Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Perspective

SGLT-2i and Cardiovascular Prognosis

Author(s): Gerasimos Siasos*, Panagiota K. Stampouloglou, Evanthia Bletsa, Stavroula A. Paschou, Evangelos Oikonomou, Georgios Giannopoulos, Spyridon Deftereos, Michael W. Cleman and Dimitrios Tousoulis

Volume 26, Issue 32, 2020

Page: [3905 - 3907] Pages: 3

DOI: 10.2174/138161282632200811172751

Next »
[1]
Antonopoulos AS, Siasos G, Tousoulis D. Microangiopathy, arterial stiffness, and risk stratification in patients with type 2 diabetes. JAMA Cardiol 2017; 2(7): 820-1.
[2]
Tancredi M, Rosengren A, Svensson AM, et al. Excess mortality among persons with type 2 diabetes. N Engl J Med 2015; 373: 1720-32.
[3]
Tousoulis D, Papageorgiou N, Androulakis E, et al. Diabetes mellitus-associated vascular impairment: novel circulating biomarkers and therapeutic approaches. J Am Coll Cardiol 2013; 62(8): 667-76.
[4]
Nichols GA, Gullion CM, Koro CE, et al. The incidence of congestive heart failure in type 2 diabetes. Diabetes Care 2004; 27(8): 1879-84.
[5]
McMurray JJV, Gerstein HC, Holman RR, et al. Heart failure: a cardiovascular outcome in diabetes that can no longer be ignored. Lancet Diabetes Endocrinol 2014; 2: 843-51.
[6]
Oikonomou E, Mourouzis K, Fountoulakis P, et al. Interrelationship between diabetes mellitus and heart failure: the role of peroxisome proliferator-activated receptors in left ventricle performance. Heart Fail Rev 2018; 23(3): 389-408.
[7]
Tousoulis D, Oikonomou E, Siasos G, et al. Diabetes Mellitus and Heart Failure. Eur Cardiol 2014; 9(1): 37-42.
[8]
Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 1974; 34: 29-34.
[9]
Tentolouris A, Eleftheriadou I, Tzeravini E, et al. Endothelium as a therapeutic target in diabetes mellitus: From basic mechanisms to clinical practice. Curr Med Chem 2019; 27(7): 1089-131.
[10]
Guidance for Industry: Diabetes Mellitus-Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes. Silver Spring, Maryland: Food and Drug Administration 2008.
[11]
Lytvyn Y, Bjornstad P, Udell JA, et al. Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation 2017; 136(17): 1643-58.
[12]
Nassif ME, Kosiborod M. Effects of sodium glucose cotransporter type 2 inhibitors on heart failure. Diabetes Obes Metab 2019; 21(Suppl. 2): 19-23.
[13]
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373(22): 2117-28.
[14]
Wanner C, Lachin JM, Inzucchi SE, et al. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation 2018; 137(2): 119-29.
[15]
Verma S, Mazer CD, Fitchett D, et al. Empagliflozin reduces cardiovascular events, mortality and renal events in participants with type 2 diabetes after coronary artery bypass graft surgery: subanalysis of the EMPA-REG OUTCOME® randomized trial. Diabetologia 2018; 61(8): 1712-23.
[16]
Kosiborod M, Cavender MA, Fu AZ, et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation 2017; 136(3): 249-59.
[17]
Savarese G, Sattar N, Januzzi J, et al. Empagliflozin is associated with a lower risk of post-acute heart failure rehospitalization and mortality. Circulation 2019; 139(11): 1458-60.
[18]
Núñez J, Palau P, Domínguez E, et al. Early effects of empagliflozin on exercise tolerance in patients with heart failure: A pilot study. Clin Cardiol 2018; 41(4): 476-80.
[19]
Cohen ND, Gutman SJ, Briganti EM, et al. The effects of empagliflozin treatment on cardiac function and structure in patients with type 2 diabetes - a cardiac MR study. Intern Med J 2019; 49: 1006-10.
[20]
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377(7): 644-57.
[21]
Rådholm K, Figtree G, Perkovic V, et al. Canagliflozin and heart failure in type 2 diabetes mellitus. Circulation 2018; 138(5): 458-68.
[22]
Ryan PB, Buse JB, Schuemie MJ, et al. Comparative effectiveness of canagliflozin, SGLT2 inhibitors and non-SGLT2 inhibitors on the risk of hospitalization for heart failure and amputation in patients with type 2 diabetes mellitus: A real-world meta-analysis of 4 observational databases (OBSERVE-4D). Diabetes Obes Metab 2018; 20(11): 2585-97.
[23]
Januzzi JL Jr, Butler J, Jarolim P, et al. Effects of canagliflozin on cardiovascular biomarkers in older adults with type 2 diabetes. J Am Coll Cardiol 2017; 70(6): 704-12.
[24]
Matsutani D, Sakamoto M, Kayama Y, et al. Effect of canagliflozin on left ventricular diastolic function in patients with type 2 diabetes. Cardiovasc Diabetol 2018; 17(1): 73.
[25]
Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019; 380(4): 347-57.
[26]
Norhammar A, Bodegård J, Nyström T, et al. Dapagliflozin and cardiovascular mortality and disease outcomes in a population with type 2 diabetes similar to that of the DECLARE-TIMI 58 trial: A nationwide observational study. Diabetes Obes Metab 2019; 21(5): 1136-45.
[27]
Soga F, Tanaka H, Tatsumi K, et al. Impact of dapagliflozin on left ventricular diastolic function of patients with type 2 diabetic mellitus with chronic heart failure. Cardiovasc Diabetol 2018; 17(1): 132.
[28]
Usman MS, Siddiqi TJ, Memon MM, et al. Sodium-glucose co-transporter 2 inhibitors and cardiovascular outcomes: A systematic review and meta-analysis. Eur J Prev Cardiol 2018; 25(5): 495-502.
[29]
Sinha B, Ghosal S. Sodium-Glucose Cotransporter-2 Inhibitors (SGLT-2i) reduce hospitalization for heart failure only and have no effect on atherosclerotic cardiovascular events: A meta-analysis. Diabetes Ther 2019; 10(3): 891-9.
[30]
Saad M, Mahmoud AN, Elgendy IY, et al. Cardiovascular outcomes with sodium-glucose cotransporter-2 inhibitors in patients with type II diabetes mellitus: A meta-analysis of placebo-controlled randomized trials. Int J Cardiol 2017; 228: 352-8.
[31]
Packer M, Butler J, Filippatos GS, et al. Evaluation of the effect of sodium-glucose co‐transporter 2 inhibition with empagliflozin on morbidity and mortality of patients with chronic heart failure and a reduced ejection fraction: rationale for and design of the EMPEROR‐Reduced trial. Eur J Heart Fail 2019; 21(10): 1270-8.
[32]
Anker SD, Butler J, Filippatos GS, et al. Evaluation of the effects of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale for and design of the EMPEROR-Preserved Trial. Eur J Heart Fail 2019; 21(10): 1279-87.
[33]
Mullens W, Damman K, Harjola VP, et al. The use of diuretics in heart failure with congestion - a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2019; 21(2): 137-55.
[34]
Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur Heart J 2020; 41(2): 255-323.

© 2025 Bentham Science Publishers | Privacy Policy