Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

The Study on the Active Ingredients and Potential Targets of Rice Bran Petroleum Ether Extracts for Treating Diabetes Based on Network Pharmacology

Author(s): Xulong Huang, Mei Zhang, Hongmei Wu, Xiangpei Wang and Feng Xu*

Volume 24, Issue 6, 2021

Published on: 21 August, 2020

Page: [790 - 802] Pages: 13

DOI: 10.2174/1386207323999200821162307

Price: $65

Abstract

Aim and Objective: In ancient China, rice bran was used to treat diabetes and hyperlipidemia. The aim of this paper is to explore the active compounds and underlying mechanism of Rice Bran Petroleum Ether extracts (RBPE) against diabetes using network pharmacology.

Materials and Methods: Gas chromatography-mass spectrometer analysis was performed to identify the chemical composition in RBPE. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Swiss Target Prediction database, BATMAN-TCM, comprehensive database of human genes and gene phenotypes, therapeutic target database, DurgBank and GeneCards database were used to screen targets. The “component-target-disease” interactive network was constructed by Cytoscape software. Gene ontology and pathways related to the targets were analyzed by ClueGO, and core targets were screened by the MCODE, and Autodock vina was used for molecular docking.

Results: The compounds with a percentage greater than 1.0% were selected for subsequent analysis. The RBPE contains oleic acid, (E)-9-Octadecenoic acid ethyl ester, and other chemical components that can regulate insulin, mitogen-activated protein kinase 3, epidermal growth factor receptor, mitogen-activated protein kinase 1, and other genes, which were mainly related to Pathways in cancer, Human cytomegalovirus infection and AGE-RAGE signaling pathway in diabetic complications, etc. The affinity of the core compounds and the corresponding protein of the gene targets was good.

Conclusion: The results of network pharmacology analysis indicate that the RBPE has multiple anti- diabetic ingredients, and RBPE exert anti-diabetic activity through multiple targets and signaling pathways. The present study can provide a scientific basis for further elucidating the mechanism of RBPE against diabetes.

Keywords: Rice bran petroleum ether extracts, gas chromatography-mass spectrometer analysis, oleic acid, diabetes, network pharmacology, molecular docking.

[1]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[2]
Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol., 2018, 14(2), 88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[3]
Guglielmi, C.; Leslie, R. D.; Pozzilli, P. Epidemiology and risk factors of type 1 diabetes. Diabetes epidemiology, genetics, pathogenesis, diagnosis, prevention, and treatment Springer International Publishing AG, part of Springer Nature, 2018, 41-54.
[4]
Donath, M.Y. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat. Rev. Drug Discov., 2014, 13(6), 465-476.
[http://dx.doi.org/10.1038/nrd4275] [PMID: 24854413]
[5]
Qureshi, A.A.; Sami, S.A.; Khan, F.A. Effects of stabilized rice bran, its soluble and fiber fractions on blood glucose levels and serum lipid parameters in humans with diabetes mellitus Types I and II. J. Nutr. Biochem., 2002, 13(3), 175-187.
[http://dx.doi.org/10.1016/S0955-2863(01)00211-X] [PMID: 11893482]
[6]
Wilson, T.A.; Nicolosi, R.J.; Woolfrey, B.; Kritchevsky, D. Rice bran oil and oryzanol reduce plasma lipid and lipoprotein cholesterol concentrations and aortic cholesterol ester accumulation to a greater extent than ferulic acid in hypercholesterolemic hamsters. J. Nutr. Biochem., 2007, 18(2), 105-112.
[http://dx.doi.org/10.1016/j.jnutbio.2006.03.006] [PMID: 16713234]
[7]
Komiyama, Y.; Andoh, A.; Fujiwara, D.; Ohmae, H.; Araki, Y.; Fujiyama, Y.; Mitsuyama, K.; Kanauchi, O. New prebiotics from rice bran ameliorate inflammation in murine colitis models through the modulation of intestinal homeostasis and the mucosal immune system. Scand. J. Gastroenterol., 2011, 46(1), 40-52.
[http://dx.doi.org/10.3109/00365521.2010.513062] [PMID: 20735154]
[8]
Tabaraki, R.; Nateghi, A. Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology. Ultrason. Sonochem., 2011, 18(6), 1279-1286.
[http://dx.doi.org/10.1016/j.ultsonch.2011.05.004] [PMID: 21612968]
[9]
Kim, S.P.; Kang, M.Y.; Nam, S.H.; Friedman, M. Dietary rice bran component γ-oryzanol inhibits tumor growth in tumor-bearing mice. Mol. Nutr. Food Res., 2012, 56(6), 935-944.
[http://dx.doi.org/10.1002/mnfr.201200057] [PMID: 22707268]
[10]
Hopkins, A.L. Network pharmacology. Nat. Biotechnol., 2007, 25(10), 1110-1111.
[http://dx.doi.org/10.1038/nbt1007-1110] [PMID: 17921993]
[11]
Chen, Y.; Wei, J.; Zhang, Y.; Sun, W.; Li, Z.; Wang, Q.; Xu, X.; Li, C.; Li, P. Anti-endometriosis mechanism of Jiawei Foshou San based on network pharmacology. Front. Pharmacol., 2018, 9, 811.
[http://dx.doi.org/10.3389/fphar.2018.00811] [PMID: 30093862]
[12]
Wang, Y.; Yu, H.L.; Guo, L.P. Primary discussion of the keys on the modernization of Chinese medicine. World J. Integr. Tradit. Western Med., 2014, 9(7), 768-770.
[13]
Lai, M.H.; Chen, Y.T.; Chen, Y.Y.; Chang, J.H.; Cheng, H.H. Effects of rice bran oil on the blood lipids profiles and insulin resistance in type 2 diabetes patients. J. Clin. Biochem. Nutr., 2012, 51(1), 15-18.
[http://dx.doi.org/10.3164/jcbn.11-87] [PMID: 22798707]
[14]
Sohail, M.; Rakha, A.; Butt, M.S.; Iqbal, M.J.; Rashid, S. Rice bran nutraceutics: A comprehensive review. Crit. Rev. Food Sci. Nutr., 2017, 57(17), 3771-3780.
[http://dx.doi.org/10.1080/10408398.2016.1164120] [PMID: 27015585]
[15]
Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin. J. Nat. Med., 2013, 11(2), 110-120.
[http://dx.doi.org/10.1016/S1875-5364(13)60037-0] [PMID: 23787177]
[16]
Ge, Q.; Chen, L.; Tang, M.; Zhang, S.; Liu, L.; Gao, L.; Ma, S.; Kong, M.; Yao, Q.; Feng, F.; Chen, K. Analysis of mulberry leaf components in the treatment of diabetes using network pharmacology. Eur. J. Pharmacol., 2018, 833, 50-62.
[http://dx.doi.org/10.1016/j.ejphar.2018.05.021] [PMID: 29782863]
[17]
Lee, D.S. Dibutyl phthalate, an α-glucosidase inhibitor from Streptomyces melanosporofaciens. J. Biosci. Bioeng., 2000, 89(3), 271-273.
[http://dx.doi.org/10.1016/S1389-1723(00)88832-5] [PMID: 16232742]
[18]
Obici, S.; Feng, Z.; Morgan, K.; Stein, D.; Karkanias, G.; Rossetti, L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes, 2002, 51(2), 271-275.
[http://dx.doi.org/10.2337/diabetes.51.2.271] [PMID: 11812732]
[19]
Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chem. Biol. Drug Des., 2012, 80(3), 434-439.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01418.x] [PMID: 22642495]
[20]
Gunasekaran, S.; Vijay, T.; Sarumathy, K.; Palani, S.; Panneerselvam, R.P.S.; Srinivasan, V. Phytoconstituents evaluation by GC-MS and therapeutic efficacy of Grewiaum bellifera on streptozotocin (STZ)-induced diabetic rats. Int. J. Pharm. Life Sci., 2013, 4(2), 2380-2386.
[21]
Dong, H.; Zhang, Q.; Li, L.; Liu, J.; Shen, L.; Li, H.; Qin, W. Antioxidant activity and chemical compositions of essential oil and ethanol extract of Chuanminshen violaceum. Ind. Crops Prod., 2015, 76, 290-297.
[http://dx.doi.org/10.1016/j.indcrop.2015.04.051]
[22]
Matsabisa, M.G.; Chukwuma, C.I.; Ibeji, C.U.; Chaudhary, S.K. Stem bark exudate (resin) of Araucaria cunninghamii Aiton ex D. Don (hoop pine) abates glycation, α-glucosidase and DPP-IV activity and modulates glucose utilization in Chang liver cells and 3T3-L1 adipocytes. S. Afr. J. Bot., 2019, 121, 193-199.
[http://dx.doi.org/10.1016/j.sajb.2018.11.004]
[23]
Chatterjee, S.; Khunti, K.; Davies, M.J. Type 2 diabetes. Lancet, 2017, 389(10085), 2239-2251.
[http://dx.doi.org/10.1016/S0140-6736(17)30058-2] [PMID: 28190580]
[24]
Boonloh, K.; Kukongviriyapan, V.; Kongyingyoes, B.; Kukongviriyapan, U.; Thawornchinsombut, S.; Pannangpetch, P. Rice bran protein hydrolysates improve insulin resistance and decrease pro-inflammatory cytokine gene expression in rats fed a high carbohydrate-high fat diet. Nutrients, 2015, 7(8), 6313-6329.
[http://dx.doi.org/10.3390/nu7085292] [PMID: 26247962]
[25]
Mohamed, M.A.; Ahmed, M.A.; Abd Elbast, S.A.; Ali, N.A. Rice bran oil ameliorates hepatic insulin resistance by improving insulin signaling in fructose fed-rats. J. Diabetes Metab. Disord., 2019, 18(1), 89-97.
[http://dx.doi.org/10.1007/s40200-019-00394-2] [PMID: 31275879]
[26]
Xu, F.; Yang, L.; Huang, X.; Liang, Y.; Wang, X.; Wu, H. Lupenone is a good anti-inflammatory compound based on the network pharmacology. Mol. Divers., 2020, 24(1), 21-30.
[http://dx.doi.org/10.1007/s11030-019-09928-5] [PMID: 30796639]
[27]
Kominato, R.; Fujimoto, S.; Mukai, E.; Nakamura, Y.; Nabe, K.; Shimodahira, M.; Nishi, Y.; Funakoshi, S.; Seino, Y.; Inagaki, N. Src activation generates reactive oxygen species and impairs metabolism-secretion coupling in diabetic Goto-Kakizaki and ouabain-treated rat pancreatic islets. Diabetologia, 2008, 51(7), 1226-1235.
[http://dx.doi.org/10.1007/s00125-008-1008-x] [PMID: 18449527]
[28]
Liadis, N.; Murakami, K.; Eweida, M.; Elford, A.R.; Sheu, L.; Gaisano, H.Y.; Hakem, R.; Ohashi, P.S.; Woo, M. Caspase-3-dependent beta-cell apoptosis in the initiation of autoimmune diabetes mellitus. Mol. Cell. Biol., 2005, 25(9), 3620-3629.
[http://dx.doi.org/10.1128/MCB.25.9.3620-3629.2005] [PMID: 15831467]
[29]
Alpert, E.; Gruzman, A.; Lardi-Studler, B.; Cohen, G.; Reich, R.; Sasson, S. Cyclooxygenase-2 (PTGS2) inhibitors augment the rate of hexose transport in L6 myotubes in an insulin- and AMPKalpha-independent manner. Diabetologia, 2006, 49(3), 562-570.
[http://dx.doi.org/10.1007/s00125-005-0122-2] [PMID: 16447059]
[30]
Chan, K.H.K.; Niu, T.; Ma, Y.; You, N.C.Y.; Song, Y.; Sobel, E.M.; Hsu, Y.H.; Balasubramanian, R.; Qiao, Y.; Tinker, L.; Liu, S. Common genetic variants in peroxisome proliferator-activated receptor-γ (PPARG) and type 2 diabetes risk among Women’s Health Initiative postmenopausal women. J. Clin. Endocrinol. Metab., 2013, 98(3), E600-E604.
[http://dx.doi.org/10.1210/jc.2012-3644] [PMID: 23386649]
[31]
Dandona, P.; Aljada, A.; Bandyopadhyay, A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol., 2004, 25(1), 4-7.
[http://dx.doi.org/10.1016/j.it.2003.10.013] [PMID: 14698276]
[32]
Prada, P.O.; Ropelle, E.R.; Mourão, R.H.; de Souza, C.T.; Pauli, J.R.; Cintra, D.E.; Schenka, A.; Rocco, S.A.; Rittner, R.; Franchini, K.G.; Vassallo, J.; Velloso, L.A.; Carvalheira, J.B.; Saad, M.J. EGFR tyrosine kinase inhibitor (PD153035) improves glucose tolerance and insulin action in high-fat diet-fed mice. Diabetes, 2009, 58(12), 2910-2919.
[http://dx.doi.org/10.2337/db08-0506] [PMID: 19696185]
[33]
Boraska, V.; Rayner, N.W.; Groves, C.J.; Frayling, T.M.; Diakite, M.; Rockett, K.A.; Kwiatkowski, D.P.; Day-Williams, A.G.; McCarthy, M.I.; Zeggini, E. Large-scale association analysis of TNF/LTA gene region polymorphisms in type 2 diabetes. BMC Med. Genet., 2010, 11(1), 69.
[http://dx.doi.org/10.1186/1471-2350-11-69] [PMID: 20459604]
[34]
Kendall, A.C.; Whatmore, J.L.; Harries, L.W.; Winyard, P.G.; Eggleton, P.; Smerdon, G.R. Different oxygen treatment pressures alter inflammatory gene expression in human endothelial cells. Undersea Hyperb. Med., 2013, 40(2), 115-123.
[PMID: 23682543]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy