Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Screening of Significant Biomarkers Related to Prognosis of Cervical Cancer and Functional Study Based on lncRNA-associated ceRNA Regulatory Network

Author(s): Haiyan Ding, Li Zhang, Chunmiao Zhang, Jie Song and Ying Jiang*

Volume 24, Issue 3, 2021

Published on: 29 July, 2020

Page: [472 - 482] Pages: 11

DOI: 10.2174/1386207323999200729113028

Price: $65

Abstract

Background: Cervical cancer (CESC), which threatens the health of women, has a very high recurrence rate.

Purposes: This study aimed to identify the signature long non-coding RNAs (lncRNAs) associated with the prognosis of CESC and predict the prognostic survival rate with the clinical risk factors.

Methods: The CESC gene expression profiling data were downloaded from TCGA database and NCBI Gene Expression Omnibus. Afterwards, the differentially expressed RNAs (DERs) were screened using limma package of R software. R package “survival” was then used to screen the signature lncRNAs associated with independently recurrence prognosis, and a nomogram recurrence rate model based on these signature lncRNAs was constructed to predict the 3-year and 5-year survival probability of CESC. Finally, a competing endogenous RNAs (ceRNA) regulatory network was proposed to study the functions of these genes.

Results: We obtained 305 DERs significantly associated with prognosis. Afterwards, a risk score (RS) prediction model was established using the screened 5 signature lncRNAs associated with independently recurrence prognosis (DLEU1, LINC01119, RBPMS-AS1, RAD21-AS1 and LINC00323). Subsequently, a nomogram recurrence rate model, proposed with Pathologic N and RS model status, was found to have a good prediction ability for CESC. In ceRNA regulatory network, LINC00323 and DLEU1 were hub nodes which targeted more miRNAs and mRNAs. After that, 15 GO terms and 3 KEGG pathways were associated with recurrence prognosis and showed that the targeted genes PTK2, NRP1, PRKAA1 and HMGCS1 might influence the prognosis of CESC.

Conclusion: The signature lncRNAs can help improve our understanding of the development and recurrence of CESC and the nomogram recurrence rate model can be applied to predict the survival rate of CESC patients in clinical practice.

Keywords: Cervical cancer, long non-coding RNAs, survival probability, nomogram recurrence rate model, ceRNA regulatory network, independent clinical factors.

« Previous
[1]
Fu, H.C.; Yang, Y.C.; Chen, Y.J.; Lin, H.; Ou, Y.C.; Chien, C.C.; Huang, E.Y.; Huang, H.Y.; Lan, J.; Chi, H.P.; Huang, K.E.; Kang, H.Y. Increased expression of SKP2 is an independent predictor of locoregional recurrence in cervical cancer via promoting DNA-damage response after irradiation. Oncotarget, 2016, 7(28), 44047-44061.
[http://dx.doi.org/10.18632/oncotarget.10057] [PMID: 27317767]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[3]
Kau, Y.C.; Liu, F.C.; Kuo, C.F.; Huang, H.J.; Li, A.H.; Hsieh, M.Y.; Yu, H.P. Trend and survival outcome in Taiwan cervical cancer patients: A population-based study. Medicine (Baltimore), 2019, 98(11)e14848
[http://dx.doi.org/10.1097/MD.0000000000014848] [PMID: 30882680]
[4]
Gu, J.; Zhang, X.; Miao, R.; Ma, X.; Xiang, X.; Fu, Y.; Liu, C.; Niu, W.; Qu, K. A three-long non-coding RNA-expression-based risk score system can better predict both overall and recurrence-free survival in patients with small hepatocellular carcinoma. Aging (Albany NY), 2018, 10(7), 1627-1639.
[http://dx.doi.org/10.18632/aging.101497] [PMID: 30018179]
[5]
Jing, H.; Qu, X.; Liu, L.; Xia, H. A novel long noncoding RNA (lncRNA), LL22NC03-N64E9.1, Promotes the proliferation of lung cancer cells and is a potential prognostic molecular biomarker for lung cancer. Med. Sci. Monit., 2018, 24, 4317-4323.
[http://dx.doi.org/10.12659/MSM.908359] [PMID: 29935018]
[6]
Kim, H.J.; Eoh, K.J.; Kim, L.K.; Nam, E.J.; Yoon, S.O.; Kim, K.H.; Lee, J.K.; Kim, S.W.; Kim, Y.T. The long noncoding RNA HOXA11 antisense induces tumor progression and stemness maintenance in cervical cancer. Oncotarget, 2016, 7(50), 83001-83016.
[http://dx.doi.org/10.18632/oncotarget.12863] [PMID: 27792998]
[7]
Jin, X.; Chen, X.; Hu, Y.; Ying, F.; Zou, R.; Lin, F.; Shi, Z.; Zhu, X.; Yan, X.; Li, S.; Zhu, H. LncRNA-TCONS_00026907 is involved in the progression and prognosis of cervical cancer through inhibiting miR-143-5p. Cancer Med., 2017, 6(6), 1409-1423.
[http://dx.doi.org/10.1002/cam4.1084] [PMID: 28544557]
[8]
Lee, Y.Y.; Kim, T.J.; Kim, J.Y.; Choi, C.H.; Do, I.G.; Song, S.Y.; Sohn, I.; Jung, S.H.; Bae, D.S.; Lee, J.W.; Kim, B.G. Genetic profiling to predict recurrence of early cervical cancer. Gynecol. Oncol., 2013, 131(3), 650-654.
[http://dx.doi.org/10.1016/j.ygyno.2013.10.003] [PMID: 24145113]
[9]
Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res., 2013, 41(Database issue), D991-D995.
[PMID: 23193258]
[10]
Wright, M.W. A short guide to long non-coding RNA gene nomenclature. Hum. Genomics, 2014, 8, 7.
[http://dx.doi.org/10.1186/1479-7364-8-7] [PMID: 24716852]
[11]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7)e47
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[12]
Wang, L.; Cao, C.; Ma, Q.; Zeng, Q.; Wang, H.; Cheng, Z.; Zhu, G.; Qi, J.; Ma, H.; Nian, H.; Wang, Y. RNA-seq analyses of multiple meristems of soybean: novel and alternative transcripts, evolutionary and functional implications. BMC Plant Biol., 2014, 14, 169.
[http://dx.doi.org/10.1186/1471-2229-14-169] [PMID: 24939556]
[13]
None. Correction: Cluster Analysis and Display of Genome-Wide Expression Patterns. Proc. Natl. Acad. Sci. USA, 1999, 96(19), 10943.
[14]
Wang, P.; Wang, Y.; Hang, B.; Zou, X.; Mao, J.H. A novel gene expression-based prognostic scoring system to predict survival in gastric cancer. Oncotarget, 2016, 7(34), 55343-55351.
[http://dx.doi.org/10.18632/oncotarget.10533] [PMID: 27419373]
[15]
Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 2011, 146(3), 353-358.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[16]
Eng, K.H.; Schiller, E.; Morrell, K. On representing the prognostic value of continuous gene expression biomarkers with the restricted mean survival curve. Oncotarget, 2015, 6(34), 36308-36318.
[http://dx.doi.org/10.18632/oncotarget.6121] [PMID: 26486086]
[17]
Paraskevopoulou, M.D.; Vlachos, I.S.; Karagkouni, D.; Georgakilas, G.; Kanellos, I.; Vergoulis, T.; Zagganas, K.; Tsanakas, P.; Floros, E.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res., 2016, 44(D1), D231-D238.
[http://dx.doi.org/10.1093/nar/gkv1270] [PMID: 26612864]
[18]
Li, J.H.; Liu, S.; Zhou, H.; Qu, L.H.; Yang, J.H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res., 2014, 42(Database issue), D92-D97.
[http://dx.doi.org/10.1093/nar/gkt1248] [PMID: 24297251]
[19]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[20]
Huang, W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4(1), 44-57.
[http://dx.doi.org/10.1038/nprot.2008.211] [PMID: 19131956]
[21]
Huang, W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res., 2009, 37(1), 1-13.
[http://dx.doi.org/10.1093/nar/gkn923] [PMID: 19033363]
[22]
Li, X.; Li, Z.; Liu, Z.; Xiao, J.; Yu, S.; Song, Y. Long non-coding RNA DLEU1 predicts poor prognosis of gastric cancer and contributes to cell proliferation by epigenetically suppressing KLF2. Cancer Gene Ther., 2018, 25(3-4), 58-67.
[http://dx.doi.org/10.1038/s41417-017-0007-9] [PMID: 29282356]
[23]
Liu, C.; Tian, X.; Zhang, J.; Jiang, L. Long Non-coding RNA DLEU1 promotes proliferation and invasion by interacting with miR-381 and Enhancing HOXA13 expression in cervical cancer. Front. Genet., 2018, 9, 629.
[http://dx.doi.org/10.3389/fgene.2018.00629] [PMID: 30581456]
[24]
Han, Y.; Wang, X.; Mao, E.; Shen, B.; Huang, L. Analysis of differentially expressed lncRNAs and mRNAs for the identification of hypoxia-regulated angiogenic genes in colorectal cancer by RNA-Seq. Med. Sci. Monit., 2019, 25, 2009-2015.
[http://dx.doi.org/10.12659/MSM.915179] [PMID: 30880326]
[25]
Wang, L.; Zhao, H.; Xu, Y.; Li, J.; Deng, C.; Deng, Y.; Bai, J.; Li, X.; Xiao, Y.; Zhang, Y. Systematic identification of lincRNA-based prognostic biomarkers by integrating lincRNA expression and copy number variation in lung adenocarcinoma. Int. J. Cancer, 2019, 144(7), 1723-1734.
[http://dx.doi.org/10.1002/ijc.31865] [PMID: 30226269]
[26]
Zhang, S.; Ding, L.; Li, X.; Fan, H. Identification of biomarkers associated with the recurrence of osteosarcoma using ceRNA regulatory network analysis. Int. J. Mol. Med., 2019, 43(4), 1723-1733.
[http://dx.doi.org/10.3892/ijmm.2019.4108] [PMID: 30816442]
[27]
Balachandran, V.P.; Gonen, M.; Smith, J.J.; DeMatteo, R.P. Nomograms in oncology: more than meets the eye. Lancet Oncol., 2015, 16(4), e173-e180.
[http://dx.doi.org/10.1016/S1470-2045(14)71116-7] [PMID: 25846097]
[28]
Rose, P.G.; Java, J.; Whitney, C.W.; Stehman, F.B.; Lanciano, R.; Thomas, G.M.; DiSilvestro, P.A. Nomograms predicting progression-free survival, overall survival, and pelvic recurrence in locally advanced cervical cancer developed from an analysis of identifiable prognostic factors in patients from nrg oncology/gynecologic oncology group randomized trials of chemoradiotherapy. J. Clin. Oncol., 2015, 33(19), 2136-2142.
[http://dx.doi.org/10.1200/JCO.2014.57.7122] [PMID: 25732170]
[29]
Shen, J.; He, L.; Li, C.; Wen, T.; Chen, W.; Lu, C.; Yan, L.; Li, B.; Yang, J. Nomograms to predict the individual survival of patients with solitary hepatocellular carcinoma after hepatectomy. Gut Liver, 2017, 11(5), 684-692.
[http://dx.doi.org/10.5009/gnl16465] [PMID: 28651303]
[30]
Ma, G.; Liu, H.; Hua, Q.; Wang, M.; Du, M.; Lin, Y.; Ge, Y.; Gong, W.; Zhao, Q.; Qiang, F.; Tao, G.; Zhang, Z.; Chu, H. KCNMA1 cooperating with PTK2 is a novel tumor suppressor in gastric cancer and is associated with disease outcome. Mol. Cancer, 2017, 16(1), 46.
[http://dx.doi.org/10.1186/s12943-017-0613-z] [PMID: 28231797]
[31]
Mitra, S.K.; Schlaepfer, D.D. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr. Opin. Cell Biol., 2006, 18(5), 516-523.
[http://dx.doi.org/10.1016/j.ceb.2006.08.011] [PMID: 16919435]
[32]
Zhao, J.; Guan, J.L. Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev., 2009, 28(1-2), 35-49.
[http://dx.doi.org/10.1007/s10555-008-9165-4] [PMID: 19169797]
[33]
Jiang, Y.; Li, W.; Lu, J.; Zhao, X.; Li, L. Association between PRKAA1 rs13361707 T>C polymorphism and gastric cancer risk: Evidence based on a meta-analysis. Medicine (Baltimore), 2018, 97(14)e0302
[http://dx.doi.org/10.1097/MD.0000000000010302] [PMID: 29620653]
[34]
Kwiatkowski, S.C.; Guerrero, P.A.; Hirota, S.; Chen, Z.; Morales, J.E.; Aghi, M.; McCarty, J.H. Neuropilin-1 modulates TGFβ signaling to drive glioblastoma growth and recurrence after anti-angiogenic therapy. PLoS One, 2017, 12(9)e0185065
[http://dx.doi.org/10.1371/journal.pone.0185065] [PMID: 28938007]
[35]
Ashida, S.; Kawada, C.; Inoue, K. Stromal regulation of prostate cancer cell growth by mevalonate pathway enzymes HMGCS1 and HMGCR. Oncol. Lett., 2017, 14(6), 6533-6542.
[http://dx.doi.org/10.3892/ol.2017.7025] [PMID: 29163687]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy