Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Role of Alpha-Fetoprotein in Hepatocellular Carcinoma Drug Resistance

Author(s): Wei Li, Kun Liu, Yi Chen, Mingyue Zhu* and Mengsen Li*

Volume 28, Issue 6, 2021

Published on: 29 July, 2020

Page: [1126 - 1142] Pages: 17

DOI: 10.2174/0929867327999200729151247

open access plus

Abstract

Hepatocellular carcinoma (HCC) is a major type of primary liver cancer and a major cause of cancer-related deaths worldwide because of its high recurrence rate and poor prognosis. Surgical resection is currently the major treatment measure for patients in the early and middle stages of the disease. Because due to late diagnosis, most patients already miss the opportunity for surgery upon disease confirmation, conservative chemotherapy (drug treatment) remains an important method of comprehensive treatment for patients with middle- and late-stage liver cancer. However, multidrug resistance (MDR) in patients with HCC severely reduces the treatment effect and is an important obstacle to chemotherapeutic success. Alpha-fetoprotein (AFP) is an important biomarker for the diagnosis of HCC. The serum expression levels of AFP in many patients with HCC are increased, and a persistently increased AFP level is a risk factor for HCC progression. Many studies have indicated that AFP functions as an immune suppressor, and AFP can promote malignant transformation during HCC development and might be involved in the process of MDR in patients with liver cancer. This review describes drug resistance mechanisms during HCC drug treatment and reviews the relationship between the mechanism of AFP in HCC development and progression and HCC drug resistance.

Keywords: Hepatocellular carcinoma (HCC), Alphafetoprotein (AFP), malignant transformation, drug resistance, immune suppressor, multidrug resistance (MDR).

[1]
Llovet, J.M.; Zucman-Rossi, J.; Pikarsky, E.; Sangro, B.; Schwartz, M.; Sherman, M.; Gores, G. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2016, 2, 16018.
[http://dx.doi.org/10.1038/nrdp.2016.18] [PMID: 27158749]
[2]
Zucman-Rossi, J.; Villanueva, A.; Nault, J.C.; Llovet, J.M. genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology, 2015, 149(5), 1226-1239 e4..
[http://dx.doi.org/10.1053/j.gastro.2015.05.061 ] [PMID: 26099527]
[3]
Bruix, J.; Sherman, M.; Llovet, J.M.; Beaugrand, M.; Lencioni, R.; Burroughs, A.K.; Christensen, E.; Pagliaro, L.; Colombo, M.; Rodés, J. EASL Panel Of Experts On Hcc. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European association for the study of the liver. J. Hepatol., 2001, 35(3), 421-430.
[http://dx.doi.org/10.1016/S0168-8278(01)00130-1] [PMID: 11592607]
[4]
Nowak, A.K.; Chow, P.K.; Findlay, M. Systemic therapy for advanced hepatocellular carcinoma: a review. Eur. J. Cancer, 2004, 40(10), 1474-1484.
[http://dx.doi.org/10.1016/j.ejca.2004.02.027] [PMID: 15196530]
[5]
Pinter, M.; Peck-Radosavljevic, M. Review article: systemic treatment of hepatocellular carcinoma. Aliment. Pharmacol. Ther., 2018, 48(6), 598-609.
[http://dx.doi.org/10.1111/apt.14913] [PMID: 30039640]
[6]
Li, D.; Xu, F.; Yu, J.; Xing, H.; Wu, M.; Yang, T. Updated key points and clinical pathway for NCCN clinical practice guidelines in oncology: hepatobiliary cancers (Version 1. 2018). J. Clin. Hepatol., 2018, 34(6), 966-977.
[7]
Llovet, J.M.; Montal, R.; Sia, D.; Finn, R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol., 2018, 15(10), 599-616.
[http://dx.doi.org/10.1038/s41571-018-0073-4] [PMID: 30061739]
[8]
Marin, J.J.G.; Briz, O.; Herraez, E.; Lozano, E.; Asensio, M.; Di Giacomo, S.; Romero, M.R.; Osorio-Padilla, L.M.; Santos-Llamas, A.I.; Serrano, M.A.; Armengol, C.; Efferth, T.; Macias, R.I.R. Molecular bases of the poor response of liver cancer to chemotherapy. Clin. Res. Hepatol. Gastroenterol., 2018, 42(3), 182-192.
[http://dx.doi.org/10.1016/j.clinre.2017.12.006] [PMID: 29544679]
[9]
Sanoff, H.K.; Chang, Y.; Lund, J.L.; O’Neil, B.H.; Dusetzina, S.B. Sorafenib effectiveness in advanced hepatocellular carcinoma. Oncologist, 2016, 21(9), 1113-1120.
[http://dx.doi.org/10.1634/theoncologist.2015-0478] [PMID: 27185615]
[10]
Adnane, L.; Trail, P.A.; Taylor, I.; Wilhelm, S.M. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol., 2006, 407, 597-612.
[http://dx.doi.org/10.1016/S0076-6879(05)07047-3] [PMID: 16757355]
[11]
Liu, L.; Cao, Y.; Chen, C.; Zhang, X.; McNabola, A.; Wilkie, D.; Wilhelm, S.; Lynch, M.; Carter, C. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res., 2006, 66(24), 11851-11858.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1377] [PMID: 17178882]
[12]
Auclair, D.; Miller, D.; Yatsula, V.; Pickett, W.; Carter, C.; Chang, Y.; Zhang, X.; Wilkie, D.; Burd, A.; Shi, H.; Rocks, S.; Gedrich, R.; Abriola, L.; Vasavada, H.; Lynch, M.; Dumas, J.; Trail, P.A.; Wilhelm, S.M. Antitumor activity of sorafenib in FLT3-driven leukemic cells. Leukemia, 2007, 21(3), 439-445.
[http://dx.doi.org/10.1038/sj.leu.2404508] [PMID: 17205056]
[13]
Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R.A.; Schwartz, B.; Simantov, R.; Kelley, S. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov., 2006, 5(10), 835-844.
[http://dx.doi.org/10.1038/nrd2130] [PMID: 17016424]
[14]
Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T.F.; Galle, P.R.; Seitz, J.F.; Borbath, I.; Häussinger, D.; Giannaris, T.; Shan, M.; Moscovici, M.; Voliotis, D.; Bruix, J.; Group, S.I.S. SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, 359(4), 378-390.
[http://dx.doi.org/10.1056/NEJMoa0708857] [PMID: 18650514]
[15]
Cheng, A.L.; Kang, Y.K.; Chen, Z.; Tsao, C.J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.S.; Xu, J.; Sun, Y.; Liang, H.; Liu, J.; Wang, J.; Tak, W.Y.; Pan, H.; Burock, K.; Zou, J.; Voliotis, D.; Guan, Z. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol., 2009, 10(1), 25-34.
[http://dx.doi.org/10.1016/S1470-2045(08)70285-7] [PMID: 19095497]
[16]
Ezzoukhry, Z.; Louandre, C.; Trécherel, E.; Godin, C.; Chauffert, B.; Dupont, S.; Diouf, M.; Barbare, J.C.; Mazière, J.C.; Galmiche, A. EGFR activation is a potential determinant of primary resistance of hepatocellular carcinoma cells to sorafenib. Int. J. Cancer, 2012, 131(12), 2961-2969.
[http://dx.doi.org/10.1002/ijc.27604] [PMID: 22514082]
[17]
Blivet-Van Eggelpoël, M.J.; Chettouh, H.; Fartoux, L.; Aoudjehane, L.; Barbu, V.; Rey, C.; Priam, S.; Housset, C.; Rosmorduc, O.; Desbois-Mouthon, C. Epidermal growth factor receptor and HER-3 restrict cell response to sorafenib in hepatocellular carcinoma cells. J. Hepatol., 2012, 57(1), 108-115.
[http://dx.doi.org/10.1016/j.jhep.2012.02.019] [PMID: 22414764]
[18]
Zhai, B.; Hu, F.; Jiang, X.; Xu, J.; Zhao, D.; Liu, B.; Pan, S.; Dong, X.; Tan, G.; Wei, Z.; Qiao, H.; Jiang, H.; Sun, X. Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Mol. Cancer Ther., 2014, 13(6), 1589-1598.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-1043] [PMID: 24705351]
[19]
Tan, W.; Zhu, S.; Cao, J.; Zhang, L.; Li, W.; Liu, K.; Zhong, J.; Shang, C.; Chen, Y. Inhibition of MMP-2 Expression enhances the antitumor effect of sorafenib in hepatocellular carcinoma by suppressing the PI3K/AKT/mTOR pathway. Oncol. Res., 2017, 25(9), 1543-1553.
[http://dx.doi.org/10.3727/096504017X14886444100783] [PMID: 28276313]
[20]
Zhang, L.; Ge, C.; Zhao, F.; Zhang, Y.; Wang, X.; Yao, M.; Li, J. NRBP2 overexpression increases the chemosensitivity of hepatocellular carcinoma cells via Akt signaling. Cancer Res., 2016, 76(23), 7059-7071.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0937] [PMID: 27634758]
[21]
Gedaly, R.; Angulo, P.; Hundley, J.; Daily, M.F.; Chen, C.; Koch, A.; Evers, B.M. PI-103 and sorafenib inhibit hepatocellular carcinoma cell proliferation by blocking Ras/Raf/MAPK and PI3K/AKT/mTOR pathways. Anticancer Res., 2010, 30(12), 4951-4958.
[PMID: 21187475]
[22]
Chen, K.F.; Chen, H.L.; Tai, W.T.; Feng, W.C.; Hsu, C.H.; Chen, P.J.; Cheng, A.L. Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J. Pharmacol. Exp. Ther., 2011, 337(1), 155-161.
[http://dx.doi.org/10.1124/jpet.110.175786] [PMID: 21205925]
[23]
Wu, C.H.; Wu, X.; Zhang, H.W. Inhibition of acquired-resistance hepatocellular carcinoma cell growth by combining sorafenib with phosphoinositide 3-kinase and rat sarcoma inhibitor. J. Surg. Res., 2016, 206(2), 371-379.
[http://dx.doi.org/10.1016/j.jss.2016.08.014] [PMID: 27884331]
[24]
Chen, W.; Xiao, W.; Zhang, K.; Yin, X.; Lai, J.; Liang, L.; Chen, D. Activation of c-Jun predicts a poor response to sorafenib in hepatocellular carcinoma: preliminary clinical evidence. Sci. Rep., 2016, 6, 22976.
[http://dx.doi.org/10.1038/srep22976] [PMID: 26964667]
[25]
Haga, Y.; Kanda, T.; Nakamura, M.; Nakamoto, S.; Sasaki, R.; Takahashi, K.; Wu, S.; Yokosuka, O. Overexpression of c-Jun contributes to sorafenib resistance in human hepatoma cell lines. PLoS One, 2017, 12(3)e0174153
[http://dx.doi.org/10.1371/journal.pone.0174153] [PMID: 28323861]
[26]
Hagiwara, S.; Kudo, M.; Nagai, T.; Inoue, T.; Ueshima, K.; Nishida, N.; Watanabe, T.; Sakurai, T. Activation of JNK and high expression level of CD133 predict a poor response to sorafenib in hepatocellular carcinoma. Br. J. Cancer, 2012, 106(12), 1997-2003.
[http://dx.doi.org/10.1038/bjc.2012.145] [PMID: 22596232]
[27]
Shimizu, S.; Takehara, T.; Hikita, H.; Kodama, T.; Miyagi, T.; Hosui, A.; Tatsumi, T.; Ishida, H.; Noda, T.; Nagano, H.; Doki, Y.; Mori, M.; Hayashi, N. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J. Hepatol., 2010, 52(5), 698-704.
[http://dx.doi.org/10.1016/j.jhep.2009.12.024] [PMID: 20347499]
[28]
Hikita, H.; Takehara, T.; Shimizu, S.; Kodama, T.; Shigekawa, M.; Iwase, K.; Hosui, A.; Miyagi, T.; Tatsumi, T.; Ishida, H.; Li, W.; Kanto, T.; Hiramatsu, N.; Hayashi, N. The Bcl-xL inhibitor, ABT-737, efficiently induces apoptosis and suppresses growth of hepatoma cells in combination with sorafenib. Hepatology, 2010, 52(4), 1310-1321.
[http://dx.doi.org/10.1002/hep.23836] [PMID: 20799354]
[29]
Yang, F.; Li, Q-J.; Gong, Z.B.; Zhou, L.; You, N.; Wang, S.; Li, X-L.; Li, J-J.; An, J-Z.; Wang, D-S.; He, Y.; Dou, K-F. MicroRNA-34a targets Bcl-2 and sensitizes human hepatocellular carcinoma cells to sorafenib treatment. Technol. Cancer Res. Treat., 2014, 13(1), 77-86.
[http://dx.doi.org/10.7785/tcrt.2012.500364] [PMID: 23862748]
[30]
Sun, T.; Liu, H.; Ming, L. Multiple roles of autophagy in the sorafenib resistance of hepatocellular carcinoma. Cell. Physiol. Biochem., 2017, 44(2), 716-727.
[http://dx.doi.org/10.1159/000485285] [PMID: 29169150]
[31]
Du, B.; Shim, J.S. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules, 2016, 21(7)E965
[http://dx.doi.org/10.3390/molecules21070965] [PMID: 27455225]
[32]
van Zijl, F.; Mall, S.; Machat, G.; Pirker, C.; Zeillinger, R.; Weinhaeusel, A.; Bilban, M.; Berger, W.; Mikulits, W. A human model of epithelial to mesenchymal transition to monitor drug efficacy in hepatocellular carcinoma progression. Mol. Cancer Ther., 2011, 10(5), 850-860.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0917] [PMID: 21364009]
[33]
Chow, A.K.; Ng, L.; Lam, C.S.; Wong, S.K.; Wan, T.M.; Cheng, N.S.; Yau, T.C.; Poon, R.T.; Pang, R.W. The Enhanced metastatic potential of hepatocellular carcinoma (HCC) cells with sorafenib resistance. PLoS One, 2013, 8(11)e78675
[http://dx.doi.org/10.1371/journal.pone.0078675] [PMID: 24244338]
[34]
van Malenstein, H.; Dekervel, J.; Verslype, C.; Van Cutsem, E.; Windmolders, P.; Nevens, F.; van Pelt, J. Long-term exposure to sorafenib of liver cancer cells induces resistance with epithelial-to-mesenchymal transition, increased invasion and risk of rebound growth. Cancer Lett., 2013, 329(1), 74-83.
[http://dx.doi.org/10.1016/j.canlet.2012.10.021] [PMID: 23111106]
[35]
Kim, J.Y.; Lee, J.Y. Targeting tumor adaption to chronic hypoxia: implications for drug resistance, and how it can be overcome. Int. J. Mol. Sci., 2017, 18(9)E1854
[http://dx.doi.org/10.3390/ijms18091854] [PMID: 28841148]
[36]
Liang, Y.; Zheng, T.; Song, R.; Wang, J.; Yin, D.; Wang, L.; Liu, H.; Tian, L.; Fang, X.; Meng, X.; Jiang, H.; Liu, J.; Liu, L. Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-1α inhibition in hepatocellular carcinoma. Hepatology, 2013, 57(5), 1847-1857.
[http://dx.doi.org/10.1002/hep.26224] [PMID: 23299930]
[37]
Zhao, D.; Zhai, B.; He, C.; Tan, G.; Jiang, X.; Pan, S.; Dong, X.; Wei, Z.; Ma, L.; Qiao, H.; Jiang, H.; Sun, X. Upregulation of HIF-2α induced by sorafenib contributes to the resistance by activating the TGF-α/EGFR pathway in hepatocellular carcinoma cells. Cell. Signal., 2014, 26(5), 1030-1039.
[http://dx.doi.org/10.1016/j.cellsig.2014.01.026] [PMID: 24486412]
[38]
Liu, F.; Dong, X.; Lv, H.; Xiu, P.; Li, T.; Wang, F.; Xu, Z.; Li, J. Targeting hypoxia-inducible factor-2α enhances sorafenib antitumor activity via β-catenin/C-Myc-dependent pathways in hepatocellular carcinoma. Oncol. Lett., 2015, 10(2), 778-784.
[http://dx.doi.org/10.3892/ol.2015.3315] [PMID: 26622569]
[39]
Park, C.Y.; Tseng, D.; Weissman, I.L. Cancer stem cell-directed therapies: recent data from the laboratory and clinic. Mol. Ther., 2009, 17(2), 219-230.
[http://dx.doi.org/10.1038/mt.2008.254] [PMID: 19066601]
[40]
Liu, L.L.; Fu, D.; Ma, Y.; Shen, X.Z. The power and the promise of liver cancer stem cell markers. Stem Cells Dev., 2011, 20(12), 2023-2030.
[http://dx.doi.org/10.1089/scd.2011.0012] [PMID: 21651381]
[41]
Fernando, J.; Malfettone, A.; Cepeda, E.B.; Vilarrasa-Blasi, R.; Bertran, E.; Raimondi, G.; Fabra, À.; Alvarez-Barrientos, A.; Fernández-Salguero, P.; Fernández-Rodríguez, C.M.; Giannelli, G.; Sancho, P.; Fabregat, I. A mesenchymal-like phenotype and expression of CD44 predict lack of apoptotic response to sorafenib in liver tumor cells. Int. J. Cancer, 2015, 136(4), E161-E172.
[http://dx.doi.org/10.1002/ijc.29097] [PMID: 25053293]
[42]
Chen, X.; Lingala, S.; Khoobyari, S.; Nolta, J.; Zern, M.A.; Wu, J. Epithelial mesenchymal transition and hedgehog signaling activation are associated with chemoresistance and invasion of hepatoma subpopulations. J. Hepatol., 2011, 55(4), 838-845.
[http://dx.doi.org/10.1016/j.jhep.2010.12.043] [PMID: 21334406]
[43]
Liu, X.; Qin, S. Immune checkpoint inhibitors in hepatocellular carcinoma: opportunities and challenges. Oncologist, 2019, 24(Suppl. 1), S3-S10.
[http://dx.doi.org/10.1634/theoncologist.2019-IO-S1-s01] [PMID: 30819826]
[44]
Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; Majem, M.; Fidler, M.J.; de Castro, G., Jr; Garrido, M.; Lubiniecki, G.M.; Shentu, Y. Im, E.; Dolled-Filhart, M.; Garon, E.B. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet, 2016, 387(10027), 1540-1550.
[http://dx.doi.org/10.1016/S0140-6736(15)01281-7] [PMID: 26712084]
[45]
Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; Barlesi, F.; Kohlhäufl, M.; Arrieta, O.; Burgio, M.A.; Fayette, J.; Lena, H.; Poddubskaya, E.; Gerber, D.E.; Gettinger, S.N.; Rudin, C.M.; Rizvi, N.; Crinò, L.; Blumenschein, G.R. Jr.; Antonia, S.J.; Dorange, C.; Harbison, C.T.; Graf Finckenstein, F.; Brahmer, J.R. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(17), 1627-1639.
[http://dx.doi.org/10.1056/NEJMoa1507643] [PMID: 26412456]
[46]
Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; Waterhouse, D.; Ready, N.; Gainor, J.; Arén Frontera, O.; Havel, L.; Steins, M.; Garassino, M.C.; Aerts, J.G.; Domine, M.; Paz-Ares, L.; Reck, M.; Baudelet, C.; Harbison, C.T.; Lestini, B.; Spigel, D.R. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(2), 123-135.
[http://dx.doi.org/10.1056/NEJMoa1504627] [PMID: 26028407]
[47]
Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Park, K.; Smith, D.; Artal-Cortes, A.; Lewanski, C.; Braiteh, F.; Waterkamp, D.; He, P.; Zou, W.; Chen, D.S.; Yi, J.; Sandler, A.; Rittmeyer, A.; Group, P.S. POPLAR Study Group. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet, 2016, 387(10030), 1837-1846.
[http://dx.doi.org/10.1016/S0140-6736(16)00587-0] [PMID: 26970723]
[48]
Engelhardt, J.J.; Sullivan, T.J.; Allison, J.P. CTLA-4 overexpression inhibits T cell responses through a CD28-B7-dependent mechanism. J. Immunol., 2006, 177(2), 1052-1061.
[http://dx.doi.org/10.4049/jimmunol.177.2.1052] [PMID: 16818761]
[49]
Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J., 1992, 11(11), 3887-3895.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05481.x] [PMID: 1396582]
[50]
Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; Horton, H.F.; Fouser, L.; Carter, L.; Ling, V.; Bowman, M.R.; Carreno, B.M.; Collins, M.; Wood, C.R.; Honjo, T. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med., 2000, 192(7), 1027-1034.
[http://dx.doi.org/10.1084/jem.192.7.1027] [PMID: 11015443]
[51]
Keir, M.E.; Liang, S.C.; Guleria, I.; Latchman, Y.E.; Qipo, A.; Albacker, L.A.; Koulmanda, M.; Freeman, G.J.; Sayegh, M.H.; Sharpe, A.H. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med., 2006, 203(4), 883-895.
[http://dx.doi.org/10.1084/jem.20051776] [PMID: 16606670]
[52]
Wahl, C.; Bochtler, P.; Chen, L.; Schirmbeck, R.; Reimann, J. B7-H1 on hepatocytes facilitates priming of specific CD8 T cells but limits the specific recall of primed responses. Gastroenterology, 2008, 135(3), 980-988.
[http://dx.doi.org/10.1053/j.gastro.2008.05.076] [PMID: 18621049]
[53]
Kassel, R.; Cruise, M.W.; Iezzoni, J.C.; Taylor, N.A.; Pruett, T.L.; Hahn, Y.S. Chronically inflamed livers up-regulate expression of inhibitory B7 family members. Hepatology, 2009, 50(5), 1625-1637.
[http://dx.doi.org/10.1002/hep.23173] [PMID: 19739236]
[54]
Carambia, A.; Frenzel, C.; Bruns, O.T.; Schwinge, D.; Reimer, R.; Hohenberg, H.; Huber, S.; Tiegs, G.; Schramm, C.; Lohse, A.W.; Herkel, J. Inhibition of inflammatory CD4 T cell activity by murine liver sinusoidal endothelial cells. J. Hepatol., 2013, 58(1), 112-118.
[http://dx.doi.org/10.1016/j.jhep.2012.09.008] [PMID: 22989568]
[55]
Diehl, L.; Schurich, A.; Grochtmann, R.; Hegenbarth, S.; Chen, L.; Knolle, P.A. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology, 2008, 47(1), 296-305.
[http://dx.doi.org/10.1002/hep.21965] [PMID: 17975811]
[56]
Yu, M.C.; Chen, C.H.; Liang, X.; Wang, L.; Gandhi, C.R.; Fung, J.J.; Lu, L.; Qian, S. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology, 2004, 40(6), 1312-1321.
[http://dx.doi.org/10.1002/hep.20488] [PMID: 15565659]
[57]
Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 2017, 168(4), 707-723.
[http://dx.doi.org/10.1016/j.cell.2017.01.017] [PMID: 28187290]
[58]
O’Donnell, J.S.; Long, G.V.; Scolyer, R.A.; Teng, M.W.; Smyth, M.J. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat. Rev., 2017, 52, 71-81.
[http://dx.doi.org/10.1016/j.ctrv.2016.11.007] [PMID: 27951441]
[59]
Rieth, J.; Subramanian, S. Mechanisms of intrinsic tumor resistance to immunotherapy. Int. J. Mol. Sci., 2018, 19(5)E1340
[http://dx.doi.org/10.3390/ijms19051340] [PMID: 29724044]
[60]
Xia, C.; Zeng, F.; Zhang, Y. EGFR exon 21 L858R as an acquired resistance mechanism to nivolumab in a lung cancer patient originally driver gene-negative. Thorac. Cancer, 2019, 10(5), 1256-1259.
[http://dx.doi.org/10.1111/1759-7714.13023] [PMID: 30810279]
[61]
Kuo, H.Y.; Chiang, N.J.; Chuang, C.H.; Chen, C.Y.; Wu, I.C.; Chang, T.T.; Tsai, H.M.; Lin, Y.J. Impact of immune checkpoint inhibitors with or without a combination of tyrosine kinase inhibitors on organ-specific efficacy and macrovascular invasion in advanced hepatocellular carcinoma. Oncol. Res. Treat., 2020, 43(5), 211-220.
[http://dx.doi.org/10.1159/000505933] [PMID: 32101878]
[62]
Kawaoka, T.; Ando, Y.; Yamauchi, M.; Suehiro, Y.; Yamaoka, K.; Kosaka, Y.; Fuji, Y.; Uchikawa, S.; Morio, K.; Fujino, H.; Nakahara, T.; Ono, A.; Murakami, E.; Takahashi, S.; Tsuge, M.; Hiramatsu, A.; Imamura, M.; Chayama, K.; Aikata, H. Incidence of microsatellite instability-high hepatocellular carcinoma among Japanese patients and response to pembrolizumab. Hepatol. Res., 2020, 50(7), 885-888.
[http://dx.doi.org/10.1111/hepr.13496] [PMID: 32088930]
[63]
Cheng, A.L.; Hsu, C.; Chan, S.L.; Choo, S.P.; Kudo, M. Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma. J. Hepatol., 2020, 72(2), 307-319.
[http://dx.doi.org/10.1016/j.jhep.2019.09.025] [PMID: 31954494]
[64]
Xu, G.; Feng, D.; Yao, Y.; Li, P.; Sun, H.; Yang, H.; Li, C.; Jiang, R.; Sun, B.; Chen, Y. Listeria-based hepatocellular carcinoma vaccine facilitates anti-PD-1 therapy by regulating macrophage polarization. Oncogene, 2020, 39(7), 1429-1444.
[http://dx.doi.org/10.1038/s41388-019-1072-3] [PMID: 31659256]
[65]
Shigeta, K.; Datta, M.; Hato, T.; Kitahara, S.; Chen, I.X.; Matsui, A.; Kikuchi, H.; Mamessier, E.; Aoki, S.; Ramjiawan, R.R.; Ochiai, H.; Bardeesy, N.; Huang, P.; Cobbold, M.; Zhu, A.X.; Jain, R.K.; Duda, D.G. Dual programmed death receptor-1 and vascular endothelial growth factor receptor-2 blockade promotes vascular normalization and enhances antitumor immune responses in hepatocellular carcinoma. Hepatology, 2020, 71(4), 1247-1261.
[http://dx.doi.org/10.1002/hep.30889] [PMID: 31378984]
[66]
Ruiz de Galarreta, M.; Bresnahan, E.; Molina-Sánchez, P.; Lindblad, K.E.; Maier, B.; Sia, D.; Puigvehi, M.; Miguela, V.; Casanova-Acebes, M.; Dhainaut, M.; Villacorta-Martin, C.; Singhi, A.D.; Moghe, A.; von Felden, J.; Tal Grinspan, L.; Wang, S.; Kamphorst, A.O.; Monga, S.P.; Brown, B.D.; Villanueva, A.; Llovet, J.M.; Merad, M.; Lujambio, A. therapy in hepatocellular carcinoma. β-Catenin activation promotes immune escape and resistance to anti-PD-1. Cancer Discov., 2019, 9(8), 1124-1141.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0074] [PMID: 31186238]
[67]
Kim, D.Y.; Han, K.H. Epidemiology and surveillance of hepatocellular carcinoma. Liver Cancer, 2012, 1(1), 2-14.
[http://dx.doi.org/10.1159/000339016] [PMID: 24159567]
[68]
Peng, Y.C.; Chan, C.S.; Chen, G.H. The effectiveness of serum alpha-fetoprotein level in anti-HCV positive patients for screening hepatocellular carcinoma. Hepatogastroenterology, 1999, 46(30), 3208-3211.
[PMID: 10626187]
[69]
Sherman, M. Alphafetoprotein: an obituary. J. Hepatol., 2001, 34(4), 603-605.
[http://dx.doi.org/10.1016/S0168-8278(01)00025-3] [PMID: 11394662]
[70]
Gao, F.; Zhu, H.K.; Zhu, Y.B.; Shan, Q.N.; Ling, Q.; Wei, X.Y.; Xie, H.Y.; Zhou, L.; Xu, X.; Zheng, S.S. Predictive value of tumor markers in patients with recurrent hepatocellular carcinoma in different vascular invasion pattern. Hepatobiliary Pancreat. Dis. Int., 2016, 15(4), 371-377.
[http://dx.doi.org/10.1016/S1499-3872(16)60095-4] [PMID: 27498576]
[71]
Buendia, M.A.; Neuveut, C. Hepatocellular carcinoma. Cold Spring Harb. Perspect. Med., 2015, 5(2)a021444
[http://dx.doi.org/10.1101/cshperspect.a021444] [PMID: 25646384]
[72]
Gillespie, J.R.; Uversky, V.N. Structure and function of alpha-fetoprotein: a biophysical overview. Biochim. Biophys. Acta, 2000, 1480(1-2), 41-56.
[http://dx.doi.org/10.1016/S0167-4838(00)00104-7] [PMID: 11004554]
[73]
Zhu, M.; Lu, Y.; Li, W.; Guo, J.; Dong, X.; Lin, B.; Chen, Y.; Xie, X.; Li, M. Hepatitis B virus X protein driven alpha fetoprotein expression to promote malignant behaviors of normal liver cells and hepatoma cells. J. Cancer, 2016, 7(8), 935-946.
[http://dx.doi.org/10.7150/jca.13628] [PMID: 27313784]
[74]
Meng, W.; Bai, B.; Bai, Z.; Li, Y.; Yue, P.; Li, X.; Qiao, L. The immunosuppression role of alpha-fetoprotein in human hepatocellular carcinoma. Discov. Med., 2016, 21(118), 489-494.
[PMID: 27448785]
[75]
Meng, W.; Li, X.; Bai, Z.; Li, Y.; Yuan, J.; Liu, T.; Yan, J.; Zhou, W.; Zhu, K.; Zhang, H.; Li, Y. Silencing alpha-fetoprotein inhibits VEGF and MMP-2/9 production in human hepatocellular carcinoma cell. PLoS One, 2014, 9(2)e90660
[http://dx.doi.org/10.1371/journal.pone.0090660] [PMID: 24587407]
[76]
Li, M.; Li, H.; Li, C.; Zhou, S.; Guo, L.; Liu, H.; Jiang, W.; Liu, X.; Li, P.; McNutt, M.A.; Li, G. Alpha fetoprotein is a novel protein-binding partner for caspase-3 and blocks the apoptotic signaling pathway in human hepatoma cells. Int. J. Cancer, 2009, 124(12), 2845-2854.
[http://dx.doi.org/10.1002/ijc.24272] [PMID: 19267404]
[77]
Song, W.; Song, C.; Chen, Y.; Du, M.; Hu, P.; Liu, A.; Lu, W. Polysaccharide-induced apoptosis in H22 cells through G2/M arrest and BCL2/BAX caspase-activated Fas pathway. Cell. Mol. Biol., 2015, 61(7), 88-95.
[PMID: 26612738]
[78]
Ritter, M.; Ali, M.Y.; Grimm, C.F.; Weth, R.; Mohr, L.; Bocher, W.O.; Endrulat, K.; Wedemeyer, H.; Blum, H.E.; Geissler, M. Immunoregulation of dendritic and T cells by alpha-fetoprotein in patients with hepatocellular carcinoma. J. Hepatol., 2004, 41(6), 999-1007.
[http://dx.doi.org/10.1016/j.jhep.2004.08.013] [PMID: 15582134]
[79]
Li, M.S.; Ma, Q.L.; Chen, Q.; Liu, X.H.; Li, P.F.; Du, G.G.; Li, G. Alpha-fetoprotein triggers hepatoma cells escaping from immune surveillance through altering the expression of Fas/FasL and tumor necrosis factor related apoptosis-inducing ligand and its receptor of lymphocytes and liver cancer cells. World J. Gastroenterol., 2005, 11(17), 2564-2569.
[http://dx.doi.org/10.3748/wjg.v11.i17.2564] [PMID: 15849812]
[80]
Llovet, J.M.; Peña, C.E.; Lathia, C.D.; Shan, M.; Meinhardt, G.; Bruix, J. SHARP Investigators Study Group. Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clin. Cancer Res., 2012, 18(8), 2290-2300.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2175] [PMID: 22374331]
[81]
Yamashita, T.; Forgues, M.; Wang, W.; Kim, J.W.; Ye, Q.; Jia, H.; Budhu, A.; Zanetti, K.A.; Chen, Y.; Qin, L.X.; Tang, Z.Y.; Wang, X.W. EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res., 2008, 68(5), 1451-1461.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6013] [PMID: 18316609]
[82]
Shan, Y.F.; Huang, Y.L.; Xie, Y.K.; Tan, Y.H.; Chen, B.C.; Zhou, M.T.; Shi, H.Q.; Yu, Z.P.; Song, Q.T.; Zhang, Q.Y. Angiogenesis and clinicopathologic characteristics in different hepatocellular carcinoma subtypes defined by EpCAM and α-fetoprotein expression status. Med. Oncol., 2011, 28(4), 1012-1016.
[http://dx.doi.org/10.1007/s12032-010-9600-6] [PMID: 20571936]
[83]
Li, P.; Wang, S.S.; Liu, H.; Li, N.; McNutt, M.A.; Li, G.; Ding, H.G. Elevated serum alpha fetoprotein levels promote pathological progression of hepatocellular carcinoma. World J. Gastroenterol., 2011, 17(41), 4563-4571.
[http://dx.doi.org/10.3748/wjg.v17.i41.4563] [PMID: 22147961]
[84]
Li, M.S.; Li, P.F.; Chen, Q.; Du, G.G.; Li, G. Alpha-fetoprotein stimulated the expression of some oncogenes in human hepatocellular carcinoma Bel 7402 cells. World J. Gastroenterol., 2004, 10(6), 819-824.
[http://dx.doi.org/10.3748/wjg.v10.i6.819] [PMID: 15040024]
[85]
Li, M.S.; Li, P.F.; He, S.P.; Du, G.G.; Li, G. The promoting molecular mechanism of alpha-fetoprotein on the growth of human hepatoma Bel7402 cell line. World J. Gastroenterol., 2002, 8(3), 469-475.
[http://dx.doi.org/10.3748/wjg.v8.i3.469] [PMID: 12046072]
[86]
Yang, X.; Zhang, Y.; Zhang, L.; Zhang, L.; Mao, J. Silencing alpha-fetoprotein expression induces growth arrest and apoptosis in human hepatocellular cancer cell. Cancer Lett., 2008, 271(2), 281-293.
[http://dx.doi.org/10.1016/j.canlet.2008.06.017] [PMID: 18657899]
[87]
Zhang, M.; Gong, Y.; Assy, N.; Minuk, G.Y. Increased GABAergic activity inhibits alpha-fetoprotein mRNA expression and the proliferative activity of the HepG2 human hepatocellular carcinoma cell line. J. Hepatol., 2000, 32(1), 85-91.
[http://dx.doi.org/10.1016/S0168-8278(00)80193-2] [PMID: 10673071]
[88]
Li, M.; Li, H.; Li, C.; Wang, S.; Jiang, W.; Liu, Z.; Zhou, S.; Liu, X.; McNutt, M.A.; Li, G. Alpha-fetoprotein: a new member of intracellular signal molecules in regulation of the PI3K/AKT signaling in human hepatoma cell lines. Int. J. Cancer, 2011, 128(3), 524-532.
[http://dx.doi.org/10.1002/ijc.25373] [PMID: 20473866]
[89]
Ma, S.H.; Chen, G.G.; Yip, J.; Lai, P.B. Therapeutic effect of alpha-fetoprotein promoter-mediated tBid and chemotherapeutic agents on orthotopic liver tumor in mice. Gene Ther., 2010, 17(7), 905-912.
[http://dx.doi.org/10.1038/gt.2010.34] [PMID: 20336154]
[90]
Zhang, L.; He, T.; Cui, H.; Wang, Y.; Huang, C.; Han, F. Effects of AFP gene silencing on apoptosis and proliferation of a hepatocellular carcinoma cell line. Discov. Med., 2012, 14(75), 115-124.
[PMID: 22935208]
[91]
Zhu, M.; Li, W.; Guo, J.; Lu, Y.; Dong, X.; Lin, B.; Chen, Y.; Zhang, X.; Li, M. Alpha fetoprotein antagonises benzyl isothiocyanate inhibition of the malignant behaviors of hepatocellular carcinoma cells. Oncotarget, 2016, 7(46), 75749-75762.
[http://dx.doi.org/10.18632/oncotarget.12407] [PMID: 27716619]
[92]
Cai, X.; Zhou, J.; Chang, Y.; Sun, X.; Li, P.; Lin, J. Targeting gene therapy for hepatocarcinoma cells with the E. coli purine nucleoside phosphorylase suicide gene system directed by a chimeric alpha-fetoprotein promoter. Cancer Lett., 2008, 264(1), 71-82.
[http://dx.doi.org/10.1016/j.canlet.2008.01.027] [PMID: 18407409]
[93]
Yang, X.; Chen, L.; Liang, Y.; Si, R.; Jiang, Z.; Ma, B.; Gao, P. Knockdown of alpha-fetoprotein expression inhibits HepG2 cell growth and induces apoptosis. J. Cancer Res. Ther., 2018, 14(Suppl.), S634-S643.
[http://dx.doi.org/10.4103/0973-1482.180681] [PMID: 30249880]
[94]
Fang, Z.L.; Fang, N.; Han, X.N.; Huang, G.; Fu, X.J.; Xie, G.S.; Wang, N.R.; Xiong, J.P. Effects of AFP gene silencing on survivin mRNA expression inhibition in HepG2 cells. Genet. Mol. Res., 2015, 14(2), 3184-3190.
[http://dx.doi.org/10.4238/2015.April.10.30] [PMID: 25966084]
[95]
Li, M.; Li, H.; Li, C.; Guo, L.; Liu, H.; Zhou, S.; Liu, X.; Chen, Z.; Shi, S.; Wei, J.; McNutt, M.A.; Li, G. Cytoplasmic alpha-fetoprotein functions as a co-repressor in RA-RAR signaling to promote the growth of human hepatoma Bel 7402 cells. Cancer Lett., 2009, 285(2), 190-199.
[http://dx.doi.org/10.1016/j.canlet.2009.05.014] [PMID: 19501957]
[96]
Li, C.; Wang, S.; Jiang, W.; Li, H.; Liu, Z.; Zhang, C.; McNutt, M.A.; Li, G. Impact of intracellular alpha fetoprotein on retinoic acid receptors-mediated expression of GADD153 in human hepatoma cell lines. Int. J. Cancer, 2012, 130(4), 754-764.
[http://dx.doi.org/10.1002/ijc.26025] [PMID: 21365646]
[97]
Wang, S.; Jiang, W.; Chen, X.; Zhang, C.; Li, H.; Hou, W.; Liu, Z.; McNutt, M.A.; Lu, F.; Li, G. Alpha-fetoprotein acts as a novel signal molecule and mediates transcription of Fn14 in human hepatocellular carcinoma. J. Hepatol., 2012, 57(2), 322-329.
[http://dx.doi.org/10.1016/j.jhep.2012.03.029] [PMID: 22521346]
[98]
Lu, Y.; Zhu, M.; Li, W.; Lin, B.; Dong, X.; Chen, Y.; Xie, X.; Guo, J.; Li, M. Alpha fetoprotein plays a critical role in promoting metastasis of hepatocellular carcinoma cells. J. Cell. Mol. Med., 2016, 20(3), 549-558.
[http://dx.doi.org/10.1111/jcmm.12745] [PMID: 26756858]
[99]
Schmidt, N.; Neumann-Haefelin, C.; Thimme, R. Cellular immune responses to hepatocellular carcinoma: lessons for immunotherapy. Dig. Dis., 2012, 30(5), 483-491.
[http://dx.doi.org/10.1159/000341697] [PMID: 23108304]
[100]
Wang, X.; Wang, Q. Alpha-fetoprotein and hepatocellular carcinoma immunity. Can. J. Gastroenterol. Hepatol., 2018, 20189049252
[http://dx.doi.org/10.1155/2018/9049252] [PMID: 29805966]
[101]
Pardee, A.D.; Shi, J.; Butterfield, L.H. Tumor-derived α-fetoprotein impairs the differentiation and T cell stimulatory activity of human dendritic cells. J. Immunol., 2014, 193(11), 5723-5732.
[http://dx.doi.org/10.4049/jimmunol.1400725] [PMID: 25355916]
[102]
Trompezinski, S.; Migdal, C.; Tailhardat, M.; Le Varlet, B.; Courtellemont, P.; Haftek, M.; Serres, M. Characterization of early events involved in human dendritic cell maturation induced by sensitizers: cross talk between MAPK signalling pathways. Toxicol. Appl. Pharmacol., 2008, 230(3), 397-406.
[http://dx.doi.org/10.1016/j.taap.2008.03.012] [PMID: 18495191]
[103]
Vogt, A.; Sievers, E.; Lukacs-Kornek, V.; Decker, G.; Raskopf, E.; Meumann, N.; Büning, H.; Sauerbruch, T.; Strassburg, C.P.; Schmidt-Wolf, I.G.; Gonzalez-Carmona, M.A. Improving immunotherapy of hepatocellular carcinoma (HCC) using dendritic cells (DC) engineered to express IL-12 in vivo. Liver Int., 2014, 34(3), 447-461.
[http://dx.doi.org/10.1111/liv.12284] [PMID: 23998316]
[104]
Murgita, R.A.; Goidl, E.A.; Kontianen, S.; Wigzell, H. Alpha-Fetoprotein induces suppressor T cells in vitro. Nature, 1977, 267(5608), 257-259.
[http://dx.doi.org/10.1038/267257a0]] [PMID: 68439]
[105]
Peck, A.B.; Murgita, R.A.; Wigzell, H. Cellular and genetic restrictions in the immunoregulatory activity of alpha-fetoprotein. III. Role of the MLC-stimulating cell population in alpha-fetoprotein-induced suppression of T cell-mediated cytotoxicity. J. Immunol., 1982, 128(3), 1134-1140.
[PMID: 6173421]
[106]
Semeniuk, D.J.; Boismenu, R.; Tam, J.; Weissenhofer, W.; Murgita, R.A. Evidence that immunosuppression is an intrinsic property of the alpha-fetoprotein molecule. Adv. Exp. Med. Biol., 1995, 383, 255-269.
[http://dx.doi.org/10.1007/978-1-4615-1891-4_27] [PMID: 8644510]
[107]
Meng, W.S.; Butterfield, L.H.; Ribas, A.; Heller, J.B.; Dissette, V.B.; Glaspy, J.A.; McBride, W.H.; Economou, J.S. Fine specificity analysis of an HLA-A2.1-restricted immunodominant T cell epitope derived from human alpha-fetoprotein. Mol. Immunol., 2000, 37(16), 943-950.
[http://dx.doi.org/10.1016/S0161-5890(01)00017-7] [PMID: 11395133]
[108]
Mizejewski, G.J. Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Exp. Biol. Med. (Maywood), 2001, 226(5), 377-408.
[http://dx.doi.org/10.1177/153537020122600503] [PMID: 11393167]
[109]
Banchereau, J.; Steinman, R.M. Dendritic cells and the control of immunity. Nature, 1998, 392(6673), 245-252.
[http://dx.doi.org/10.1038/32588] [PMID: 9521319]
[110]
Mellman, I.; Steinman, R.M. Dendritic cells: specialized and regulated antigen processing machines. Cell, 2001, 106(3), 255-258.
[http://dx.doi.org/10.1016/S0092-8674(01)00449-4] [PMID: 11509172]
[111]
Vicari, A.P.; Caux, C.; Trinchieri, G. Tumour escape from immune surveillance through dendritic cell inactivation. Semin. Cancer Biol., 2002, 12(1), 33-42.
[http://dx.doi.org/10.1006/scbi.2001.0400] [PMID: 11926410]
[112]
Um, S.H.; Mulhall, C.; Alisa, A.; Ives, A.R.; Karani, J.; Williams, R.; Bertoletti, A.; Behboudi, S. Alpha-fetoprotein impairs APC function and induces their apoptosis. J. Immunol., 2004, 173(3), 1772-1778.
[http://dx.doi.org/10.4049/jimmunol.173.3.1772] [PMID: 15265907]
[113]
Yang, J.Y.; Cao, D.Y.; Xue, Y.; Yu, Z.C.; Liu, W.C. Improvement of dendritic-based vaccine efficacy against hepatitis B virus-related hepatocellular carcinoma by two tumor-associated antigen gene-infected dendritic cells. Hum. Immunol., 2010, 71(3), 255-262.
[http://dx.doi.org/10.1016/j.humimm.2009.12.010] [PMID: 20036295]
[114]
González-Carmona, M.A.; Märten, A.; Hoffmann, P.; Schneider, C.; Sievers, E.; Schmidt-Wolf, I.G.; Sauerbruch, T.; Caselmann, W.H. Patient-derived dendritic cells transduced with an a-fetoprotein-encoding adenovirus and co-cultured with autologous cytokine-induced lymphocytes induce a specific and strong immune response against hepatocellular carcinoma cells. Liver Int., 2006, 26(3), 369-379.
[http://dx.doi.org/10.1111/j.1478-3231.2005.01235.x] [PMID: 16584401]
[115]
Bray, S.M.; Vujanovic, L.; Butterfield, L.H. Dendritic cell-based vaccines positively impact natural killer and regulatory T cells in hepatocellular carcinoma patients. Clin. Dev. Immunol., 2011, 2011249281
[http://dx.doi.org/10.1155/2011/249281] [PMID: 21969837]
[116]
Liu, Y.; Wang, Y.R.; Ding, G.H.; Yang, T.S.; Yao, L.; Hua, J.; He, Z.G.; Qian, M.P. JAK2 inhibitor combined with DC-activated AFP-specific T-cells enhances antitumor function in a Fas/FasL signal-independent pathway. OncoTargets Ther., 2016, 9, 4425-4433.
[http://dx.doi.org/10.2147/OTT.S97941] [PMID: 27499636]
[117]
Rich, N.; Singal, A.G. Hepatocellular carcinoma tumour markers: current role and expectations. Best Pract. Res. Clin. Gastroenterol., 2014, 28(5), 843-853.
[http://dx.doi.org/10.1016/j.bpg.2014.07.018] [PMID: 25260312]
[118]
Irony-Tur-Sinai, M.; Grigoriadis, N.; Tsiantoulas, D.; Touloumi, O.; Abramsky, O.; Brenner, T. Immunomodulation of EAE by alpha-fetoprotein involves elevation of immune cell apoptosis markers and the transcription factor FoxP3. J. Neurol. Sci., 2009, 279(1-2), 80-87.
[http://dx.doi.org/10.1016/j.jns.2008.12.014] [PMID: 19171355]
[119]
Pedroza-Gonzalez, A.; Zhou, G.; Vargas-Mendez, E.; Boor, P.P.; Mancham, S.; Verhoef, C.; Polak, W.G.; Grünhagen, D.; Pan, Q.; Janssen, H.; Garcia-Romo, G.S.; Biermann, K.; Tjwa, E.T.; IJzermans, J.N.; Kwekkeboom, J.; Sprengers, D. Tumor-infiltrating plasmacytoid dendritic cells promote immunosuppression by Tr1 cells in human liver tumors. OncoImmunology, 2015, 4(6)e1008355
[http://dx.doi.org/10.1080/2162402X.2015.1008355] [PMID: 26155417]
[120]
Li, M.-S.; Zhan, Z.-N.; Zhou, S.; Liu, X.-H.; Li, G. Inhibition of alpha-fetoprotein on caspase mediated signal transduction and its effect on TRAIL resistance of human hepatoma Bel 7402 cells. Xi'an jiao tong da xue xue bao. Yi xue ban., , 2019, 30(2), 159-168.
[121]
Zhu, M.Y.; Li, W.; Lu, Y.; Cai, X.M.; Dong, X.; Chen, Y.; Guo, J.L.; Li, M.S. Benzyl isothiocyanate induces apoptosis of hepatocarcinoma cells. World Chin. J. Digestology, 2014, 22(16), 2277-2284.
[http://dx.doi.org/10.11569/wcjd.v22.i16.2277]
[122]
Zhu, M.Y.; Fu, S.G.; Li, M.S.; Xie, X.J.; Li, G. Inhibited the activity of pten by α-fetoprotein caused resistance to all trans retinoic acid of hepatoma cells. Prog. Biochem. Biophy., 2011, 38(3), 227-238.
[123]
Lin, B.; Zhu, M.; Wang, W.; Li, W.; Dong, X.; Chen, Y.; Lu, Y.; Guo, J.; Li, M. Structural basis for alpha fetoprotein-mediated inhibition of caspase-3 activity in hepatocellular carcinoma cells. Int. J. Cancer, 2017, 141(7), 1413-1421.
[http://dx.doi.org/10.1002/ijc.30850] [PMID: 28653316]
[124]
Huang, F.; Wang, B.R.; Wang, Y.G. Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma. World J. Gastroenterol., 2018, 24(41), 4643-4651.
[http://dx.doi.org/10.3748/wjg.v24.i41.4643] [PMID: 30416312]
[125]
Kang-Park, S. Im, J.H.; Lee, J.H.; Lee, Y.I. PTEN modulates hepatitis B virus-X protein induced survival signaling in Chang liver cells. Virus Res., 2006, 122(1-2), 53-60.
[http://dx.doi.org/10.1016/j.virusres.2006.06.010] [PMID: 16872708]
[126]
Zhu, M.; Li, W.; Lu, Y.; Dong, X.; Lin, B.; Chen, Y.; Zhang, X.; Guo, J.; Li, M. HBx drives alpha fetoprotein expression to promote initiation of liver cancer stem cells through activating PI3K/AKT signal pathway. Int. J. Cancer, 2017, 140(6), 1346-1355.
[http://dx.doi.org/10.1002/ijc.30553] [PMID: 27925189]
[127]
Wang, S.; Zhu, M.; Wang, Q.; Hou, Y.; Li, L.; Weng, H.; Zhao, Y.; Chen, D.; Ding, H.; Guo, J.; Li, M. Alpha-fetoprotein inhibits autophagy to promote malignant behaviour in hepatocellular carcinoma cells by activating PI3K/AKT/mTOR signalling. Cell Death Dis., 2018, 9(10), 1027.
[http://dx.doi.org/10.1038/s41419-018-1036-5] [PMID: 30301886]
[128]
Calderaro, J.; Rousseau, B.; Amaddeo, G.; Mercey, M.; Charpy, C.; Costentin, C.; Luciani, A.; Zafrani, E.S.; Laurent, A.; Azoulay, D.; Lafdil, F.; Pawlotsky, J.M. Programmed death ligand 1 expression in hepatocellular carcinoma: relationship with clinical and pathological features. Hepatology, 2016, 64(6), 2038-2046.
[http://dx.doi.org/10.1002/hep.28710] [PMID: 27359084]
[129]
Melms, J.C.; Thummalapalli, R.; Shaw, K.; Ye, H.; Tsai, L.; Bhatt, R.S.; Izar, B. Alpha-fetoprotein (AFP) as tumor marker in a patient with urothelial cancer with exceptional response to anti-PD-1 therapy and an escape lesion mimic. J. Immunother. Cancer, 2018, 6(1), 89.
[http://dx.doi.org/10.1186/s40425-018-0394-y] [PMID: 30208947]
[130]
Dai, X.; Pi, G.; Yang, S.L.; Chen,, G.G.; Liu, L.P.; Dong, H.H. Association of PD-L1 and HIF-1α coexpression with poor prognosis in hepatocellular carcinoma. Transl. Oncol., 2018, 11(2), 559-566.
[http://dx.doi.org/10.1016/j.tranon.2018.02.014] [PMID: 29525633]
[131]
Bruix, J.; Gores, G.J.; Mazzaferro, V. Hepatocellular carcinoma: clinical frontiers and perspectives. Gut, 2014, 63(5), 844-855.
[http://dx.doi.org/10.1136/gutjnl-2013-306627] [PMID: 24531850]
[132]
Wong, R.; Frenette, C. Updates in the management of hepatocellular carcinoma. Gastroenterol. Hepatol. (N. Y.), 2011, 7(1), 16-24.
[PMID: 21346848]
[133]
Mizejewski, G.J. Does alpha-fetoprotein contribute to the mortality and morbidity of human hepatocellular carcinoma? A commentary. J. Hepatocell. Carcinoma, 2016, 3, 37-40.
[http://dx.doi.org/10.2147/JHC.S114198] [PMID: 27703963]
[134]
Wang, Y.; Yang, X.; Yu, Y.; Xu, Z.; Sun, Y.; Liu, H.; Cheng, J.; Liu, M.; Sha, B.; Li, L.; Ding, N.; Li, Z.; Jin, H.; Qian, Q. Immunotherapy of patient with hepatocellular carcinoma using cytotoxic T lymphocytes ex vivo activated with tumor antigen-pulsed dendritic cells. J. Cancer, 2018, 9(2), 275-287.
[http://dx.doi.org/10.7150/jca.22176] [PMID: 29344274]
[135]
Nakamoto, Y.; Mizukoshi, E.; Kitahara, M.; Arihara, F.; Sakai, Y.; Kakinoki, K.; Fujita, Y.; Marukawa, Y.; Arai, K.; Yamashita, T.; Mukaida, N.; Matsushima, K.; Matsui, O.; Kaneko, S. Prolonged recurrence-free survival following OK432-stimulated dendritic cell transfer into hepatocellular carcinoma during transarterial embolization. Clin. Exp. Immunol., 2011, 163(2), 165-177.
[http://dx.doi.org/10.1111/j.1365-2249.2010.04246.x] [PMID: 21087443]
[136]
Tada, F.; Abe, M.; Hirooka, M.; Ikeda, Y.; Hiasa, Y.; Lee, Y.; Jung, N.C.; Lee, W.B.; Lee, H.S.; Bae, Y.S.; Onji, M. Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma. Int. J. Oncol., 2012, 41(5), 1601-1609.
[http://dx.doi.org/10.3892/ijo.2012.1626] [PMID: 22971679]
[137]
Butterfield, L.H.; Ribas, A.; Meng, W.S.; Dissette, V.B.; Amarnani, S.; Vu, H.T.; Seja, E.; Todd, K.; Glaspy, J.A.; McBride, W.H.; Economou, J.S. T-cell responses to HLA-A*0201 immunodominant peptides derived from alpha-fetoprotein in patients with hepatocellular cancer. Clin. Cancer Res., 2003, 9(16 Pt 1), 5902-5908.
[PMID: 14676113]
[138]
El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.Y.; Choo, S.P.; Trojan, J.; Welling, T.H.; Meyer, T.; Kang, Y.K.; Yeo, W.; Chopra, A.; Anderson, J.; Dela Cruz, C.; Lang, L.; Neely, J.; Tang, H.; Dastani, H.B.; Melero, I. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet, 2017, 389(10088), 2492-2502.
[http://dx.doi.org/10.1016/S0140-6736(17)31046-2] [PMID: 28434648]
[139]
Zhu, W.; Peng, Y.; Wang, L.; Hong, Y.; Jiang, X.; Li, Q.; Liu, H.; Huang, L.; Wu, J.; Celis, E.; Merchen, T.; Kruse, E.; He, Y. Identification of α-fetoprotein-specific T-cell receptors for hepatocellular carcinoma immunotherapy. Hepatology, 2018, 68(2), 574-589.
[http://dx.doi.org/10.1002/hep.29844] [PMID: 29443377]
[140]
Liu, H.; Xu, Y.; Xiang, J.; Long, L.; Green, S.; Yang, Z.; Zimdahl, B.; Lu, J.; Cheng, N.; Horan, L.H.; Liu, B.; Yan, S.; Wang, P.; Diaz, J.; Jin, L.; Nakano, Y.; Morales, J.F.; Zhang, P.; Liu, L.X.; Staley, B.K.; Priceman, S.J.; Brown, C.E.; Forman, S.J.; Chan, V.W.; Liu, C. Targeting alpha-fetoprotein (AFP)-MHC complex with CAR T-cell therapy for liver Cancer. Clin. Cancer Res., 2017, 23(2), 478-488.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1203] [PMID: 27535982]

© 2024 Bentham Science Publishers | Privacy Policy