Review Article

甲胎蛋白在肝癌耐药中的作用

卷 28, 期 6, 2021

发表于: 29 July, 2020

页: [1126 - 1142] 页: 17

弟呕挨: 10.2174/0929867327999200729151247

open access plus

摘要

肝细胞癌(HCC)是原发性肝癌的主要类型,因其复发率高、预后差而成为世界范围内癌症相关死亡的主要原因。手术切除是目前该病早期和中期患者的主要治疗措施。由于诊断较晚,多数患者在病情确诊后已错过手术机会,保守化疗(药物治疗)仍是中晚期肝癌患者综合治疗的重要手段。然而,肝癌患者的多药耐药(MDR)严重降低了治疗效果,是化疗成功的重要障碍。甲胎蛋白(AFP)是诊断HCC的重要生物标志物。许多HCC患者血清中AFP表达水平升高,AFP水平持续升高是HCC进展的危险因素。许多研究表明,AFP具有免疫抑制作用,在HCC发展过程中可促进恶性转化,并可能参与肝癌患者MDR的发生过程。本文综述了肝癌药物治疗过程中的耐药机制,并综述了AFP在肝癌发展进展中的机制与肝癌耐药的关系。

关键词: 肝细胞癌(HCC)、甲胎蛋白(AFP)、恶性转化、耐药性、免疫抑制、多药耐药(MDR)

[1]
Llovet, J.M.; Zucman-Rossi, J.; Pikarsky, E.; Sangro, B.; Schwartz, M.; Sherman, M.; Gores, G. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2016, 2, 16018.
[http://dx.doi.org/10.1038/nrdp.2016.18] [PMID: 27158749]
[2]
Zucman-Rossi, J.; Villanueva, A.; Nault, J.C.; Llovet, J.M. genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology, 2015, 149(5), 1226-1239 e4..
[http://dx.doi.org/10.1053/j.gastro.2015.05.061 ] [PMID: 26099527]
[3]
Bruix, J.; Sherman, M.; Llovet, J.M.; Beaugrand, M.; Lencioni, R.; Burroughs, A.K.; Christensen, E.; Pagliaro, L.; Colombo, M.; Rodés, J. EASL Panel Of Experts On Hcc. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European association for the study of the liver. J. Hepatol., 2001, 35(3), 421-430.
[http://dx.doi.org/10.1016/S0168-8278(01)00130-1] [PMID: 11592607]
[4]
Nowak, A.K.; Chow, P.K.; Findlay, M. Systemic therapy for advanced hepatocellular carcinoma: a review. Eur. J. Cancer, 2004, 40(10), 1474-1484.
[http://dx.doi.org/10.1016/j.ejca.2004.02.027] [PMID: 15196530]
[5]
Pinter, M.; Peck-Radosavljevic, M. Review article: systemic treatment of hepatocellular carcinoma. Aliment. Pharmacol. Ther., 2018, 48(6), 598-609.
[http://dx.doi.org/10.1111/apt.14913] [PMID: 30039640]
[6]
Li, D.; Xu, F.; Yu, J.; Xing, H.; Wu, M.; Yang, T. Updated key points and clinical pathway for NCCN clinical practice guidelines in oncology: hepatobiliary cancers (Version 1. 2018). J. Clin. Hepatol., 2018, 34(6), 966-977.
[7]
Llovet, J.M.; Montal, R.; Sia, D.; Finn, R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol., 2018, 15(10), 599-616.
[http://dx.doi.org/10.1038/s41571-018-0073-4] [PMID: 30061739]
[8]
Marin, J.J.G.; Briz, O.; Herraez, E.; Lozano, E.; Asensio, M.; Di Giacomo, S.; Romero, M.R.; Osorio-Padilla, L.M.; Santos-Llamas, A.I.; Serrano, M.A.; Armengol, C.; Efferth, T.; Macias, R.I.R. Molecular bases of the poor response of liver cancer to chemotherapy. Clin. Res. Hepatol. Gastroenterol., 2018, 42(3), 182-192.
[http://dx.doi.org/10.1016/j.clinre.2017.12.006] [PMID: 29544679]
[9]
Sanoff, H.K.; Chang, Y.; Lund, J.L.; O’Neil, B.H.; Dusetzina, S.B. Sorafenib effectiveness in advanced hepatocellular carcinoma. Oncologist, 2016, 21(9), 1113-1120.
[http://dx.doi.org/10.1634/theoncologist.2015-0478] [PMID: 27185615]
[10]
Adnane, L.; Trail, P.A.; Taylor, I.; Wilhelm, S.M. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol., 2006, 407, 597-612.
[http://dx.doi.org/10.1016/S0076-6879(05)07047-3] [PMID: 16757355]
[11]
Liu, L.; Cao, Y.; Chen, C.; Zhang, X.; McNabola, A.; Wilkie, D.; Wilhelm, S.; Lynch, M.; Carter, C. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res., 2006, 66(24), 11851-11858.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1377] [PMID: 17178882]
[12]
Auclair, D.; Miller, D.; Yatsula, V.; Pickett, W.; Carter, C.; Chang, Y.; Zhang, X.; Wilkie, D.; Burd, A.; Shi, H.; Rocks, S.; Gedrich, R.; Abriola, L.; Vasavada, H.; Lynch, M.; Dumas, J.; Trail, P.A.; Wilhelm, S.M. Antitumor activity of sorafenib in FLT3-driven leukemic cells. Leukemia, 2007, 21(3), 439-445.
[http://dx.doi.org/10.1038/sj.leu.2404508] [PMID: 17205056]
[13]
Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R.A.; Schwartz, B.; Simantov, R.; Kelley, S. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov., 2006, 5(10), 835-844.
[http://dx.doi.org/10.1038/nrd2130] [PMID: 17016424]
[14]
Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T.F.; Galle, P.R.; Seitz, J.F.; Borbath, I.; Häussinger, D.; Giannaris, T.; Shan, M.; Moscovici, M.; Voliotis, D.; Bruix, J.; Group, S.I.S. SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, 359(4), 378-390.
[http://dx.doi.org/10.1056/NEJMoa0708857] [PMID: 18650514]
[15]
Cheng, A.L.; Kang, Y.K.; Chen, Z.; Tsao, C.J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.S.; Xu, J.; Sun, Y.; Liang, H.; Liu, J.; Wang, J.; Tak, W.Y.; Pan, H.; Burock, K.; Zou, J.; Voliotis, D.; Guan, Z. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol., 2009, 10(1), 25-34.
[http://dx.doi.org/10.1016/S1470-2045(08)70285-7] [PMID: 19095497]
[16]
Ezzoukhry, Z.; Louandre, C.; Trécherel, E.; Godin, C.; Chauffert, B.; Dupont, S.; Diouf, M.; Barbare, J.C.; Mazière, J.C.; Galmiche, A. EGFR activation is a potential determinant of primary resistance of hepatocellular carcinoma cells to sorafenib. Int. J. Cancer, 2012, 131(12), 2961-2969.
[http://dx.doi.org/10.1002/ijc.27604] [PMID: 22514082]
[17]
Blivet-Van Eggelpoël, M.J.; Chettouh, H.; Fartoux, L.; Aoudjehane, L.; Barbu, V.; Rey, C.; Priam, S.; Housset, C.; Rosmorduc, O.; Desbois-Mouthon, C. Epidermal growth factor receptor and HER-3 restrict cell response to sorafenib in hepatocellular carcinoma cells. J. Hepatol., 2012, 57(1), 108-115.
[http://dx.doi.org/10.1016/j.jhep.2012.02.019] [PMID: 22414764]
[18]
Zhai, B.; Hu, F.; Jiang, X.; Xu, J.; Zhao, D.; Liu, B.; Pan, S.; Dong, X.; Tan, G.; Wei, Z.; Qiao, H.; Jiang, H.; Sun, X. Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Mol. Cancer Ther., 2014, 13(6), 1589-1598.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-1043] [PMID: 24705351]
[19]
Tan, W.; Zhu, S.; Cao, J.; Zhang, L.; Li, W.; Liu, K.; Zhong, J.; Shang, C.; Chen, Y. Inhibition of MMP-2 Expression enhances the antitumor effect of sorafenib in hepatocellular carcinoma by suppressing the PI3K/AKT/mTOR pathway. Oncol. Res., 2017, 25(9), 1543-1553.
[http://dx.doi.org/10.3727/096504017X14886444100783] [PMID: 28276313]
[20]
Zhang, L.; Ge, C.; Zhao, F.; Zhang, Y.; Wang, X.; Yao, M.; Li, J. NRBP2 overexpression increases the chemosensitivity of hepatocellular carcinoma cells via Akt signaling. Cancer Res., 2016, 76(23), 7059-7071.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0937] [PMID: 27634758]
[21]
Gedaly, R.; Angulo, P.; Hundley, J.; Daily, M.F.; Chen, C.; Koch, A.; Evers, B.M. PI-103 and sorafenib inhibit hepatocellular carcinoma cell proliferation by blocking Ras/Raf/MAPK and PI3K/AKT/mTOR pathways. Anticancer Res., 2010, 30(12), 4951-4958.
[PMID: 21187475]
[22]
Chen, K.F.; Chen, H.L.; Tai, W.T.; Feng, W.C.; Hsu, C.H.; Chen, P.J.; Cheng, A.L. Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J. Pharmacol. Exp. Ther., 2011, 337(1), 155-161.
[http://dx.doi.org/10.1124/jpet.110.175786] [PMID: 21205925]
[23]
Wu, C.H.; Wu, X.; Zhang, H.W. Inhibition of acquired-resistance hepatocellular carcinoma cell growth by combining sorafenib with phosphoinositide 3-kinase and rat sarcoma inhibitor. J. Surg. Res., 2016, 206(2), 371-379.
[http://dx.doi.org/10.1016/j.jss.2016.08.014] [PMID: 27884331]
[24]
Chen, W.; Xiao, W.; Zhang, K.; Yin, X.; Lai, J.; Liang, L.; Chen, D. Activation of c-Jun predicts a poor response to sorafenib in hepatocellular carcinoma: preliminary clinical evidence. Sci. Rep., 2016, 6, 22976.
[http://dx.doi.org/10.1038/srep22976] [PMID: 26964667]
[25]
Haga, Y.; Kanda, T.; Nakamura, M.; Nakamoto, S.; Sasaki, R.; Takahashi, K.; Wu, S.; Yokosuka, O. Overexpression of c-Jun contributes to sorafenib resistance in human hepatoma cell lines. PLoS One, 2017, 12(3)e0174153
[http://dx.doi.org/10.1371/journal.pone.0174153] [PMID: 28323861]
[26]
Hagiwara, S.; Kudo, M.; Nagai, T.; Inoue, T.; Ueshima, K.; Nishida, N.; Watanabe, T.; Sakurai, T. Activation of JNK and high expression level of CD133 predict a poor response to sorafenib in hepatocellular carcinoma. Br. J. Cancer, 2012, 106(12), 1997-2003.
[http://dx.doi.org/10.1038/bjc.2012.145] [PMID: 22596232]
[27]
Shimizu, S.; Takehara, T.; Hikita, H.; Kodama, T.; Miyagi, T.; Hosui, A.; Tatsumi, T.; Ishida, H.; Noda, T.; Nagano, H.; Doki, Y.; Mori, M.; Hayashi, N. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J. Hepatol., 2010, 52(5), 698-704.
[http://dx.doi.org/10.1016/j.jhep.2009.12.024] [PMID: 20347499]
[28]
Hikita, H.; Takehara, T.; Shimizu, S.; Kodama, T.; Shigekawa, M.; Iwase, K.; Hosui, A.; Miyagi, T.; Tatsumi, T.; Ishida, H.; Li, W.; Kanto, T.; Hiramatsu, N.; Hayashi, N. The Bcl-xL inhibitor, ABT-737, efficiently induces apoptosis and suppresses growth of hepatoma cells in combination with sorafenib. Hepatology, 2010, 52(4), 1310-1321.
[http://dx.doi.org/10.1002/hep.23836] [PMID: 20799354]
[29]
Yang, F.; Li, Q-J.; Gong, Z.B.; Zhou, L.; You, N.; Wang, S.; Li, X-L.; Li, J-J.; An, J-Z.; Wang, D-S.; He, Y.; Dou, K-F. MicroRNA-34a targets Bcl-2 and sensitizes human hepatocellular carcinoma cells to sorafenib treatment. Technol. Cancer Res. Treat., 2014, 13(1), 77-86.
[http://dx.doi.org/10.7785/tcrt.2012.500364] [PMID: 23862748]
[30]
Sun, T.; Liu, H.; Ming, L. Multiple roles of autophagy in the sorafenib resistance of hepatocellular carcinoma. Cell. Physiol. Biochem., 2017, 44(2), 716-727.
[http://dx.doi.org/10.1159/000485285] [PMID: 29169150]
[31]
Du, B.; Shim, J.S. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules, 2016, 21(7)E965
[http://dx.doi.org/10.3390/molecules21070965] [PMID: 27455225]
[32]
van Zijl, F.; Mall, S.; Machat, G.; Pirker, C.; Zeillinger, R.; Weinhaeusel, A.; Bilban, M.; Berger, W.; Mikulits, W. A human model of epithelial to mesenchymal transition to monitor drug efficacy in hepatocellular carcinoma progression. Mol. Cancer Ther., 2011, 10(5), 850-860.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0917] [PMID: 21364009]
[33]
Chow, A.K.; Ng, L.; Lam, C.S.; Wong, S.K.; Wan, T.M.; Cheng, N.S.; Yau, T.C.; Poon, R.T.; Pang, R.W. The Enhanced metastatic potential of hepatocellular carcinoma (HCC) cells with sorafenib resistance. PLoS One, 2013, 8(11)e78675
[http://dx.doi.org/10.1371/journal.pone.0078675] [PMID: 24244338]
[34]
van Malenstein, H.; Dekervel, J.; Verslype, C.; Van Cutsem, E.; Windmolders, P.; Nevens, F.; van Pelt, J. Long-term exposure to sorafenib of liver cancer cells induces resistance with epithelial-to-mesenchymal transition, increased invasion and risk of rebound growth. Cancer Lett., 2013, 329(1), 74-83.
[http://dx.doi.org/10.1016/j.canlet.2012.10.021] [PMID: 23111106]
[35]
Kim, J.Y.; Lee, J.Y. Targeting tumor adaption to chronic hypoxia: implications for drug resistance, and how it can be overcome. Int. J. Mol. Sci., 2017, 18(9)E1854
[http://dx.doi.org/10.3390/ijms18091854] [PMID: 28841148]
[36]
Liang, Y.; Zheng, T.; Song, R.; Wang, J.; Yin, D.; Wang, L.; Liu, H.; Tian, L.; Fang, X.; Meng, X.; Jiang, H.; Liu, J.; Liu, L. Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-1α inhibition in hepatocellular carcinoma. Hepatology, 2013, 57(5), 1847-1857.
[http://dx.doi.org/10.1002/hep.26224] [PMID: 23299930]
[37]
Zhao, D.; Zhai, B.; He, C.; Tan, G.; Jiang, X.; Pan, S.; Dong, X.; Wei, Z.; Ma, L.; Qiao, H.; Jiang, H.; Sun, X. Upregulation of HIF-2α induced by sorafenib contributes to the resistance by activating the TGF-α/EGFR pathway in hepatocellular carcinoma cells. Cell. Signal., 2014, 26(5), 1030-1039.
[http://dx.doi.org/10.1016/j.cellsig.2014.01.026] [PMID: 24486412]
[38]
Liu, F.; Dong, X.; Lv, H.; Xiu, P.; Li, T.; Wang, F.; Xu, Z.; Li, J. Targeting hypoxia-inducible factor-2α enhances sorafenib antitumor activity via β-catenin/C-Myc-dependent pathways in hepatocellular carcinoma. Oncol. Lett., 2015, 10(2), 778-784.
[http://dx.doi.org/10.3892/ol.2015.3315] [PMID: 26622569]
[39]
Park, C.Y.; Tseng, D.; Weissman, I.L. Cancer stem cell-directed therapies: recent data from the laboratory and clinic. Mol. Ther., 2009, 17(2), 219-230.
[http://dx.doi.org/10.1038/mt.2008.254] [PMID: 19066601]
[40]
Liu, L.L.; Fu, D.; Ma, Y.; Shen, X.Z. The power and the promise of liver cancer stem cell markers. Stem Cells Dev., 2011, 20(12), 2023-2030.
[http://dx.doi.org/10.1089/scd.2011.0012] [PMID: 21651381]
[41]
Fernando, J.; Malfettone, A.; Cepeda, E.B.; Vilarrasa-Blasi, R.; Bertran, E.; Raimondi, G.; Fabra, À.; Alvarez-Barrientos, A.; Fernández-Salguero, P.; Fernández-Rodríguez, C.M.; Giannelli, G.; Sancho, P.; Fabregat, I. A mesenchymal-like phenotype and expression of CD44 predict lack of apoptotic response to sorafenib in liver tumor cells. Int. J. Cancer, 2015, 136(4), E161-E172.
[http://dx.doi.org/10.1002/ijc.29097] [PMID: 25053293]
[42]
Chen, X.; Lingala, S.; Khoobyari, S.; Nolta, J.; Zern, M.A.; Wu, J. Epithelial mesenchymal transition and hedgehog signaling activation are associated with chemoresistance and invasion of hepatoma subpopulations. J. Hepatol., 2011, 55(4), 838-845.
[http://dx.doi.org/10.1016/j.jhep.2010.12.043] [PMID: 21334406]
[43]
Liu, X.; Qin, S. Immune checkpoint inhibitors in hepatocellular carcinoma: opportunities and challenges. Oncologist, 2019, 24(Suppl. 1), S3-S10.
[http://dx.doi.org/10.1634/theoncologist.2019-IO-S1-s01] [PMID: 30819826]
[44]
Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; Majem, M.; Fidler, M.J.; de Castro, G., Jr; Garrido, M.; Lubiniecki, G.M.; Shentu, Y. Im, E.; Dolled-Filhart, M.; Garon, E.B. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet, 2016, 387(10027), 1540-1550.
[http://dx.doi.org/10.1016/S0140-6736(15)01281-7] [PMID: 26712084]
[45]
Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; Barlesi, F.; Kohlhäufl, M.; Arrieta, O.; Burgio, M.A.; Fayette, J.; Lena, H.; Poddubskaya, E.; Gerber, D.E.; Gettinger, S.N.; Rudin, C.M.; Rizvi, N.; Crinò, L.; Blumenschein, G.R. Jr.; Antonia, S.J.; Dorange, C.; Harbison, C.T.; Graf Finckenstein, F.; Brahmer, J.R. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(17), 1627-1639.
[http://dx.doi.org/10.1056/NEJMoa1507643] [PMID: 26412456]
[46]
Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; Waterhouse, D.; Ready, N.; Gainor, J.; Arén Frontera, O.; Havel, L.; Steins, M.; Garassino, M.C.; Aerts, J.G.; Domine, M.; Paz-Ares, L.; Reck, M.; Baudelet, C.; Harbison, C.T.; Lestini, B.; Spigel, D.R. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(2), 123-135.
[http://dx.doi.org/10.1056/NEJMoa1504627] [PMID: 26028407]
[47]
Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Park, K.; Smith, D.; Artal-Cortes, A.; Lewanski, C.; Braiteh, F.; Waterkamp, D.; He, P.; Zou, W.; Chen, D.S.; Yi, J.; Sandler, A.; Rittmeyer, A.; Group, P.S. POPLAR Study Group. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet, 2016, 387(10030), 1837-1846.
[http://dx.doi.org/10.1016/S0140-6736(16)00587-0] [PMID: 26970723]
[48]
Engelhardt, J.J.; Sullivan, T.J.; Allison, J.P. CTLA-4 overexpression inhibits T cell responses through a CD28-B7-dependent mechanism. J. Immunol., 2006, 177(2), 1052-1061.
[http://dx.doi.org/10.4049/jimmunol.177.2.1052] [PMID: 16818761]
[49]
Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J., 1992, 11(11), 3887-3895.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05481.x] [PMID: 1396582]
[50]
Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; Horton, H.F.; Fouser, L.; Carter, L.; Ling, V.; Bowman, M.R.; Carreno, B.M.; Collins, M.; Wood, C.R.; Honjo, T. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med., 2000, 192(7), 1027-1034.
[http://dx.doi.org/10.1084/jem.192.7.1027] [PMID: 11015443]
[51]
Keir, M.E.; Liang, S.C.; Guleria, I.; Latchman, Y.E.; Qipo, A.; Albacker, L.A.; Koulmanda, M.; Freeman, G.J.; Sayegh, M.H.; Sharpe, A.H. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med., 2006, 203(4), 883-895.
[http://dx.doi.org/10.1084/jem.20051776] [PMID: 16606670]
[52]
Wahl, C.; Bochtler, P.; Chen, L.; Schirmbeck, R.; Reimann, J. B7-H1 on hepatocytes facilitates priming of specific CD8 T cells but limits the specific recall of primed responses. Gastroenterology, 2008, 135(3), 980-988.
[http://dx.doi.org/10.1053/j.gastro.2008.05.076] [PMID: 18621049]
[53]
Kassel, R.; Cruise, M.W.; Iezzoni, J.C.; Taylor, N.A.; Pruett, T.L.; Hahn, Y.S. Chronically inflamed livers up-regulate expression of inhibitory B7 family members. Hepatology, 2009, 50(5), 1625-1637.
[http://dx.doi.org/10.1002/hep.23173] [PMID: 19739236]
[54]
Carambia, A.; Frenzel, C.; Bruns, O.T.; Schwinge, D.; Reimer, R.; Hohenberg, H.; Huber, S.; Tiegs, G.; Schramm, C.; Lohse, A.W.; Herkel, J. Inhibition of inflammatory CD4 T cell activity by murine liver sinusoidal endothelial cells. J. Hepatol., 2013, 58(1), 112-118.
[http://dx.doi.org/10.1016/j.jhep.2012.09.008] [PMID: 22989568]
[55]
Diehl, L.; Schurich, A.; Grochtmann, R.; Hegenbarth, S.; Chen, L.; Knolle, P.A. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology, 2008, 47(1), 296-305.
[http://dx.doi.org/10.1002/hep.21965] [PMID: 17975811]
[56]
Yu, M.C.; Chen, C.H.; Liang, X.; Wang, L.; Gandhi, C.R.; Fung, J.J.; Lu, L.; Qian, S. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology, 2004, 40(6), 1312-1321.
[http://dx.doi.org/10.1002/hep.20488] [PMID: 15565659]
[57]
Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 2017, 168(4), 707-723.
[http://dx.doi.org/10.1016/j.cell.2017.01.017] [PMID: 28187290]
[58]
O’Donnell, J.S.; Long, G.V.; Scolyer, R.A.; Teng, M.W.; Smyth, M.J. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat. Rev., 2017, 52, 71-81.
[http://dx.doi.org/10.1016/j.ctrv.2016.11.007] [PMID: 27951441]
[59]
Rieth, J.; Subramanian, S. Mechanisms of intrinsic tumor resistance to immunotherapy. Int. J. Mol. Sci., 2018, 19(5)E1340
[http://dx.doi.org/10.3390/ijms19051340] [PMID: 29724044]
[60]
Xia, C.; Zeng, F.; Zhang, Y. EGFR exon 21 L858R as an acquired resistance mechanism to nivolumab in a lung cancer patient originally driver gene-negative. Thorac. Cancer, 2019, 10(5), 1256-1259.
[http://dx.doi.org/10.1111/1759-7714.13023] [PMID: 30810279]
[61]
Kuo, H.Y.; Chiang, N.J.; Chuang, C.H.; Chen, C.Y.; Wu, I.C.; Chang, T.T.; Tsai, H.M.; Lin, Y.J. Impact of immune checkpoint inhibitors with or without a combination of tyrosine kinase inhibitors on organ-specific efficacy and macrovascular invasion in advanced hepatocellular carcinoma. Oncol. Res. Treat., 2020, 43(5), 211-220.
[http://dx.doi.org/10.1159/000505933] [PMID: 32101878]
[62]
Kawaoka, T.; Ando, Y.; Yamauchi, M.; Suehiro, Y.; Yamaoka, K.; Kosaka, Y.; Fuji, Y.; Uchikawa, S.; Morio, K.; Fujino, H.; Nakahara, T.; Ono, A.; Murakami, E.; Takahashi, S.; Tsuge, M.; Hiramatsu, A.; Imamura, M.; Chayama, K.; Aikata, H. Incidence of microsatellite instability-high hepatocellular carcinoma among Japanese patients and response to pembrolizumab. Hepatol. Res., 2020, 50(7), 885-888.
[http://dx.doi.org/10.1111/hepr.13496] [PMID: 32088930]
[63]
Cheng, A.L.; Hsu, C.; Chan, S.L.; Choo, S.P.; Kudo, M. Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma. J. Hepatol., 2020, 72(2), 307-319.
[http://dx.doi.org/10.1016/j.jhep.2019.09.025] [PMID: 31954494]
[64]
Xu, G.; Feng, D.; Yao, Y.; Li, P.; Sun, H.; Yang, H.; Li, C.; Jiang, R.; Sun, B.; Chen, Y. Listeria-based hepatocellular carcinoma vaccine facilitates anti-PD-1 therapy by regulating macrophage polarization. Oncogene, 2020, 39(7), 1429-1444.
[http://dx.doi.org/10.1038/s41388-019-1072-3] [PMID: 31659256]
[65]
Shigeta, K.; Datta, M.; Hato, T.; Kitahara, S.; Chen, I.X.; Matsui, A.; Kikuchi, H.; Mamessier, E.; Aoki, S.; Ramjiawan, R.R.; Ochiai, H.; Bardeesy, N.; Huang, P.; Cobbold, M.; Zhu, A.X.; Jain, R.K.; Duda, D.G. Dual programmed death receptor-1 and vascular endothelial growth factor receptor-2 blockade promotes vascular normalization and enhances antitumor immune responses in hepatocellular carcinoma. Hepatology, 2020, 71(4), 1247-1261.
[http://dx.doi.org/10.1002/hep.30889] [PMID: 31378984]
[66]
Ruiz de Galarreta, M.; Bresnahan, E.; Molina-Sánchez, P.; Lindblad, K.E.; Maier, B.; Sia, D.; Puigvehi, M.; Miguela, V.; Casanova-Acebes, M.; Dhainaut, M.; Villacorta-Martin, C.; Singhi, A.D.; Moghe, A.; von Felden, J.; Tal Grinspan, L.; Wang, S.; Kamphorst, A.O.; Monga, S.P.; Brown, B.D.; Villanueva, A.; Llovet, J.M.; Merad, M.; Lujambio, A. therapy in hepatocellular carcinoma. β-Catenin activation promotes immune escape and resistance to anti-PD-1. Cancer Discov., 2019, 9(8), 1124-1141.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0074] [PMID: 31186238]
[67]
Kim, D.Y.; Han, K.H. Epidemiology and surveillance of hepatocellular carcinoma. Liver Cancer, 2012, 1(1), 2-14.
[http://dx.doi.org/10.1159/000339016] [PMID: 24159567]
[68]
Peng, Y.C.; Chan, C.S.; Chen, G.H. The effectiveness of serum alpha-fetoprotein level in anti-HCV positive patients for screening hepatocellular carcinoma. Hepatogastroenterology, 1999, 46(30), 3208-3211.
[PMID: 10626187]
[69]
Sherman, M. Alphafetoprotein: an obituary. J. Hepatol., 2001, 34(4), 603-605.
[http://dx.doi.org/10.1016/S0168-8278(01)00025-3] [PMID: 11394662]
[70]
Gao, F.; Zhu, H.K.; Zhu, Y.B.; Shan, Q.N.; Ling, Q.; Wei, X.Y.; Xie, H.Y.; Zhou, L.; Xu, X.; Zheng, S.S. Predictive value of tumor markers in patients with recurrent hepatocellular carcinoma in different vascular invasion pattern. Hepatobiliary Pancreat. Dis. Int., 2016, 15(4), 371-377.
[http://dx.doi.org/10.1016/S1499-3872(16)60095-4] [PMID: 27498576]
[71]
Buendia, M.A.; Neuveut, C. Hepatocellular carcinoma. Cold Spring Harb. Perspect. Med., 2015, 5(2)a021444
[http://dx.doi.org/10.1101/cshperspect.a021444] [PMID: 25646384]
[72]
Gillespie, J.R.; Uversky, V.N. Structure and function of alpha-fetoprotein: a biophysical overview. Biochim. Biophys. Acta, 2000, 1480(1-2), 41-56.
[http://dx.doi.org/10.1016/S0167-4838(00)00104-7] [PMID: 11004554]
[73]
Zhu, M.; Lu, Y.; Li, W.; Guo, J.; Dong, X.; Lin, B.; Chen, Y.; Xie, X.; Li, M. Hepatitis B virus X protein driven alpha fetoprotein expression to promote malignant behaviors of normal liver cells and hepatoma cells. J. Cancer, 2016, 7(8), 935-946.
[http://dx.doi.org/10.7150/jca.13628] [PMID: 27313784]
[74]
Meng, W.; Bai, B.; Bai, Z.; Li, Y.; Yue, P.; Li, X.; Qiao, L. The immunosuppression role of alpha-fetoprotein in human hepatocellular carcinoma. Discov. Med., 2016, 21(118), 489-494.
[PMID: 27448785]
[75]
Meng, W.; Li, X.; Bai, Z.; Li, Y.; Yuan, J.; Liu, T.; Yan, J.; Zhou, W.; Zhu, K.; Zhang, H.; Li, Y. Silencing alpha-fetoprotein inhibits VEGF and MMP-2/9 production in human hepatocellular carcinoma cell. PLoS One, 2014, 9(2)e90660
[http://dx.doi.org/10.1371/journal.pone.0090660] [PMID: 24587407]
[76]
Li, M.; Li, H.; Li, C.; Zhou, S.; Guo, L.; Liu, H.; Jiang, W.; Liu, X.; Li, P.; McNutt, M.A.; Li, G. Alpha fetoprotein is a novel protein-binding partner for caspase-3 and blocks the apoptotic signaling pathway in human hepatoma cells. Int. J. Cancer, 2009, 124(12), 2845-2854.
[http://dx.doi.org/10.1002/ijc.24272] [PMID: 19267404]
[77]
Song, W.; Song, C.; Chen, Y.; Du, M.; Hu, P.; Liu, A.; Lu, W. Polysaccharide-induced apoptosis in H22 cells through G2/M arrest and BCL2/BAX caspase-activated Fas pathway. Cell. Mol. Biol., 2015, 61(7), 88-95.
[PMID: 26612738]
[78]
Ritter, M.; Ali, M.Y.; Grimm, C.F.; Weth, R.; Mohr, L.; Bocher, W.O.; Endrulat, K.; Wedemeyer, H.; Blum, H.E.; Geissler, M. Immunoregulation of dendritic and T cells by alpha-fetoprotein in patients with hepatocellular carcinoma. J. Hepatol., 2004, 41(6), 999-1007.
[http://dx.doi.org/10.1016/j.jhep.2004.08.013] [PMID: 15582134]
[79]
Li, M.S.; Ma, Q.L.; Chen, Q.; Liu, X.H.; Li, P.F.; Du, G.G.; Li, G. Alpha-fetoprotein triggers hepatoma cells escaping from immune surveillance through altering the expression of Fas/FasL and tumor necrosis factor related apoptosis-inducing ligand and its receptor of lymphocytes and liver cancer cells. World J. Gastroenterol., 2005, 11(17), 2564-2569.
[http://dx.doi.org/10.3748/wjg.v11.i17.2564] [PMID: 15849812]
[80]
Llovet, J.M.; Peña, C.E.; Lathia, C.D.; Shan, M.; Meinhardt, G.; Bruix, J. SHARP Investigators Study Group. Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clin. Cancer Res., 2012, 18(8), 2290-2300.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2175] [PMID: 22374331]
[81]
Yamashita, T.; Forgues, M.; Wang, W.; Kim, J.W.; Ye, Q.; Jia, H.; Budhu, A.; Zanetti, K.A.; Chen, Y.; Qin, L.X.; Tang, Z.Y.; Wang, X.W. EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res., 2008, 68(5), 1451-1461.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6013] [PMID: 18316609]
[82]
Shan, Y.F.; Huang, Y.L.; Xie, Y.K.; Tan, Y.H.; Chen, B.C.; Zhou, M.T.; Shi, H.Q.; Yu, Z.P.; Song, Q.T.; Zhang, Q.Y. Angiogenesis and clinicopathologic characteristics in different hepatocellular carcinoma subtypes defined by EpCAM and α-fetoprotein expression status. Med. Oncol., 2011, 28(4), 1012-1016.
[http://dx.doi.org/10.1007/s12032-010-9600-6] [PMID: 20571936]
[83]
Li, P.; Wang, S.S.; Liu, H.; Li, N.; McNutt, M.A.; Li, G.; Ding, H.G. Elevated serum alpha fetoprotein levels promote pathological progression of hepatocellular carcinoma. World J. Gastroenterol., 2011, 17(41), 4563-4571.
[http://dx.doi.org/10.3748/wjg.v17.i41.4563] [PMID: 22147961]
[84]
Li, M.S.; Li, P.F.; Chen, Q.; Du, G.G.; Li, G. Alpha-fetoprotein stimulated the expression of some oncogenes in human hepatocellular carcinoma Bel 7402 cells. World J. Gastroenterol., 2004, 10(6), 819-824.
[http://dx.doi.org/10.3748/wjg.v10.i6.819] [PMID: 15040024]
[85]
Li, M.S.; Li, P.F.; He, S.P.; Du, G.G.; Li, G. The promoting molecular mechanism of alpha-fetoprotein on the growth of human hepatoma Bel7402 cell line. World J. Gastroenterol., 2002, 8(3), 469-475.
[http://dx.doi.org/10.3748/wjg.v8.i3.469] [PMID: 12046072]
[86]
Yang, X.; Zhang, Y.; Zhang, L.; Zhang, L.; Mao, J. Silencing alpha-fetoprotein expression induces growth arrest and apoptosis in human hepatocellular cancer cell. Cancer Lett., 2008, 271(2), 281-293.
[http://dx.doi.org/10.1016/j.canlet.2008.06.017] [PMID: 18657899]
[87]
Zhang, M.; Gong, Y.; Assy, N.; Minuk, G.Y. Increased GABAergic activity inhibits alpha-fetoprotein mRNA expression and the proliferative activity of the HepG2 human hepatocellular carcinoma cell line. J. Hepatol., 2000, 32(1), 85-91.
[http://dx.doi.org/10.1016/S0168-8278(00)80193-2] [PMID: 10673071]
[88]
Li, M.; Li, H.; Li, C.; Wang, S.; Jiang, W.; Liu, Z.; Zhou, S.; Liu, X.; McNutt, M.A.; Li, G. Alpha-fetoprotein: a new member of intracellular signal molecules in regulation of the PI3K/AKT signaling in human hepatoma cell lines. Int. J. Cancer, 2011, 128(3), 524-532.
[http://dx.doi.org/10.1002/ijc.25373] [PMID: 20473866]
[89]
Ma, S.H.; Chen, G.G.; Yip, J.; Lai, P.B. Therapeutic effect of alpha-fetoprotein promoter-mediated tBid and chemotherapeutic agents on orthotopic liver tumor in mice. Gene Ther., 2010, 17(7), 905-912.
[http://dx.doi.org/10.1038/gt.2010.34] [PMID: 20336154]
[90]
Zhang, L.; He, T.; Cui, H.; Wang, Y.; Huang, C.; Han, F. Effects of AFP gene silencing on apoptosis and proliferation of a hepatocellular carcinoma cell line. Discov. Med., 2012, 14(75), 115-124.
[PMID: 22935208]
[91]
Zhu, M.; Li, W.; Guo, J.; Lu, Y.; Dong, X.; Lin, B.; Chen, Y.; Zhang, X.; Li, M. Alpha fetoprotein antagonises benzyl isothiocyanate inhibition of the malignant behaviors of hepatocellular carcinoma cells. Oncotarget, 2016, 7(46), 75749-75762.
[http://dx.doi.org/10.18632/oncotarget.12407] [PMID: 27716619]
[92]
Cai, X.; Zhou, J.; Chang, Y.; Sun, X.; Li, P.; Lin, J. Targeting gene therapy for hepatocarcinoma cells with the E. coli purine nucleoside phosphorylase suicide gene system directed by a chimeric alpha-fetoprotein promoter. Cancer Lett., 2008, 264(1), 71-82.
[http://dx.doi.org/10.1016/j.canlet.2008.01.027] [PMID: 18407409]
[93]
Yang, X.; Chen, L.; Liang, Y.; Si, R.; Jiang, Z.; Ma, B.; Gao, P. Knockdown of alpha-fetoprotein expression inhibits HepG2 cell growth and induces apoptosis. J. Cancer Res. Ther., 2018, 14(Suppl.), S634-S643.
[http://dx.doi.org/10.4103/0973-1482.180681] [PMID: 30249880]
[94]
Fang, Z.L.; Fang, N.; Han, X.N.; Huang, G.; Fu, X.J.; Xie, G.S.; Wang, N.R.; Xiong, J.P. Effects of AFP gene silencing on survivin mRNA expression inhibition in HepG2 cells. Genet. Mol. Res., 2015, 14(2), 3184-3190.
[http://dx.doi.org/10.4238/2015.April.10.30] [PMID: 25966084]
[95]
Li, M.; Li, H.; Li, C.; Guo, L.; Liu, H.; Zhou, S.; Liu, X.; Chen, Z.; Shi, S.; Wei, J.; McNutt, M.A.; Li, G. Cytoplasmic alpha-fetoprotein functions as a co-repressor in RA-RAR signaling to promote the growth of human hepatoma Bel 7402 cells. Cancer Lett., 2009, 285(2), 190-199.
[http://dx.doi.org/10.1016/j.canlet.2009.05.014] [PMID: 19501957]
[96]
Li, C.; Wang, S.; Jiang, W.; Li, H.; Liu, Z.; Zhang, C.; McNutt, M.A.; Li, G. Impact of intracellular alpha fetoprotein on retinoic acid receptors-mediated expression of GADD153 in human hepatoma cell lines. Int. J. Cancer, 2012, 130(4), 754-764.
[http://dx.doi.org/10.1002/ijc.26025] [PMID: 21365646]
[97]
Wang, S.; Jiang, W.; Chen, X.; Zhang, C.; Li, H.; Hou, W.; Liu, Z.; McNutt, M.A.; Lu, F.; Li, G. Alpha-fetoprotein acts as a novel signal molecule and mediates transcription of Fn14 in human hepatocellular carcinoma. J. Hepatol., 2012, 57(2), 322-329.
[http://dx.doi.org/10.1016/j.jhep.2012.03.029] [PMID: 22521346]
[98]
Lu, Y.; Zhu, M.; Li, W.; Lin, B.; Dong, X.; Chen, Y.; Xie, X.; Guo, J.; Li, M. Alpha fetoprotein plays a critical role in promoting metastasis of hepatocellular carcinoma cells. J. Cell. Mol. Med., 2016, 20(3), 549-558.
[http://dx.doi.org/10.1111/jcmm.12745] [PMID: 26756858]
[99]
Schmidt, N.; Neumann-Haefelin, C.; Thimme, R. Cellular immune responses to hepatocellular carcinoma: lessons for immunotherapy. Dig. Dis., 2012, 30(5), 483-491.
[http://dx.doi.org/10.1159/000341697] [PMID: 23108304]
[100]
Wang, X.; Wang, Q. Alpha-fetoprotein and hepatocellular carcinoma immunity. Can. J. Gastroenterol. Hepatol., 2018, 20189049252
[http://dx.doi.org/10.1155/2018/9049252] [PMID: 29805966]
[101]
Pardee, A.D.; Shi, J.; Butterfield, L.H. Tumor-derived α-fetoprotein impairs the differentiation and T cell stimulatory activity of human dendritic cells. J. Immunol., 2014, 193(11), 5723-5732.
[http://dx.doi.org/10.4049/jimmunol.1400725] [PMID: 25355916]
[102]
Trompezinski, S.; Migdal, C.; Tailhardat, M.; Le Varlet, B.; Courtellemont, P.; Haftek, M.; Serres, M. Characterization of early events involved in human dendritic cell maturation induced by sensitizers: cross talk between MAPK signalling pathways. Toxicol. Appl. Pharmacol., 2008, 230(3), 397-406.
[http://dx.doi.org/10.1016/j.taap.2008.03.012] [PMID: 18495191]
[103]
Vogt, A.; Sievers, E.; Lukacs-Kornek, V.; Decker, G.; Raskopf, E.; Meumann, N.; Büning, H.; Sauerbruch, T.; Strassburg, C.P.; Schmidt-Wolf, I.G.; Gonzalez-Carmona, M.A. Improving immunotherapy of hepatocellular carcinoma (HCC) using dendritic cells (DC) engineered to express IL-12 in vivo. Liver Int., 2014, 34(3), 447-461.
[http://dx.doi.org/10.1111/liv.12284] [PMID: 23998316]
[104]
Murgita, R.A.; Goidl, E.A.; Kontianen, S.; Wigzell, H. Alpha-Fetoprotein induces suppressor T cells in vitro. Nature, 1977, 267(5608), 257-259.
[http://dx.doi.org/10.1038/267257a0]] [PMID: 68439]
[105]
Peck, A.B.; Murgita, R.A.; Wigzell, H. Cellular and genetic restrictions in the immunoregulatory activity of alpha-fetoprotein. III. Role of the MLC-stimulating cell population in alpha-fetoprotein-induced suppression of T cell-mediated cytotoxicity. J. Immunol., 1982, 128(3), 1134-1140.
[PMID: 6173421]
[106]
Semeniuk, D.J.; Boismenu, R.; Tam, J.; Weissenhofer, W.; Murgita, R.A. Evidence that immunosuppression is an intrinsic property of the alpha-fetoprotein molecule. Adv. Exp. Med. Biol., 1995, 383, 255-269.
[http://dx.doi.org/10.1007/978-1-4615-1891-4_27] [PMID: 8644510]
[107]
Meng, W.S.; Butterfield, L.H.; Ribas, A.; Heller, J.B.; Dissette, V.B.; Glaspy, J.A.; McBride, W.H.; Economou, J.S. Fine specificity analysis of an HLA-A2.1-restricted immunodominant T cell epitope derived from human alpha-fetoprotein. Mol. Immunol., 2000, 37(16), 943-950.
[http://dx.doi.org/10.1016/S0161-5890(01)00017-7] [PMID: 11395133]
[108]
Mizejewski, G.J. Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Exp. Biol. Med. (Maywood), 2001, 226(5), 377-408.
[http://dx.doi.org/10.1177/153537020122600503] [PMID: 11393167]
[109]
Banchereau, J.; Steinman, R.M. Dendritic cells and the control of immunity. Nature, 1998, 392(6673), 245-252.
[http://dx.doi.org/10.1038/32588] [PMID: 9521319]
[110]
Mellman, I.; Steinman, R.M. Dendritic cells: specialized and regulated antigen processing machines. Cell, 2001, 106(3), 255-258.
[http://dx.doi.org/10.1016/S0092-8674(01)00449-4] [PMID: 11509172]
[111]
Vicari, A.P.; Caux, C.; Trinchieri, G. Tumour escape from immune surveillance through dendritic cell inactivation. Semin. Cancer Biol., 2002, 12(1), 33-42.
[http://dx.doi.org/10.1006/scbi.2001.0400] [PMID: 11926410]
[112]
Um, S.H.; Mulhall, C.; Alisa, A.; Ives, A.R.; Karani, J.; Williams, R.; Bertoletti, A.; Behboudi, S. Alpha-fetoprotein impairs APC function and induces their apoptosis. J. Immunol., 2004, 173(3), 1772-1778.
[http://dx.doi.org/10.4049/jimmunol.173.3.1772] [PMID: 15265907]
[113]
Yang, J.Y.; Cao, D.Y.; Xue, Y.; Yu, Z.C.; Liu, W.C. Improvement of dendritic-based vaccine efficacy against hepatitis B virus-related hepatocellular carcinoma by two tumor-associated antigen gene-infected dendritic cells. Hum. Immunol., 2010, 71(3), 255-262.
[http://dx.doi.org/10.1016/j.humimm.2009.12.010] [PMID: 20036295]
[114]
González-Carmona, M.A.; Märten, A.; Hoffmann, P.; Schneider, C.; Sievers, E.; Schmidt-Wolf, I.G.; Sauerbruch, T.; Caselmann, W.H. Patient-derived dendritic cells transduced with an a-fetoprotein-encoding adenovirus and co-cultured with autologous cytokine-induced lymphocytes induce a specific and strong immune response against hepatocellular carcinoma cells. Liver Int., 2006, 26(3), 369-379.
[http://dx.doi.org/10.1111/j.1478-3231.2005.01235.x] [PMID: 16584401]
[115]
Bray, S.M.; Vujanovic, L.; Butterfield, L.H. Dendritic cell-based vaccines positively impact natural killer and regulatory T cells in hepatocellular carcinoma patients. Clin. Dev. Immunol., 2011, 2011249281
[http://dx.doi.org/10.1155/2011/249281] [PMID: 21969837]
[116]
Liu, Y.; Wang, Y.R.; Ding, G.H.; Yang, T.S.; Yao, L.; Hua, J.; He, Z.G.; Qian, M.P. JAK2 inhibitor combined with DC-activated AFP-specific T-cells enhances antitumor function in a Fas/FasL signal-independent pathway. OncoTargets Ther., 2016, 9, 4425-4433.
[http://dx.doi.org/10.2147/OTT.S97941] [PMID: 27499636]
[117]
Rich, N.; Singal, A.G. Hepatocellular carcinoma tumour markers: current role and expectations. Best Pract. Res. Clin. Gastroenterol., 2014, 28(5), 843-853.
[http://dx.doi.org/10.1016/j.bpg.2014.07.018] [PMID: 25260312]
[118]
Irony-Tur-Sinai, M.; Grigoriadis, N.; Tsiantoulas, D.; Touloumi, O.; Abramsky, O.; Brenner, T. Immunomodulation of EAE by alpha-fetoprotein involves elevation of immune cell apoptosis markers and the transcription factor FoxP3. J. Neurol. Sci., 2009, 279(1-2), 80-87.
[http://dx.doi.org/10.1016/j.jns.2008.12.014] [PMID: 19171355]
[119]
Pedroza-Gonzalez, A.; Zhou, G.; Vargas-Mendez, E.; Boor, P.P.; Mancham, S.; Verhoef, C.; Polak, W.G.; Grünhagen, D.; Pan, Q.; Janssen, H.; Garcia-Romo, G.S.; Biermann, K.; Tjwa, E.T.; IJzermans, J.N.; Kwekkeboom, J.; Sprengers, D. Tumor-infiltrating plasmacytoid dendritic cells promote immunosuppression by Tr1 cells in human liver tumors. OncoImmunology, 2015, 4(6)e1008355
[http://dx.doi.org/10.1080/2162402X.2015.1008355] [PMID: 26155417]
[120]
Li, M.-S.; Zhan, Z.-N.; Zhou, S.; Liu, X.-H.; Li, G. Inhibition of alpha-fetoprotein on caspase mediated signal transduction and its effect on TRAIL resistance of human hepatoma Bel 7402 cells. Xi'an jiao tong da xue xue bao. Yi xue ban., , 2019, 30(2), 159-168.
[121]
Zhu, M.Y.; Li, W.; Lu, Y.; Cai, X.M.; Dong, X.; Chen, Y.; Guo, J.L.; Li, M.S. Benzyl isothiocyanate induces apoptosis of hepatocarcinoma cells. World Chin. J. Digestology, 2014, 22(16), 2277-2284.
[http://dx.doi.org/10.11569/wcjd.v22.i16.2277]
[122]
Zhu, M.Y.; Fu, S.G.; Li, M.S.; Xie, X.J.; Li, G. Inhibited the activity of pten by α-fetoprotein caused resistance to all trans retinoic acid of hepatoma cells. Prog. Biochem. Biophy., 2011, 38(3), 227-238.
[123]
Lin, B.; Zhu, M.; Wang, W.; Li, W.; Dong, X.; Chen, Y.; Lu, Y.; Guo, J.; Li, M. Structural basis for alpha fetoprotein-mediated inhibition of caspase-3 activity in hepatocellular carcinoma cells. Int. J. Cancer, 2017, 141(7), 1413-1421.
[http://dx.doi.org/10.1002/ijc.30850] [PMID: 28653316]
[124]
Huang, F.; Wang, B.R.; Wang, Y.G. Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma. World J. Gastroenterol., 2018, 24(41), 4643-4651.
[http://dx.doi.org/10.3748/wjg.v24.i41.4643] [PMID: 30416312]
[125]
Kang-Park, S. Im, J.H.; Lee, J.H.; Lee, Y.I. PTEN modulates hepatitis B virus-X protein induced survival signaling in Chang liver cells. Virus Res., 2006, 122(1-2), 53-60.
[http://dx.doi.org/10.1016/j.virusres.2006.06.010] [PMID: 16872708]
[126]
Zhu, M.; Li, W.; Lu, Y.; Dong, X.; Lin, B.; Chen, Y.; Zhang, X.; Guo, J.; Li, M. HBx drives alpha fetoprotein expression to promote initiation of liver cancer stem cells through activating PI3K/AKT signal pathway. Int. J. Cancer, 2017, 140(6), 1346-1355.
[http://dx.doi.org/10.1002/ijc.30553] [PMID: 27925189]
[127]
Wang, S.; Zhu, M.; Wang, Q.; Hou, Y.; Li, L.; Weng, H.; Zhao, Y.; Chen, D.; Ding, H.; Guo, J.; Li, M. Alpha-fetoprotein inhibits autophagy to promote malignant behaviour in hepatocellular carcinoma cells by activating PI3K/AKT/mTOR signalling. Cell Death Dis., 2018, 9(10), 1027.
[http://dx.doi.org/10.1038/s41419-018-1036-5] [PMID: 30301886]
[128]
Calderaro, J.; Rousseau, B.; Amaddeo, G.; Mercey, M.; Charpy, C.; Costentin, C.; Luciani, A.; Zafrani, E.S.; Laurent, A.; Azoulay, D.; Lafdil, F.; Pawlotsky, J.M. Programmed death ligand 1 expression in hepatocellular carcinoma: relationship with clinical and pathological features. Hepatology, 2016, 64(6), 2038-2046.
[http://dx.doi.org/10.1002/hep.28710] [PMID: 27359084]
[129]
Melms, J.C.; Thummalapalli, R.; Shaw, K.; Ye, H.; Tsai, L.; Bhatt, R.S.; Izar, B. Alpha-fetoprotein (AFP) as tumor marker in a patient with urothelial cancer with exceptional response to anti-PD-1 therapy and an escape lesion mimic. J. Immunother. Cancer, 2018, 6(1), 89.
[http://dx.doi.org/10.1186/s40425-018-0394-y] [PMID: 30208947]
[130]
Dai, X.; Pi, G.; Yang, S.L.; Chen,, G.G.; Liu, L.P.; Dong, H.H. Association of PD-L1 and HIF-1α coexpression with poor prognosis in hepatocellular carcinoma. Transl. Oncol., 2018, 11(2), 559-566.
[http://dx.doi.org/10.1016/j.tranon.2018.02.014] [PMID: 29525633]
[131]
Bruix, J.; Gores, G.J.; Mazzaferro, V. Hepatocellular carcinoma: clinical frontiers and perspectives. Gut, 2014, 63(5), 844-855.
[http://dx.doi.org/10.1136/gutjnl-2013-306627] [PMID: 24531850]
[132]
Wong, R.; Frenette, C. Updates in the management of hepatocellular carcinoma. Gastroenterol. Hepatol. (N. Y.), 2011, 7(1), 16-24.
[PMID: 21346848]
[133]
Mizejewski, G.J. Does alpha-fetoprotein contribute to the mortality and morbidity of human hepatocellular carcinoma? A commentary. J. Hepatocell. Carcinoma, 2016, 3, 37-40.
[http://dx.doi.org/10.2147/JHC.S114198] [PMID: 27703963]
[134]
Wang, Y.; Yang, X.; Yu, Y.; Xu, Z.; Sun, Y.; Liu, H.; Cheng, J.; Liu, M.; Sha, B.; Li, L.; Ding, N.; Li, Z.; Jin, H.; Qian, Q. Immunotherapy of patient with hepatocellular carcinoma using cytotoxic T lymphocytes ex vivo activated with tumor antigen-pulsed dendritic cells. J. Cancer, 2018, 9(2), 275-287.
[http://dx.doi.org/10.7150/jca.22176] [PMID: 29344274]
[135]
Nakamoto, Y.; Mizukoshi, E.; Kitahara, M.; Arihara, F.; Sakai, Y.; Kakinoki, K.; Fujita, Y.; Marukawa, Y.; Arai, K.; Yamashita, T.; Mukaida, N.; Matsushima, K.; Matsui, O.; Kaneko, S. Prolonged recurrence-free survival following OK432-stimulated dendritic cell transfer into hepatocellular carcinoma during transarterial embolization. Clin. Exp. Immunol., 2011, 163(2), 165-177.
[http://dx.doi.org/10.1111/j.1365-2249.2010.04246.x] [PMID: 21087443]
[136]
Tada, F.; Abe, M.; Hirooka, M.; Ikeda, Y.; Hiasa, Y.; Lee, Y.; Jung, N.C.; Lee, W.B.; Lee, H.S.; Bae, Y.S.; Onji, M. Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma. Int. J. Oncol., 2012, 41(5), 1601-1609.
[http://dx.doi.org/10.3892/ijo.2012.1626] [PMID: 22971679]
[137]
Butterfield, L.H.; Ribas, A.; Meng, W.S.; Dissette, V.B.; Amarnani, S.; Vu, H.T.; Seja, E.; Todd, K.; Glaspy, J.A.; McBride, W.H.; Economou, J.S. T-cell responses to HLA-A*0201 immunodominant peptides derived from alpha-fetoprotein in patients with hepatocellular cancer. Clin. Cancer Res., 2003, 9(16 Pt 1), 5902-5908.
[PMID: 14676113]
[138]
El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.Y.; Choo, S.P.; Trojan, J.; Welling, T.H.; Meyer, T.; Kang, Y.K.; Yeo, W.; Chopra, A.; Anderson, J.; Dela Cruz, C.; Lang, L.; Neely, J.; Tang, H.; Dastani, H.B.; Melero, I. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet, 2017, 389(10088), 2492-2502.
[http://dx.doi.org/10.1016/S0140-6736(17)31046-2] [PMID: 28434648]
[139]
Zhu, W.; Peng, Y.; Wang, L.; Hong, Y.; Jiang, X.; Li, Q.; Liu, H.; Huang, L.; Wu, J.; Celis, E.; Merchen, T.; Kruse, E.; He, Y. Identification of α-fetoprotein-specific T-cell receptors for hepatocellular carcinoma immunotherapy. Hepatology, 2018, 68(2), 574-589.
[http://dx.doi.org/10.1002/hep.29844] [PMID: 29443377]
[140]
Liu, H.; Xu, Y.; Xiang, J.; Long, L.; Green, S.; Yang, Z.; Zimdahl, B.; Lu, J.; Cheng, N.; Horan, L.H.; Liu, B.; Yan, S.; Wang, P.; Diaz, J.; Jin, L.; Nakano, Y.; Morales, J.F.; Zhang, P.; Liu, L.X.; Staley, B.K.; Priceman, S.J.; Brown, C.E.; Forman, S.J.; Chan, V.W.; Liu, C. Targeting alpha-fetoprotein (AFP)-MHC complex with CAR T-cell therapy for liver Cancer. Clin. Cancer Res., 2017, 23(2), 478-488.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1203] [PMID: 27535982]

© 2024 Bentham Science Publishers | Privacy Policy