Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Characterization of Dopamine Receptor Associated Drugs on the Proliferation and Apoptosis of Prostate Cancer Cell Lines

Author(s): Fatemeh Akbarian, Farid Dadkhah, Arezoo Campbell, Farrokh Asadi and Ghasem Ahangari*

Volume 21, Issue 9, 2021

Published on: 31 August, 2020

Page: [1160 - 1171] Pages: 12

DOI: 10.2174/1871520620999200831110243

Price: $65

Abstract

Background: Dopamine Receptor (DR) gene family play an essential role in the regulation of Interleukin- 6 (IL-6) production. Our prior analysis of human prostate biopsy samples demonstrated the increased expression of IL-6 and a downregulating trend for dopamine receptor gene family.

Objective: The objective was to investigate the expression of dopamine receptors, their catabolizing enzyme and IL-6 in prostate cancer cell lines and assess pharmacological effect of dopamine receptor modulators as a novel class of drugs repurposed for the treatment of prostate cancer.

Methods: The therapeutic effect of dopamine, DR agonists, and DR antagonist were examined using LNCaP and PC3 cell lines. Cell viability and proliferation were assessed by MTT assay and proliferating cell nuclear antigen expression analysis, respectively. Furthermore, bax/bcl2 ratio, immunofluorescence assay and flow cytometric assay were performed for apoptosis analysis. RT- qPCR analysis was used to characterize the relative expression of dopamine-related genes, catabolic enzyme Catechol-o-Methyl-Transferase (COMT) and IL-6 before and after treatment to assess the therapeutic effects of drugs.

Results: LNCaP cells express DRD1, DRD2, DRD5 and COMT genes and PC3 cells only express IL-6 gene. In-vitro, dopamine receptor agonists reduced cell viability of LNCaP and PC3 cells. In contrast, dopamine and dopamine receptor antagonist significantly increased tumor growth in PC3 cells.

Conclusion: Our results offer novel suggestion for a pathogenic role of dopamine receptor signaling in prostate cancer adenocarcinoma and indicates that modulators of DR- IL-6 pathway, including FDA-approved drug bromocriptine, might be utilized as novel drug repurposing strategy.

Keywords: Dopamine receptors, agonist, antagonist, prostate cancer, apoptosis, Interleukin-6 (IL-6).

Graphical Abstract

[1]
Pernar, C.H.; Ebot, E.M.; Wilson, K.M.; Mucci, L.A. The epidemiology of prostate cancer. Cold Spring Harb. Perspect. Med., 2018, 8(12), a030361.
[http://dx.doi.org/10.1101/cshperspect.a030361] [PMID: 29311132]
[2]
Mohammadi, G.; Akbari, M.E.; Mehrabi, Y.; Motlagh, A.G.; Heidari, M.; Ghanbari, S. Analysis of cancer incidence and mortality in Iran using joinpoint regression analysis. Iran. Red Crescent Med. J., 2017, 19(3), e42071.
[http://dx.doi.org/10.5812/ircmj.42071]
[3]
Howlader, N.; Noone, A.; Krapcho, M.; Miller, D.; Bishop, K.; Altekruse, S.; Kosary, C.; Yu, M.; Ruhl, J.; Tatalovich, Z. SEER cancer statistics review, 1975-2013; National Cancer Institute: Bethesda, MD, 2016, p. 19.
[4]
Thapa, D.; Ghosh, R. Chronic inflammatory mediators enhance prostate cancer development and progression. Biochem. Pharmacol., 2015, 94(2), 53-62.
[http://dx.doi.org/10.1016/j.bcp.2014.12.023] [PMID: 25593038]
[5]
Jope, R.S.; Cheng, Y.; Lowell, J.A.; Worthen, R.J.; Sitbon, Y.H.; Beurel, E. Stressed and inflamed, can GSK3 be blamed? Trends Biochem. Sci., 2017, 42(3), 180-192.
[http://dx.doi.org/10.1016/j.tibs.2016.10.009] [PMID: 27876551]
[6]
(a)Drachenberg, D.E.; Elgamal, A.A.A.; Rowbotham, R.; Peterson, M.; Murphy, G.P. Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer. Prostate, 1999, 41(2), 127-133.
[http://dx.doi.org/10.1002/(SICI)1097-0045(19991001)41:2<127:AID-PROS7>3.0.CO;2-H] [PMID: 10477909]
(b)Engelhardt, P.F.; Seklehner, S.; Brustmann, H.; Lusuardi, L.; Riedl, C.R. Immunohistochemical expression of interleukin-2 receptor and interleukin-6 in patients with prostate cancer and benign prostatic hyperplasia: Association with asymptomatic inflammatory prostatitis NIH category IV. Scand. J. Urol., 2015, 49(2), 120-126.
[http://dx.doi.org/10.3109/21681805.2014.971427] [PMID: 25363611]
[7]
(a)Nguyen, D.P.; Li, J.; Tewari, A.K. Inflammation and prostate cancer: The role of interleukin 6 (IL-6). BJU Int., 2014, 113(6), 986-992.
[http://dx.doi.org/10.1111/bju.12452] [PMID: 24053309]
(b)Culig, Z.; Puhr, M. Interleukin-6 and prostate cancer: Current developments and unsolved questions. Mol. Cell. Endocrinol., 2018, 462(Pt A), 25-30.
[http://dx.doi.org/10.1016/j.mce.2017.03.012] [PMID: 28315704]
(c)Kumari, N.; Dwarakanath, B.S.; Das, A.; Bhatt, A.N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol., 2016, 37(9), 11553-11572.
[http://dx.doi.org/10.1007/s13277-016-5098-7] [PMID: 27260630]
[8]
Beck, G.C.; Brinkkoetter, P.; Hanusch, C.; Schulte, J.; van Ackern, K.; van der Woude, F.J.; Yard, B.A. Clinical review: Immunomodulatory effects of dopamine in general inflammation. Crit. Care, 2004, 8(6), 485-491.
[http://dx.doi.org/10.1186/cc2879] [PMID: 15566620]
[9]
Vidal, P.M.; Pacheco, R. Targeting the Dopaminergic System in Autoimmunity. J. Neuroimmune Pharmacol., 2020, 15(1), 57-73.
[10]
Mishra, A.; Singh, S.; Shukla, S. Physiological and functional basis of dopamine receptors and their role in neurogenesis: Possible implication for Parkinson’s disease. J. Exp. Neurosci., 2018, 12, 1179069518779829-1179069518779829.
[http://dx.doi.org/10.1177/1179069518779829] [PMID: 29899667]
[11]
Chen, J.; Song, J.; Yuan, P.; Tian, Q.; Ji, Y.; Ren-Patterson, R.; Liu, G.; Sei, Y.; Weinberger, D.R. Orientation and cellular distribution of membrane-bound catechol-O-methyltransferase in cortical neurons: implications for drug development. J. Biol. Chem., 2011, 286(40), 34752-34760.
[http://dx.doi.org/10.1074/jbc.M111.262790] [PMID: 21846718]
[12]
Lu, D.; Carlsson, J.; Penney, K.L.; Davidsson, S.; Andersson, S.O.; Mucci, L.A.; Valdimarsdóttir, U.; Andrén, O.; Fang, F.; Fall, K. Expression and genetic variation in neuroendocrine signaling pathways in lethal and nonlethal prostate cancer among men diagnosed with localized disease. Cancer Epidemiol. Biomarkers Prev., 2017, 26(12), 1781-1787.
[http://dx.doi.org/10.1158/1055-9965.EPI-17-0453] [PMID: 28939587]
[13]
Hayakawa, Y.; Wang, T.C. Nerves switch on angiogenic metabolism. Science, 2017, 358(6361), 305-306.
[http://dx.doi.org/10.1126/science.aaq0365] [PMID: 29051365]
[14]
Lang, K.; Drell, T.L., IV; Lindecke, A.; Niggemann, B.; Kaltschmidt, C.; Zaenker, K.S.; Entschladen, F. Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int. J. Cancer, 2004, 112(2), 231-238.
[http://dx.doi.org/10.1002/ijc.20410] [PMID: 15352035]
[15]
(a)Magnon, C.; Hall, S.J.; Lin, J.; Xue, X.; Gerber, L.; Freedland, S.J.; Frenette, P.S. Autonomic nerve development contributes to prostate cancer progression. Science, 2013, 341(6142), 1236361.
[http://dx.doi.org/10.1126/science.1236361] [PMID: 23846904]
(b)Jobling, P.; Pundavela, J.; Oliveira, S.M.; Roselli, S.; Walker, M.M.; Hondermarck, H. Nerve-cancer cell cross-talk: A novel promoter of tumor progression. Cancer Res., 2015, 75(9), 1777-1781.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3180] [PMID: 25795709]
[16]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[17]
Butini, S.; Nikolic, K.; Kassel, S.; Brückmann, H.; Filipic, S.; Agbaba, D.; Gemma, S.; Brogi, S.; Brindisi, M.; Campiani, G.; Stark, H. Polypharmacology of dopamine receptor ligands. Prog. Neurobiol., 2016, 142, 68-103.
[http://dx.doi.org/10.1016/j.pneurobio.2016.03.011] [PMID: 27234980]
[18]
(a)Chen, X.; Ji, Z.L.; Chen, Y.Z. TTD: Therapeutic target database. Nucleic Acids Res., 2002, 30(1), 412-415.
[http://dx.doi.org/10.1093/nar/30.1.412] [PMID: 11752352]
(b)Lam, Y.W. Clinical pharmacology of dopamine agonists. Pharmacotherapy, 2000, 20(1 Pt 2), 17S-25S.
[PMID: 10641988]
(c)Kvernmo, T.; Houben, J.; Sylte, I. Receptor-binding and pharmacokinetic properties of dopaminergic agonists. Curr. Top. Med. Chem., 2008, 8(12), 1049-1067.
[http://dx.doi.org/10.2174/156802608785161457] [PMID: 18691132]
[19]
Seeman, P. Atypical antipsychotics: Mechanism of action. Can. J. Psychiatry, 2002, 47(1), 27-38.
[http://dx.doi.org/10.1177/070674370204700106] [PMID: 11873706]
[20]
(a)Seeman, P.; Corbett, R.; Van Tol, H.H. Atypical neuroleptics have low affinity for dopamine D2 receptors or are selective for D4 receptors. Neuropsychopharmacology, 1997, 16(2), 93-110.
[http://dx.doi.org/10.1016/S0893-133X(96)00187-X]
(b)Christian, A.J.; Goodwin, A.K.; Baker, L.E. Antagonism of the discriminative stimulus effects of (+)-7-OH-DPAT by remoxipride but not PNU-99194A. Pharmacol. Biochem. Behav., 2001, 68(3), 371-377.
[http://dx.doi.org/10.1016/S0091-3057(00)00470-6] [PMID: 11325388]
[21]
Arduc, A.; Gokay, F.; Isik, S.; Ozuguz, U.; Akbaba, G.; Tutuncu, Y.; Berker, D.; Kucukler, F.K.; Aydin, Y.; Guler, S. Retrospective comparison of cabergoline and bromocriptine effects in hyperprolactinemia: A single center experience. J. Endocrinol. Invest., 2015, 38(4), 447-453.
[http://dx.doi.org/10.1007/s40618-014-0212-4] [PMID: 25421155]
[22]
Gao, H.; Wang, F.; Lan, X.; Li, C.; Feng, J.; Bai, J.; Cao, L.; Gui, S.; Hong, L.; Zhang, Y. Lower PRDM2 expression is associated with dopamine-agonist resistance and tumor recurrence in prolactinomas. BMC Cancer, 2015, 15(1), 272.
[http://dx.doi.org/10.1186/s12885-015-1267-0] [PMID: 25884948]
[23]
Horoszewicz, J.S.; Leong, S.S.; Chu, T.M.; Wajsman, Z.L.; Friedman, M.; Papsidero, L.; Kim, U.; Chai, L.S.; Kakati, S.; Arya, S.K.; Sandberg, A.A. The LNCaP cell line--a new model for studies on human prostatic carcinoma. Prog. Clin. Biol. Res., 1980, 37, 115-132.
[PMID: 7384082]
[24]
Kaighn, M.E.; Narayan, K.S.; Ohnuki, Y.; Lechner, J.F.; Jones, L.W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest. Urol., 1979, 17(1), 16-23.
[PMID: 447482]
[25]
Tai, S.; Sun, Y.; Squires, J.M.; Zhang, H.; Oh, W.K.; Liang, C-Z.; Huang, J. PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate, 2011, 71(15), 1668-1679.
[http://dx.doi.org/10.1002/pros.21383] [PMID: 21432867]
[26]
(a)Wang, P.; Xia, Y.L.; Zou, L.W.; Qian, X.K.; Dou, T.Y.; Jin, Q.; Li, S.Y.; Yu, Y.; Wang, D.D.; Luo, Q.; Ge, G.B.; Yang, L. An optimized two-photon fluorescent probe for biological sensing and imaging of catechol-O-methyltransferase. Chemistry, 2017, 23(45), 10800-10807.
[http://dx.doi.org/10.1002/chem.201701384] [PMID: 28512752]
(b)Qian, X-K.; Wang, P.; Xia, Y-L.; Dou, T-Y.; Jin, Q.; Wang, D-D.; Hao, D-C.; Bi, X-L.; Ge, G-B.; Yang, L. A highly selective fluorescent probe for sensing activities of catechol-O-methyltransferase in complex biological samples. Sens. Actuators B Chem., 2016, 231, 615-623.
[http://dx.doi.org/10.1016/j.snb.2016.03.074]
[27]
(a)Arvigo, M.; Gatto, F.; Ruscica, M.; Ameri, P.; Dozio, E.; Albertelli, M.; Culler, M.D.; Motta, M.; Minuto, F.; Magni, P.; Ferone, D. Somatostatin and dopamine receptor interaction in prostate and lung cancer cell lines. J. Endocrinol., 2010, 207(3), 309-317.
[http://dx.doi.org/10.1677/JOE-10-0342] [PMID: 20876239]
(b)Yang, Y.; Mamouni, K.; Li, X.; Chen, Y.; Kavuri, S.; Du, Y.; Fu, H.; Kucuk, O.; Wu, D. Repositioning dopamine D2 receptor agonist bromocriptine to enhance docetaxel chemotherapy and treat bone metastatic prostate cancer. Mol. Cancer Ther., 2018, 17(9), 1859-1870.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1176] [PMID: 29907594]
[28]
Okamoto, M.; Lee, C.; Oyasu, R. Interleukin-6 as a paracrine and autocrine growth factor in human prostatic carcinoma cells in vitro. Cancer Res., 1997, 57(1), 141-146.
[PMID: 8988055]
[29]
Akbarian, F.; Abolhasani, M.; Dadkhah, F.; Asadi, F.; Ahangari, G. Novel insight into differential gene expression and clinical significance of dopamine receptors, COMT, and IL6 in BPH and prostate cancer. Curr. Mol. Med., 2019, 19(8), 605-619.
[http://dx.doi.org/10.2174/1566524019666190709180146] [PMID: 31288722]
[30]
(a)Fond, G.; Macgregor, A.; Attal, J.; Larue, A.; Brittner, M.; Ducasse, D.; Capdevielle, D. Antipsychotic drugs: Pro-cancer or anti-cancer? A systematic review. Med. Hypotheses, 2012, 79(1), 38-42.
[http://dx.doi.org/10.1016/j.mehy.2012.03.026] [PMID: 22543071]
(b)Shaw, V.; Srivastava, S.; Srivastava, S.K. Repurposing antipsychotics of the diphenylbutylpiperidine class for cancer therapy. Semin. Cancer Biol., 2019. In Press
[http://dx.doi.org/10.1016/j.semcancer.2019.10.007] [PMID: 31618686]
[31]
(a)Goffin, V. Prolactin receptor targeting in breast and prostate cancers: New insights into an old challenge. Pharmacol. Ther., 2017, 179, 111-126.
[http://dx.doi.org/10.1016/j.pharmthera.2017.05.009] [PMID: 28549597]
(b)Horti, J.; Figg, W.D.; Weinberger, B.; Kohler, D.; Sartor, O. A phase II study of bromocriptine in patients with androgen-independent prostate cancer. Oncol. Rep., 1998, 5(4), 893-896.
[http://dx.doi.org/10.3892/or.5.4.893] [PMID: 9625840]
(c)Costello, L.C.; Franklin, R.B. A proposed efficacious treatment with Clioquinol (zinc ionophore) and Cabergoline (prolactin dopamine agonist) for the treatment of terminal androgen-independent prostate cancer. Why and how? J. Clin. Res. Oncol., 2019, 2(1)
[32]
Wang, X.; Wang, Z-B.; Luo, C.; Mao, X-Y.; Li, X.; Yin, J-Y.; Zhang, W.; Zhou, H-H.; Liu, Z-Q. The prospective value of dopamine receptors on Bio-behavior of tumor. J. Cancer, 2019, 10(7), 1622-1632.
[http://dx.doi.org/10.7150/jca.27780] [PMID: 31205518]
[33]
Coufal, M.; Invernizzi, P.; Gaudio, E.; Bernuzzi, F.; Frampton, G.A.; Onori, P.; Franchitto, A.; Carpino, G.; Ramirez, J.C.; Alvaro, D.; Marzioni, M.; Battisti, G.; Benedetti, A.; DeMorrow, S. Increased local dopamine secretion has growth-promoting effects in cholangiocarcinoma. Int. J. Cancer, 2010, 126(9), 2112-2122.
[PMID: 19795457]
[34]
(a)Pornour, M.; Ahangari, G.; Hejazi, S.H.; Deezagi, A. New perspective therapy of breast cancer based on selective dopamine receptor D2 agonist and antagonist effects on MCF-7 cell line. Rec. Pat. Anticancer Drug Discov., 2015, 10(2), 214-223.
[http://dx.doi.org/10.2174/1574892810666150416111831] [PMID: 25876608]
(b)Zhang, S.; Gera, L.; Mamouni, K.; Li, X.; Chen, Z.; Kucuk, O.; Wu, D. Inhibition of skeletal growth of human prostate cancer by the combination of docetaxel and BKM1644: An aminobisphosphonate derivative. Oncotarget, 2016, 7(19), 27489-27498.
[http://dx.doi.org/10.18632/oncotarget.8481] [PMID: 27050371]
(c)Wasko, R.; Wolun-Cholewa, M.; Bolko, P.; Kotwicka, M. Effect of bromocriptine on cell apoptosis and proliferation in GH3 cell culture. Neuroendocrinol. Lett., 2004, 25(3), 223-228.
[PMID: 15349090]
[35]
(a)Jandaghi, P.; Najafabadi, H.S.; Bauer, A.S.; Papadakis, A.I.; Fassan, M.; Hall, A.; Monast, A.; von Knebel Doeberitz, M.; Neoptolemos, J.P.; Costello, E.; Greenhalf, W.; Scarpa, A.; Sipos, B.; Auld, D.; Lathrop, M.; Park, M.; Büchler, M.W.; Strobel, O.; Hackert, T.; Giese, N.A.; Zogopoulos, G.; Sangwan, V.; Huang, S.; Riazalhosseini, Y.; Hoheisel, J.D. Expression of DRD2 is increased in human pancreatic ductal adenocarcinoma and inhibitors slow tumor growth in mice. Gastroenterology, 2016, 151(6), 1218-1231.
[http://dx.doi.org/10.1053/j.gastro.2016.08.040] [PMID: 27578530]
(b)Sachlos, E.; Risueño, R.M.; Laronde, S.; Shapovalova, Z.; Lee, J-H.; Russell, J.; Malig, M.; McNicol, J.D.; Fiebig-Comyn, A.; Graham, M.; Levadoux-Martin, M.; Lee, J.B.; Giacomelli, A.O.; Hassell, J.A.; Fischer-Russell, D.; Trus, M.R.; Foley, R.; Leber, B.; Xenocostas, A.; Brown, E.D.; Collins, T.J.; Bhatia, M. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell, 2012, 149(6), 1284-1297.
[http://dx.doi.org/10.1016/j.cell.2012.03.049] [PMID: 22632761]
(c)Yin, T.; He, S.; Shen, G.; Ye, T.; Guo, F.; Wang, Y. Dopamine receptor antagonist thioridazine inhibits tumor growth in a murine breast cancer model. Mol. Med. Rep., 2015, 12(3), 4103-4108.
[http://dx.doi.org/10.3892/mmr.2015.3967] [PMID: 26095429]
[36]
Shen, Y.; Monsma, F.J., Jr; Metcalf, M.A.; Jose, P.A.; Hamblin, M.W.; Sibley, D.R. Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J. Biol. Chem., 1993, 268(24), 18200-18204.
[PMID: 8394362]
[37]
Newman-Tancredi, A.; Kleven, M.S. Comparative pharmacology of antipsychotics possessing combined dopamine D2 and serotonin 5-HT1A receptor properties. Psychopharmacology (Berl.), 2011, 216(4), 451-473.
[http://dx.doi.org/10.1007/s00213-011-2247-y] [PMID: 21394633]
[38]
Amenta, D.; Cavallotti, C.; Amenta, F. Dopamine receptors mediating the stimulation and the inhibition of adenylate cyclase in rat prostate gland. Neurosci. Lett., 1987, 77(1), 66-70.
[http://dx.doi.org/10.1016/0304-3940(87)90608-2] [PMID: 3037450]
[39]
Asada, M.; Ebihara, S.; Numachi, Y.; Okazaki, T.; Yamanda, S.; Ikeda, K.; Yasuda, H.; Sora, I.; Arai, H. Reduced tumor growth in a mouse model of schizophrenia, lacking the dopamine transporter. Int. J. Cancer, 2008, 123(3), 511-518.
[http://dx.doi.org/10.1002/ijc.23562] [PMID: 18470912]
[40]
Grossrubatscher, E.; Veronese, S.; Ciaramella, P.D.; Pugliese, R.; Boniardi, M.; De Carlis, L.; Torre, M.; Ravini, M.; Gambacorta, M.; Loli, P. High expression of dopamine receptor subtype 2 in a large series of neuroendocrine tumors. Cancer Biol. Ther., 2008, 7(12), 1970-1978.
[http://dx.doi.org/10.4161/cbt.7.12.6957] [PMID: 18981718]
[41]
Li, J.; Yao, Q.Y.; Xue, J.S.; Wang, L.J.; Yuan, Y.; Tian, X.Y.; Su, H.; Wang, S.Y.; Chen, W.J.; Lu, W.; Zhou, T.Y. Dopamine D2 receptor antagonist sulpiride enhances dexamethasone responses in the treatment of drug-resistant and metastatic breast cancer. Acta Pharmacol. Sin., 2017, 38(9), 1282-1296.
[http://dx.doi.org/10.1038/aps.2017.24] [PMID: 28649130]
[42]
(a)He, Q.; Yuan, L.B. Dopamine inhibits proliferation, induces differentiation and apoptosis of K562 leukaemia cells. Chin. Med. J. (Engl.), 2007, 120(11), 970-974.
[http://dx.doi.org/10.1097/00029330-200706010-00006] [PMID: 17624264]
(b)Ganguly, S.; Basu, B.; Shome, S.; Jadhav, T.; Roy, S.; Majumdar, J.; Dasgupta, P.S.; Basu, S. Dopamine, by acting through its D2 receptor, inhibits Insulin-like Growth Factor-I (IGF-I)-induced gastric cancer cell proliferation via up-regulation of Krüppel-like factor 4 through down-regulation of IGF-IR and AKT phosphorylation. Am. J. Pathol., 2010, 177(6), 2701-2707.
[http://dx.doi.org/10.2353/ajpath.2010.100617] [PMID: 21075859]
(c)Hoeppner, L.H.; Wang, Y.; Sharma, A.; Javeed, N.; Van Keulen, V.P.; Wang, E.; Yang, P.; Roden, A.C.; Peikert, T.; Molina, J.R.; Mukhopadhyay, D. Dopamine D2 receptor agonists inhibit lung cancer progression by reducing angiogenesis and tumor infiltrating myeloid derived suppressor cells. Mol. Oncol., 2015, 9(1), 270-281.
[http://dx.doi.org/10.1016/j.molonc.2014.08.008] [PMID: 25226814]
[43]
Lara-Castillo, M.C.; Cornet-Masana, J.M.; Etxabe, A.; Banús-Mulet, A.; Torrente, M.Á.; Nomdedeu, M.; Díaz-Beyá, M.; Esteve, J.; Risueño, R.M. Repositioning of bromocriptine for treatment of acute myeloid leukemia. J. Transl. Med., 2016, 14(1), 261.
[http://dx.doi.org/10.1186/s12967-016-1007-5] [PMID: 27604463]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy