Abstract
Background: The present limitations related to the ocular administration of antifungal drugs for the treatment of fungal keratitis include poor ocular bioavailability, limited retention time, and low ocular tissue penetration.
Methods: This study aimed to prepare a novel ophthalmic voriconazole-loaded nanosuspension based on Eudragit RS 100. Pharmasolve® was explored as a corneal permeation enhancer in voriconazole ophthalmic formulation using in vitro and in vivo experiments. Briefly, 1% voriconazole-loaded nanosuspension was prepared using the quasi-emulsion solvent evaporation process.
Results: Characterizations of the voriconazole-loaded nanosuspension by Zetasizer Nano ZS and Transmission Electron Microscope (TEM) showed a uniform spherical shape without any agglomeration. The well-discreted nanoparticle with a size of 138 ± 1.3 nm was achieved with high entrapment efficiency (98.6 ± 2.5%) and positive zeta potential in the range of 22.5-31.2mV, indicating excellent physical stability.
Discussion: Voriconazole-loaded nanosuspension containing the penetration enhancer displayed good permeability both in vitro and in vivo compared with the commercial voriconazole injection. The voriconazole-loaded nanosuspension exhibited good antifungal activity, significantly inhibiting the growth of Candida albicans at a lower concentration of voriconazole (2.5μg/mL, p < 0.05).
Conclusion: In conclusion, the voriconazole-loaded nanosuspension containing Pharmasolve® can be used as an effective ophthalmic formulation for the topical ocular delivery of voriconazole.
Keywords: Ophthalmic formulation, fungal keratitis, nanosuspension, voriconazole, Pharmasolve®, Eudragit RS100.
Graphical Abstract
[http://dx.doi.org/10.1089/jop.2018.0089] [PMID: 30481082]
[http://dx.doi.org/10.3126/nje.v7i2.17975] [PMID: 29181230]
[http://dx.doi.org/10.3109/02713683.2010.533810] [PMID: 21158591]
[http://dx.doi.org/10.3390/molecules19011085] [PMID: 24445340]
[http://dx.doi.org/10.1016/j.jpba.2016.09.047] [PMID: 27750101]
[http://dx.doi.org/10.1016/j.survophthal.2019.02.007 ] [PMID: 30797882]
[http://dx.doi.org/10.1007/s13318-016-0319-4] [PMID: 26820265]
[http://dx.doi.org/10.1016/j.xphs.2018.04.014] [PMID: 29698725]
[http://dx.doi.org/10.1089/jop.2008.0031] [PMID: 18788998]
[PMID: 29977820]
[http://dx.doi.org/10.1007/s00347-017-0596-6] [PMID: 29110121]
[http://dx.doi.org/10.1016/j.nano.2010.07.003] [PMID: 20692375]
[http://dx.doi.org/10.1016/j.drudis.2018.01.016] [PMID: 29326082]
[http://dx.doi.org/10.2174/1381612825666190215121148 ] [PMID: 30767737]
[http://dx.doi.org/10.1080/10717540902850567] [PMID: 19514982]
[http://dx.doi.org/10.2174/1567201813666160816105905 ] [PMID: 27538459]
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.170] [PMID: 29199125]
[http://dx.doi.org/10.1016/j.jconrel.2009.02.020]
[http://dx.doi.org/10.1016/S0928-0987(02)00057-X ] [PMID: 12113891]
[http://dx.doi.org/10.1016/j.colsurfb.2018.02.011] [PMID: 29453084]
[http://dx.doi.org/10.1016/j.nano.2012.04.005] [PMID: 22633899]
[http://dx.doi.org/10.1016/j.nano.2016.08.007] [PMID: 27558350]
[http://dx.doi.org/10.2174/1381612824666180522100251 ] [PMID: 29788880]
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.007] [PMID: 24632034]
[http://dx.doi.org/10.1155/2016/6590361] [PMID: 27293896]
[http://dx.doi.org/10.1080/03639045.2016.1185437 ] [PMID: 27143048]
[http://dx.doi.org/10.1007/s12272-017-0934-x] [PMID: 28770536]
[PMID: 25317180]
[http://dx.doi.org/10.18433/J3P306] [PMID: 21486529]
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.014] [PMID: 25453292]
[http://dx.doi.org/10.1155/2013/341218]