wang, P.; Xia, Y-L.; Dou, T-Y.; Jin, Q.; Wang, D-D.; Hao, D-C.; Bi, X-L.; Ge, G-B.; Yang, L. A highly selective fluorescent probe for sensing activities of catechol-O-methyltransferase in complex biological samples. Sens. Actuators B Chem., 2016, 231, 615-623.
[http://dx.doi.org/10.1016/j.snb.2016.03.074]
[http://dx.doi.org/10.1677/JOE-10-0342] [PMID: 20876239]
(b)Yang, Y.; Mamouni, K.; Li, X.; Chen, Y.; Kavuri, S.; Du, Y.; Fu, H.; Kucuk, O.; Wu, D. Repositioning dopamine D2 receptor agonist bromocriptine to enhance docetaxel chemotherapy and treat bone metastatic prostate cancer. Mol. Cancer Ther., 2018, 17(9), 1859-1870.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1176] [PMID: 29907594]
[PMID: 8988055]
[http://dx.doi.org/10.2174/1566524019666190709180146] [PMID: 31288722]
[http://dx.doi.org/10.1016/j.mehy.2012.03.026] [PMID: 22543071]
(b)Shaw, V.; Srivastava, S.; Srivastava, S.K. Repurposing antipsychotics of the diphenylbutylpiperidine class for cancer therapy. Semin. Cancer Biol., 2019. In Press
[http://dx.doi.org/10.1016/j.semcancer.2019.10.007] [PMID: 31618686]
[http://dx.doi.org/10.1016/j.pharmthera.2017.05.009] [PMID: 28549597]
(b)Horti, J.; Figg, W.D.; Weinberger, B.; Kohler, D.; Sartor, O. A phase II study of bromocriptine in patients with androgen-independent prostate cancer. Oncol. Rep., 1998, 5(4), 893-896.
[http://dx.doi.org/10.3892/or.5.4.893] [PMID: 9625840]
(c)Costello, L.C.; Franklin, R.B. A proposed efficacious treatment with Clioquinol (zinc ionophore) and Cabergoline (prolactin dopamine agonist) for the treatment of terminal androgen-independent prostate cancer. Why and how? J. Clin. Res. Oncol., 2019, 2(1)
[http://dx.doi.org/10.7150/jca.27780] [PMID: 31205518]
[PMID: 19795457]
[http://dx.doi.org/10.2174/1574892810666150416111831] [PMID: 25876608]
(b)Zhang, S.; Gera, L.; Mamouni, K.; Li, X.; Chen, Z.; Kucuk, O.; Wu, D. Inhibition of skeletal growth of human prostate cancer by the combination of docetaxel and BKM1644: An aminobisphosphonate derivative. Oncotarget, 2016, 7(19), 27489-27498.
[http://dx.doi.org/10.18632/oncotarget.8481] [PMID: 27050371]
(c)Wasko, R.; Wolun-Cholewa, M.; Bolko, P.; Kotwicka, M. Effect of bromocriptine on cell apoptosis and proliferation in GH3 cell culture. Neuroendocrinol. Lett., 2004, 25(3), 223-228.
[PMID: 15349090]
[http://dx.doi.org/10.1053/j.gastro.2016.08.040] [PMID: 27578530]
(b)Sachlos, E.; Risueño, R.M.; Laronde, S.; Shapovalova, Z.; Lee, J-H.; Russell, J.; Malig, M.; McNicol, J.D.; Fiebig-Comyn, A.; Graham, M.; Levadoux-Martin, M.; Lee, J.B.; Giacomelli, A.O.; Hassell, J.A.; Fischer-Russell, D.; Trus, M.R.; Foley, R.; Leber, B.; Xenocostas, A.; Brown, E.D.; Collins, T.J.; Bhatia, M. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell, 2012, 149(6), 1284-1297.
[http://dx.doi.org/10.1016/j.cell.2012.03.049] [PMID: 22632761]
(c)Yin, T.; He, S.; Shen, G.; Ye, T.; Guo, F.; Wang, Y. Dopamine receptor antagonist thioridazine inhibits tumor growth in a murine breast cancer model. Mol. Med. Rep., 2015, 12(3), 4103-4108.
[http://dx.doi.org/10.3892/mmr.2015.3967] [PMID: 26095429]
[PMID: 8394362]
[http://dx.doi.org/10.1007/s00213-011-2247-y] [PMID: 21394633]
[http://dx.doi.org/10.1016/0304-3940(87)90608-2] [PMID: 3037450]
[http://dx.doi.org/10.1002/ijc.23562] [PMID: 18470912]
[http://dx.doi.org/10.4161/cbt.7.12.6957] [PMID: 18981718]
[http://dx.doi.org/10.1038/aps.2017.24] [PMID: 28649130]
[http://dx.doi.org/10.1097/00029330-200706010-00006] [PMID: 17624264]
(b)Ganguly, S.; Basu, B.; Shome, S.; Jadhav, T.; Roy, S.; Majumdar, J.; Dasgupta, P.S.; Basu, S. Dopamine, by acting through its D2 receptor, inhibits Insulin-like Growth Factor-I (IGF-I)-induced gastric cancer cell proliferation via up-regulation of Krüppel-like factor 4 through down-regulation of IGF-IR and AKT phosphorylation. Am. J. Pathol., 2010, 177(6), 2701-2707.
[http://dx.doi.org/10.2353/ajpath.2010.100617] [PMID: 21075859]
(c)Hoeppner, L.H.; Wang, Y.; Sharma, A.; Javeed, N.; Van Keulen, V.P.; Wang, E.; Yang, P.; Roden, A.C.; Peikert, T.; Molina, J.R.; Mukhopadhyay, D. Dopamine D2 receptor agonists inhibit lung cancer progression by reducing angiogenesis and tumor infiltrating myeloid derived suppressor cells. Mol. Oncol., 2015, 9(1), 270-281.
[http://dx.doi.org/10.1016/j.molonc.2014.08.008] [PMID: 25226814]
[http://dx.doi.org/10.1186/s12967-016-1007-5] [PMID: 27604463]