Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Estimated Arterial Stiffness and Prediction of Vascular Aging: The Rising of a New Era

Author(s): Christina Antza, Ioannis Doundoulakis, Evangelos Akrivos, Stella Stabouli, Katerina Chrysaidou, Dimos Gidaris and Vasilios Kotsis*

Volume 27, Issue 16, 2021

Published on: 28 July, 2020

Page: [1871 - 1877] Pages: 7

DOI: 10.2174/1381612826666200728150637

Price: $65

Abstract

Arterial stiffness has been associated with cardiovascular events and correlated with cardiovascular risk factors. In the new guidelines of the European Society of Hypertension, the evaluation of arterial stiffness, and specifically carotid-femoral pulse wave velocity (c-f PWV), was taken into account for the detailed screening of the hypertensive population. Despite the importance of arterial stiffness as a target organ damage, the measurement is time-consuming, not practical, needs expensive equipment and experienced staff. For all these reasons, c-f PWV is not recommended for the everyday clinical practice and its current use is restricted for research purposes. The importance of arterial properties in clinical practice and cardiovascular prevention is well known. Hence, the estimation of arterial stiffness and vascular health based on parameters that affect arterial stiffness, but without the use of a machine, is a new promising field. Furthermore, the relationship between age-related MRI abnormalities as well as ultrafast ultrasound with vascular effect gives a new promise for future vascular aging assessment.

Keywords: Arterial stiffness, early vascular aging, hypertension, EVAAs, MRI, cardiovascular risk.

[1]
Kotsis V, Antza C, Doundoulakis I, Stabouli S. Markers of Early Vascular Ageing. Curr Pharm Des 2017; 23(22): 3200-4.
[http://dx.doi.org/10.2174/1381612823666170328142433] [PMID: 28356037]
[2]
Kotsis V, Stabouli S, Karafillis I, et al. Arterial stiffness and 24 h ambulatory blood pressure monitoring in young healthy volunteers: the early vascular ageing Aristotle University Thessaloniki Study (EVA-ARIS Study). Atherosclerosis 2011; 219(1): 194-9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.07.111] [PMID: 21840525]
[3]
Payne RA, Wilkinson IB, Webb DJ. Arterial stiffness and hypertension: emerging concepts. Hypertension 2010; 55(1): 9-14.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.090464] [PMID: 19948990]
[4]
Papakatsika S, Stabouli S, Antza C, Kotsis V. Early Vascular Aging: A New Target for Hypertension Treatment. Curr Pharm Des 2016; 22(1): 122-6.
[http://dx.doi.org/10.2174/1381612822666151109112813] [PMID: 26548304]
[5]
Wang P, Xu YY, Lv TT, et al. Subclinical Atherosclerosis in Patients With Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis. 2019; 141-59.
[6]
Muhammad IF, Borne Y. Arterial Stiffness and Incidence of Diabetes: A Population-Based Cohort Study 2017; 1739-45.
[http://dx.doi.org/10.2337/dc17-1071]
[7]
Zhao X, Wang H, Bo L, Zhao H, Li L, Zhou Y. Serum lipid level and lifestyles are associated with carotid femoral pulse wave velocity among adults: 4.4-year prospectively longitudinal follow-up of a clinical trial. Clin Exp Hypertens 2018; 40(5): 487-94.
[http://dx.doi.org/10.1080/10641963.2017.1384486] [PMID: 29035100]
[8]
Karava V, Printza N, Dotis J, et al. Body composition and arterial stiffness in pediatric patients with chronic kidney disease. Pediatr Nephrol 2019; 34(7): 1253-60.
[http://dx.doi.org/10.1007/s00467-019-04224-8] [PMID: 30927128]
[9]
Zhong Q, Hu MJ, Cui YJ, et al. Carotid-Femoral Pulse Wave Velocity in the Prediction of Cardiovascular Events and Mortality: An Updated Systematic Review and Meta-Analysis. Angiology 2018; 69(7): 617-29.
[http://dx.doi.org/10.1177/0003319717742544] [PMID: 29172654]
[10]
Aatola H, Koivistoinen T, Tuominen H, et al. Influence of Child and Adult Elevated Blood Pressure on Adult Arterial Stiffness: The Cardiovascular Risk in Young Finns Study. Hypertension 2017; 70(3): 531-6.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09444] [PMID: 28674036]
[11]
Laurent S, Boutouyrie P, Asmar R, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 2001; 37(5): 1236-41.
[http://dx.doi.org/10.1161/01.HYP.37.5.1236] [PMID: 11358934]
[12]
Barenbrock M, Kosch M, Jöster E, Kisters K, Rahn KH, Hausberg M. Reduced arterial distensibility is a predictor of cardiovascular disease in patients after renal transplantation. J Hypertens 2002; 20(1): 79-84.
[http://dx.doi.org/10.1097/00004872-200201000-00012] [PMID: 11791029]
[13]
Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 2010; 55(13): 1318-27.
[http://dx.doi.org/10.1016/j.jacc.2009.10.061] [PMID: 20338492]
[14]
Laurent S, Cockcroft J, Van Bortel L, et al. European Network for Non-invasive Investigation of Large Arteries. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 2006; 27(21): 2588-605.
[http://dx.doi.org/10.1093/eurheartj/ehl254] [PMID: 17000623]
[15]
Mancia G, Fagard R, Narkiewicz K, et al. Task Force Members. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 2013; 31(7): 1281-357.
[http://dx.doi.org/10.1097/01.hjh.0000431740.32696.cc] [PMID: 23817082]
[16]
Williams B, Mancia G, Spiering W, et al. Authors/Task Force Members. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens 2018; 36(10): 1953-2041.
[http://dx.doi.org/10.1097/HJH.0000000000001940] [PMID: 30234752]
[17]
Milan A, Zocaro G, Leone D, et al. Current assessment of pulse wave velocity: comprehensive review of validation studies. J Hypertens 2019; 37(8): 1547-57.
[http://dx.doi.org/10.1097/HJH.0000000000002081] [PMID: 30882597]
[18]
Butlin M, Qasem A, Battista F, et al. Carotid-femoral pulse wave velocity assessment using novel cuff-based techniques: comparison with tonometric measurement. J Hypertens 2013; 31(11): 2237-43.
[http://dx.doi.org/10.1097/HJH.0b013e328363c789] [PMID: 24077246]
[19]
Van Bortel LM, Laurent S, Boutouyrie P, et al. Artery Society; European Society of Hypertension Working Group on Vascular Structure and Function; European Network for Noninvasive Investigation of Large Arteries. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens 2012; 30(3): 445-8.
[http://dx.doi.org/10.1097/HJH.0b013e32834fa8b0] [PMID: 22278144]
[20]
Stabouli S, Papakatsika S, Kotronis G, Papadopoulou-Legbelou K, Rizos Z, Kotsis V. Arterial stiffness and SBP variability in children and adolescents. J Hypertens 2015; 33(1): 88-95.
[http://dx.doi.org/10.1097/HJH.0000000000000369] [PMID: 25269016]
[21]
Joyeux-Faure M, Tamisier R. Contribution of obstructive sleep apnoea to arterial stiffness: a meta-analysis using individual patient data 2018; 1146-51.
[http://dx.doi.org/10.1136/thoraxjnl-2018-211513]
[22]
de Oliveira Alvim R, Santos PCJL, Musso MM, et al. Impact of diabetes mellitus on arterial stiffness in a representative sample of an urban Brazilian population. Diabetol Metab Syndr 2013; 5(1): 45.
[http://dx.doi.org/10.1186/1758-5996-5-45] [PMID: 23965633]
[23]
Harada PH, Bensenõr IJM, Drager LF, Goulart AC, Mill JG, Lotufo PA. Non-alcoholic fatty liver disease presence and severity are associated with aortic stiffness beyond abdominal obesity: The ELSA-Brasil. Atherosclerosis 2019; 284: 59-65.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.02.005] [PMID: 30875494]
[24]
Pannier B, Guérin AP, Marchais SJ, Safar ME, London GM. Stiffness of capacitive and conduit arteries: prognostic significance for end-stage renal disease patients. Hypertension 2005; 45(4): 592-6.
[http://dx.doi.org/10.1161/01.HYP.0000159190.71253.c3] [PMID: 15753232]
[25]
Boutouyrie P, Tropeano AI, Asmar R, et al. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension 2002; 39(1): 10-5.
[http://dx.doi.org/10.1161/hy0102.099031] [PMID: 11799071]
[26]
Papaioannou TG, Argyris A, Protogerou AD, et al. Non-invasive 24 hour ambulatory monitoring of aortic wave reflection and arterial stiffness by a novel oscillometric device: the first feasibility and reproducibility study. Int J Cardiol 2013; 169(1): 57-61.
[http://dx.doi.org/10.1016/j.ijcard.2013.08.079] [PMID: 24063914]
[27]
Sarafidis PA, Loutradis C, Karpetas A, et al. Ambulatory Pulse Wave Velocity Is a Stronger Predictor of Cardiovascular Events and All-Cause Mortality Than Office and Ambulatory Blood Pressure in Hemodialysis Patients. Hypertension 2017; 70(1): 148-57.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09023] [PMID: 28483919]
[28]
Stabouli S, Printza N, Zervas C, et al. Comparison of the SphygmoCor XCEL device with applanation tonometry for pulse wave velocity and central blood pressure assessment in youth. J Hypertens 2019; 37(1): 30-6.
[PMID: 29939943]
[29]
Hwang MH, Yoo JK, Kim HK, et al. Validity and reliability of aortic pulse wave velocity and augmentation index determined by the new cuff-based SphygmoCor Xcel. J Hum Hypertens 2014; 28(8): 475-81.
[http://dx.doi.org/10.1038/jhh.2013.144] [PMID: 24430704]
[30]
Stea F, Bozec E, Millasseau S, Khettab H, Boutouyrie P, Laurent S. Comparison of the Complior Analyse device with Sphygmocor and Complior SP for pulse wave velocity and central pressure assessment. J Hypertens 2014; 32(4): 873-80.
[http://dx.doi.org/10.1097/HJH.0000000000000091] [PMID: 24509122]
[31]
Luzardo L, Lujambio I, Sottolano M, et al. 24-h ambulatory recording of aortic pulse wave velocity and central systolic augmentation: a feasibility study. Hypertens Res 2012; 35(10): 980-7.
[http://dx.doi.org/10.1038/hr.2012.78] [PMID: 22622282]
[32]
Benas D, Kornelakis M, Triantafyllidi H, et al. Pulse wave analysis using the Mobil-O-Graph, Arteriograph and Complior device: a comparative study. 2019; 28: 107-3.
[33]
Grillo A, Parati G, Rovina M, et al. Short-Term Repeatability of Noninvasive Aortic Pulse Wave Velocity Assessment: Comparison Between Methods and Devices. Am J Hypertens 2017; 31(1): 80-8.
[http://dx.doi.org/10.1093/ajh/hpx140] [PMID: 29059329]
[34]
Westenberg JJ, van Poelgeest EP, Steendijk P, Grotenhuis HB, Jukema JW, de Roos A. Bramwell-Hill modeling for local aortic pulse wave velocity estimation: a validation study with velocity-encoded cardiovascular magnetic resonance and invasive pressure assessment. J Cardiovasc Magn Reson 2012; 14: 2.
[http://dx.doi.org/10.1186/1532-429X-14-2] [PMID: 22230116]
[35]
Grotenhuis HB, Westenberg JJ, Steendijk P, et al. Validation and reproducibility of aortic pulse wave velocity as assessed with velocity-encoded MRI. J Magn Reson Imaging 2009; 30(3): 521-6.
[http://dx.doi.org/10.1002/jmri.21886] [PMID: 19711407]
[36]
Rogers WJ, Hu YL, Coast D, et al. Age-associated changes in regional aortic pulse wave velocity. J Am Coll Cardiol 2001; 38(4): 1123-9.
[http://dx.doi.org/10.1016/S0735-1097(01)01504-2] [PMID: 11583892]
[37]
Soulat G, Millasseau S, Stroer S, et al. Impact of simultaneous measurement of central blood pressure with the SphygmoCor Xcel during MRI acquisition to better estimate aortic distensibility. J Hypertens 2019; 37(7): 1448-54.
[http://dx.doi.org/10.1097/HJH.0000000000002061] [PMID: 31145713]
[38]
Rosano C, Watson N, Chang Y, et al. Aortic pulse wave velocity predicts focal white matter hyperintensities in a biracial cohort of older adults. Hypertension 2013; 61(1): 160-5.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.198069] [PMID: 23172923]
[39]
Maillard P, Mitchell GF, Himali JJ, et al. Effects of Arterial Stiffness on Brain Integrity in Young Adults From the Framingham Heart Study. Stroke 2016; 47(4): 1030-6.
[http://dx.doi.org/10.1161/STROKEAHA.116.012949] [PMID: 26965846]
[40]
Maillard P, Mitchell GF, Himali JJ, et al. Aortic Stiffness, Increased White Matter Free Water, and Altered Microstructural Integrity: A Continuum of Injury. Stroke 2017; 48(6): 1567-73.
[http://dx.doi.org/10.1161/STROKEAHA.116.016321] [PMID: 28473633]
[41]
Jochemsen HM, Muller M, Bots ML, et al. SMART Study Group. Arterial stiffness and progression of structural brain changes: The SMART-MR study. Neurology 2015; 84(5): 448-55.
[http://dx.doi.org/10.1212/WNL.0000000000001201] [PMID: 25552578]
[42]
Schmahmann JD. Vascular syndromes of the thalamus. Stroke 2003; 34(9): 2264-78.
[http://dx.doi.org/10.1161/01.STR.0000087786.38997.9E] [PMID: 12933968]
[43]
Katulska K, Wykrętowicz M, Minczykowski A, et al. Gray matter volume in relation to cardio-vascular stiffness. J Neurol Sci 2014; 343(1-2): 100-4.
[http://dx.doi.org/10.1016/j.jns.2014.05.044] [PMID: 24916036]
[44]
Mitchell GF, van Buchem MA, Sigurdsson S, et al. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility-Reykjavik study. Brain 2011; 134(Pt 11): 3398-407.
[http://dx.doi.org/10.1093/brain/awr253] [PMID: 22075523]
[45]
Tap L, van Opbroek A, Niessen WJ, Smits M, Mattace-Raso FU. Aortic stiffness and brain integrity in elderly patients with cognitive and functional complaints. Clin Interv Aging 2018; 13: 2161-7.
[http://dx.doi.org/10.2147/CIA.S181437] [PMID: 30464425]
[46]
Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 2014; 61(1): 102-19.
[http://dx.doi.org/10.1109/TUFFC.2014.2882] [PMID: 24402899]
[47]
Messas E, Pernot M, Couade M. Arterial wall elasticity: state of the art and future prospects. Diagn Interv Imaging 2013; 94(5): 561-9.
[http://dx.doi.org/10.1016/j.diii.2013.01.025] [PMID: 23619291]
[48]
Mirault T, Papadacci C, Dizier B, et al. Non invasive and real time evaluation of mice aortic stiffness by ultrafast ultrasound imaging: a new tool for evaluation of preclinical vascular disease models. Eur Heart J 2013; 34(Suppl. 1): 2527.
[http://dx.doi.org/10.1093/eurheartj/eht308.P2527]
[49]
Couade M, Flanagan C, Lee W, et al. Evaluation of local arterial stiffness using ultrafast imaging: A comparative study using local arterial pulse wave velocity estimation and shear wave imaging. 2010; IEEE International Ultrasonics Symposium 475-8.
[http://dx.doi.org/10.1109/ULTSYM.2010.5935954]
[50]
Jin Y, Chen Y, Tang Q, Xue M, Li W, Jiang J. Evaluation of carotid artery stiffness in obese children using ultrasound radiofrequency data technology. J Ultrasound Med 2013; 32(1): 105-13.
[http://dx.doi.org/10.7863/jum.2013.32.1.105] [PMID: 23269715]
[51]
Li X, Jiang J, Zhang H, et al. Measurement of carotid pulse wave velocity using ultrafast ultrasound imaging in hypertensive patients. J Med Ultrason (2001) 2017; 44(2): 183-90.
[http://dx.doi.org/10.1007/s10396-016-0755-4] [PMID: 27933439]
[52]
Kozakova M, Morizzo C, La Carrubba S, et al. Associations between common carotid artery diameter, Framingham risk score and cardiovascular events. Nutr Metab Cardiovasc Dis 2017; 27(4): 329-34.
[http://dx.doi.org/10.1016/j.numecd.2017.01.001] [PMID: 28242234]
[53]
Uejima T, Dunstan FD, Arbustini E, et al. E-Tracking International Collaboration Group (ETIC). Age-specific reference values for carotid arterial stiffness estimated by ultrasonic wall tracking. J Hum Hypertens 2020; 34(3): 214-22.
[http://dx.doi.org/10.1038/s41371-019-0228-5] [PMID: 31435004]
[54]
Van Bortel LM, Duprez D, Starmans-Kool MJ, et al. Clinical applications of arterial stiffness, Task Force III: recommendations for user procedures. Am J Hypertens 2002; 15(5): 445-52.
[http://dx.doi.org/10.1016/S0895-7061(01)02326-3] [PMID: 12022247]
[55]
Weber T, Ammer M, Rammer M, et al. Noninvasive determination of carotid-femoral pulse wave velocity depends critically on assessment of travel distance: a comparison with invasive measurement. J Hypertens 2009; 27(8): 1624-30.
[http://dx.doi.org/10.1097/HJH.0b013e32832cb04e] [PMID: 19531964]
[56]
Sugawara J, Hayashi K, Yokoi T, Tanaka H. Age-associated elongation of the ascending aorta in adults. JACC Cardiovasc Imaging 2008; 1(6): 739-48.
[http://dx.doi.org/10.1016/j.jcmg.2008.06.010] [PMID: 19356510]
[57]
Ciccone MM, Bilianou E, Balbarini A, et al. Task force on: ‘Early markers of atherosclerosis: influence of age and sex’. J Cardiovasc Med (Hagerstown) 2013; 14(10): 757-66.
[http://dx.doi.org/10.2459/JCM.0b013e328362078d] [PMID: 24335886]
[58]
Snijder MB, Stronks K, Agyemang C, Busschers WB, Peters RJ, van den Born BJ. Ethnic differences in arterial stiffness the Helius study. Int J Cardiol 2015; 191: 28-33.
[http://dx.doi.org/10.1016/j.ijcard.2015.04.234] [PMID: 25965592]
[59]
Li Y, Wang JG, Dolan E, et al. Ambulatory arterial stiffness index derived from 24-hour ambulatory blood pressure monitoring. Hypertension 2006; 47(3): 359-64.
[http://dx.doi.org/10.1161/01.HYP.0000200695.34024.4c] [PMID: 16432048]
[60]
Dolan E, Thijs L, Li Y, et al. Ambulatory arterial stiffness index as a predictor of cardiovascular mortality in the Dublin Outcome Study. Hypertension 2006; 47(3): 365-70.
[http://dx.doi.org/10.1161/01.HYP.0000200699.74641.c5] [PMID: 16432047]
[61]
Kikuya M, Staessen JA, Ohkubo T, et al. Ambulatory arterial stiffness index and 24-hour ambulatory pulse pressure as predictors of mortality in Ohasama, Japan. Stroke 2007; 38(4): 1161-6.
[http://dx.doi.org/10.1161/01.STR.0000259604.67283.69] [PMID: 17322089]
[62]
Schillaci G, Parati G, Pirro M, et al. Ambulatory arterial stiffness index is not a specific marker of reduced arterial compliance. Hypertension 2007; 49(5): 986-91.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.106.082248] [PMID: 17372039]
[63]
Xaplanteris P, Vlachopoulos C, Protogerou AD, et al. A clinical score for prediction of elevated aortic stiffness: derivation and validation in 3943 hypertensive patients. J Hypertens 2019; 37(2): 339-46.
[http://dx.doi.org/10.1097/HJH.0000000000001904] [PMID: 30645208]
[64]
Calvo-Vargas C, Padilla-Rios V, Meza-Flores A, et al. Arterial stiffness and blood pressure self-measurement with loaned equipment. Am J Hypertens 2003; 16(5 Pt 1): 375-80.
[http://dx.doi.org/10.1016/S0895-7061(03)00061-X] [PMID: 12745199]
[65]
Niiranen TJ, Jula AM, Kantola IM, Kähönen M, Reunanen A. Home blood pressure has a stronger association with arterial stiffness than clinic blood pressure: the Finn-Home Study. Blood Press Monit 2009; 14(5): 196-201.
[http://dx.doi.org/10.1097/MBP.0b013e328331ca0a] [PMID: 19745724]
[66]
Antza C, Doundoulakis I, Akrivos E, et al. Early Vascular Aging Risk Assessment From Ambulatory Blood Pressure Monitoring: The Early Vascular Aging Ambulatory Score. Am J Hypertens 2018; 31(11): 1197-204.
[http://dx.doi.org/10.1093/ajh/hpy115] [PMID: 30239585]
[67]
Vallée A, Safar ME, Blacher J. Application of a decision tree to establish factors associated with a nomogram of aortic stiffness. J Clin Hypertens (Greenwich) 2019; 21(10): 1484-92.
[http://dx.doi.org/10.1111/jch.13662] [PMID: 31479194]
[68]
Swoboda PP, Erhayiem B, Kan R, et al. Cardiovascular magnetic resonance measures of aortic stiffness in asymptomatic patients with type 2 diabetes: association with glycaemic control and clinical outcomes. Cardiovasc Diabetol 2018; 17(1): 35.
[http://dx.doi.org/10.1186/s12933-018-0681-4] [PMID: 29506523]
[69]
Ohyama Y, Ambale-Venkatesh B, Noda C, et al. Aortic Arch Pulse Wave Velocity Assessed by Magnetic Resonance Imaging as a Predictor of Incident Cardiovascular Events: The MESA (Multi-Ethnic Study of Atherosclerosis). Hypertension 2017; 70(3): 524-30.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.08749] [PMID: 28674039]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy