Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Encapsulation by Electrospraying of Anticancer Compounds from Jackfruit Extract (Artocarpus heterophyllus Lam): Identification, Characterization and Antiproliferative Properties

Author(s): José O. Rivera-Aguilar, Montserrat Calderón-Santoyo, Elda M. González-Cruz, Jorge A. Ramos-Hernández and Juan A. Ragazzo-Sánchez*

Volume 21, Issue 4, 2021

Published on: 04 August, 2020

Page: [523 - 531] Pages: 9

DOI: 10.2174/1871520620666200804102952

Price: $65

Abstract

Background: Compounds with biological activities had been reported in the jackfruit. These compounds are susceptible to structural changes such as isomerization and/or loss of bonds due to environmental factors. Then, the encapsulation for protecting is a necessary process.

Objective: In this study, encapsulation of High-Value Biological Compounds (HVBC) was performed using High Degree of Polymerization Agave Fructans (HDPAF) and Whey Protein (WP) as encapsulating materials to preserve the biological properties of the HVBC.

Methods: The extract was characterized by HPLC-MS in order to show the presence of compounds with preventive or therapeutic effects on chronic degenerative diseases such as cancer. The micrographs by Scanning Electron Microscopy (SEM), Thermal Analysis (TGA and DSC), photostabilization and antiproliferation of M12.C3.F6 cell line of capsules were evaluated.

Results: The micrographs of the nanocapsules obtained by Scanning Electron Microscopy (SEM) showed spherical capsules with sizes between 700 and 800nm. No cracks, dents or deformations were observed. The Thermogravimetric Analysis (TGA) evidenced the decomposition of the unencapsulated extract ranging from 154 to 221°C. On the other hand, the fructan-whey protein mixture demonstrated that nanocapsules have a thermoprotective effect because the decomposition temperature of the encapsulated extract increased 32.1°C. Differential Scanning Calorimetry (DSC) exhibited similar values of the glass transition temperature (Tg) between the capsules with and without extract; which indicates that the polymeric material does not interact with the extract compounds. The photoprotection study revealed that nanocapsules materials protect the jackfruit extract compounds from the UV radiation. Finally, the cell viability on the proliferation of M12.C3.F6 cell line was not affected by powder nanocapsules without jackfruit extract, indicating that capsules are not toxic for these cells. However, microcapsules with jackfruit extract (50μg/ml) were able to inhibit significantly the proliferation cells.

Conclusion: The encapsulation process provides thermoprotection and photostability, and the antiproliferative activity of HVBC from jackfruit extract was preserved.

Keywords: Electrospraying, encapsulation, jackfruit extract, antiproliferative properties, photoprotection, thermoprotective.

Graphical Abstract

[1]
Ruiz-Montañez, G.; Burgos-Hernández, A.; Calderón-Santoyo, M.; López-Saiz, C.M.; Velázquez-Contreras, C.A.; Navarro-Ocaña, A.; Ragazzo-Sánchez, J.A. Screening antimutagenic and antiproliferative properties of extracts isolated from Jackfruit pulp (Artocarpus heterophyllus Lam). Food Chem., 2015, 175, 409-416.
[http://dx.doi.org/10.1016/j.foodchem.2014.11.122] [PMID: 25577099]
[2]
Ruiz-Montañez, G.; Calderón-Santoyo, M.; Chevalier-Lucia, D.; Picart-Palmade, L.; Jimenez-Sánchez, D.E.; Ragazzo-Sánchez, J.A. Ultrasound-assisted microencapsulation of jackfruit extract in eco-friendly powder particles: Characterization and antiproliferative activity. J. Dispers. Sci. Technol., 2019, 40, 1-9.
[http://dx.doi.org/10.1080/01932691.2019.1566923]
[3]
Zheng, Z.P.; Xu, Y.; Qin, C.; Zhang, S.; Gu, X.; Lin, Y.; Xie, G.; Wang, M.; Chen, J. Characterization of antiproliferative activity constituents from Artocarpus heterophyllus. J. Agric. Food Chem., 2014, 62(24), 5519-5527.
[http://dx.doi.org/10.1021/jf500159z] [PMID: 24854862]
[4]
Hu, B.; Liu, X.; Zhang, C.; Zeng, X. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols. Yao Wu Shi Pin Fen Xi, 2017, 25(1), 3-15.
[http://dx.doi.org/10.1016/j.jfda.2016.11.004] [PMID: 28911541]
[5]
Ray, S.; Raychaudhuri, U.; Chakraborty, R. An overview of encapsulation of active compounds used in food products by drying technology. Food Biosci., 2016, 13, 76-83.
[http://dx.doi.org/10.1016/j.fbio.2015.12.009]
[6]
Murugesan, R.; Orsat, V. Spray drying for the production of nutraceutical ingredients-A review. Food Bioprocess Technol., 2012, 5(1), 3-14.
[http://dx.doi.org/10.1007/s11947-011-0638-z]
[7]
Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv., 2010, 28(3), 325-347.
[http://dx.doi.org/10.1016/j.biotechadv.2010.01.004] [PMID: 20100560]
[8]
Pérez-Masiá, R.; López-Nicolás, R.; Periago, M.J.; Ros, G.; Lagaron, J.M.; López-Rubio, A. Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chem., 2015, 168, 124-133.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.051] [PMID: 25172691]
[9]
Ramos-Hernández, J.A.; Ragazzo-Sánchez, J.A.; Calderón-Santoyo, M.; Ortiz-Basurto, R.I.; Prieto, C.; Lagaron, J.M. Use of electrosprayed agave fructans as nanoencapsulating hydrocolloids for bioactives. Nanomaterials (Basel), 2018, 8(11), 868.
[http://dx.doi.org/10.3390/nano8110868] [PMID: 30360537]
[10]
Castro-Muñoz, R.; Barragán-Huerta, B.E.; Yáñez-Fernández, J. Use of gelatin-maltodextrin composite as an encapsulation support for clarified juice from purple cactus pear (Opuntia stricta). Lebensm. Wiss. Technol., 2015, 62(1), 242-248.
[http://dx.doi.org/10.1016/j.lwt.2014.09.042]
[11]
Gómez-Mascaraque, L.G.; Lagarón, J.M.; López-Rubio, A. Electrosprayed gelatin submicroparticles as edible carriers for the encapsulation of polyphenols of interest in functional foods. Food Hydrocoll., 2015, 49, 42-52.
[http://dx.doi.org/10.1016/j.foodhyd.2015.03.006]
[12]
Gómez-Estaca, J.; Gavara, R.; Hernández-Muñoz, P. Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innov. Food Sci. Emerg. Technol., 2015, 29, 302-307.
[http://dx.doi.org/10.1016/j.ifset.2015.03.004]
[13]
Mellado-Mojica, E.; González de la Vara, L.E.; López, M.G. Fructan active enzymes (FAZY) activities and biosynthesis of fructooligosaccharides in the vacuoles of Agave tequilana Weber Blue variety plants of different age. Planta, 2017, 245(2), 265-281.
[http://dx.doi.org/10.1007/s00425-016-2602-7] [PMID: 27730409]
[14]
Sosa-Herrera, M.G.; Martínez-Padilla, L.P.; Delgado-Reyes, V.A.; Torres-Robledo, A. Effect of agave fructans on bulk and surface properties of sodium caseinate in aqueous media. Food Hydrocoll., 2016, 60, 199-205.
[http://dx.doi.org/10.1016/j.foodhyd.2016.03.033]
[15]
Ortiz-Basurto, R.I.; Rubio-Ibarra, M.E.; Ragazzo-Sanchez, J.A.; Beristain, C.I.; Jiménez-Fernández, M. Microencapsulation of Eugenia uniflora L. juice by spray drying using fructans with different degrees of polymerisation. Carbohydr. Polym., 2017, 175, 603-609.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.030] [PMID: 28917907]
[16]
Morr, C.V.; Ha, E.Y.W. Whey protein concentrates and isolates: Processing and functional properties. Crit. Rev. Food Sci. Nutr., 1993, 33(6), 431-476.
[http://dx.doi.org/10.1080/10408399309527643] [PMID: 8216810]
[17]
Shi, Q.; Fang, Z.; Bhandari, B. Effect of addition of Whey protein isolate on spray-drying behavior of honey with maltodextrin as a carrier material. Dry. Technol., 2013, 31(13-14), 1681-1692.
[http://dx.doi.org/10.1080/07373937.2013.783593]
[18]
Jimenez-Sánchez, D.E.; Calderón-Santoyo, M.; Picart-Palmade, L.; Luna-Solano, G.; Ortiz-Basurto, R.I.; Bautista-Rosales, P.U.; Ragazzo-Sánchez, J.A. Effect of addition of native Agave fructans on spray-dried Chayote (Sechium edule) and Pineapple (Ananas comosus) juices: Rheology, microstructure, and water sorption. Food Bioprocess Technol., 2017, 10(11), 2069-2080.
[http://dx.doi.org/10.1007/s11947-017-1974-4]
[19]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[20]
Kuo, M.L.; Lee, K.C.; Lin, J.K. Genotoxicities of nitropyrenes and their modulation by apigenin, tannic acid, ellagic acid and indole-3-carbinol in the Salmonella and CHO systems. Mutat. Res., 1992, 270(2), 87-95.
[http://dx.doi.org/10.1016/0027-5107(92)90119-M] [PMID: 1383740]
[21]
Tsai, M.H.; Liu, J.F.; Chiang, Y.C.; Hu, S.C.S.; Hsu, L.F.; Lin, Y.C.; Lin, Z.C.; Lee, H.C.; Chen, M.C.; Huang, C.L.; Lee, C.W. Artocarpin, an isoprenyl flavonoid, induces p53-dependent or independent apoptosis via ROS-mediated MAPKs and Akt activation in non-small cell lung cancer cells. Oncotarget, 2017, 8(17), 28342-28358.
[http://dx.doi.org/10.18632/oncotarget.16058] [PMID: 28423703]
[22]
Soo, H.C.; Chung, F.F.L.; Lim, K.H.; Yap, V.A.; Bradshaw, T.D.; Hii, L.W.; Tan, S.H.; See, S.J.; Tan, Y.F.; Leong, C.O.; Mai, C.W. Cudraflavone C induces tumor-specific apoptosis in colorectal cancer cells through inhibition of the Phosphoinositide 3-Kinase (PI3K)-AKT pathway. PLoS One, 2017, 12(1)e0170551
[http://dx.doi.org/10.1371/journal.pone.0170551] [PMID: 28107519]
[23]
Yao, X.; Wu, D.; Dong, N.; Ouyang, P.; Pu, J.; Hu, Q.; Wang, J.; Lu, W.; Huang, J.; Moracin, C. A phenolic compound isolated from Artocarpus heterophyllus, suppresses lipopolysaccharide-activated inflammatory responses in murine Raw264. 7 macrophages. Int. J. Mol. Sci., 2016, 17(8), 1199.
[http://dx.doi.org/10.3390/ijms17081199] [PMID: 27463712]
[24]
López-Rubio, A.; Lagaron, J.M. Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innov. Food Sci. Emerg. Technol., 2012, 13, 200-206.
[http://dx.doi.org/10.1016/j.ifset.2011.10.012]
[25]
Anu Bhushani, J.; Anandharamakrishnan, C. Electrospinning and electrospraying techniques: Potential food based applications. Trends Food Sci. Technol., 2014, 38(1), 21-33.
[http://dx.doi.org/10.1016/j.tifs.2014.03.004]
[26]
Jimenez-Sánchez, D.E.; Calderón-Santoyo, M.; Ortiz-Basurto, R.I.; Bautista-Rosales, P.U.; Ragazzo-Sánchez, J.A. Effect of maltodextrin reduction and native agave fructans addition on the physicochemical properties of spray-dried mango and pineapple juices. Food Sci. Technol. Int., 2018, 24(6), 519-532.
[http://dx.doi.org/10.1177/1082013218769168] [PMID: 29631440]
[27]
Layre, A.M.; Gref, R.; Richard, J.; Requier, D.; Chacun, H.; Appel, M.; Domb, A.J.; Couvreur, P. Nanoencapsulation of a crystalline drug. Int. J. Pharm., 2005, 298(2), 323-327.
[http://dx.doi.org/10.1016/j.ijpharm.2005.02.039] [PMID: 15899561]
[28]
Chen, H.; Zhang, Y.; Zhong, Q. Physical and antimicrobial properties of spray-dried zein-casein nanocapsules with co-encapsulated eugenol and thymol. J. Food Eng., 2014, 144, 93-102.
[http://dx.doi.org/10.1016/j.jfoodeng.2014.07.021]
[29]
Cao, L.; Luo, J.; Tu, K.; Wang, L.Q.; Jiang, H. Generation of nano-sized core-shell particles using a coaxial tri-capillary electrospray-template removal method. Colloids Surf. B Biointerfaces, 2014, 115, 212-218.
[http://dx.doi.org/10.1016/j.colsurfb.2013.11.046] [PMID: 24362060]
[30]
Nguyen, D.N.; Palangetic, L.; Clasen, C.; Van den Mooter, G. One-step production of darunavir solid dispersion nanoparticles coated with enteric polymers using electrospraying. J. Pharm. Pharmacol., 2016, 68(5), 625-633.
[http://dx.doi.org/10.1111/jphp.12459] [PMID: 26272245]
[31]
Mancilla-Margalli, N.A.; López, M.G. Water-soluble carbohydrates and Fructan structure patterns from Agave and Dasylirion species. J. Agric. Food Chem., 2006, 54, 7832-7839.
[32]
Alvarado-Reveles, O.; Fernández-Michel, S.; Jiménez-Flores, R.; Cueto-Wong, C. Survival and Goat milk acidifying activity of Lactobacillus rhamnosus GG encapsulated with Agave Fructans in a buttermilk protein matrix. Probiotics Antimicrob. Proteins, 2019, 11(4), 1340-1347.
[33]
Diaconeasa, Z.; Leopold, L.; Rugină, D.; Ayvaz, H.; Socaciu, C. Antiproliferative and antioxidant properties of anthocyanin rich extracts from blueberry and blackcurrant juice. Int. J. Mol. Sci., 2015, 16(2), 2352-2365.
[http://dx.doi.org/10.3390/ijms16022352] [PMID: 25622252]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy