Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Imaging Techniques as an Aid in the Early Detection of Cardiac Amyloidosis

Author(s): M.F. Santarelli*, M. Scipioni, D. Genovesi, A. Giorgetti, P. Marzullo and L. Landini

Volume 27, Issue 16, 2021

Published on: 13 August, 2020

Page: [1878 - 1889] Pages: 12

DOI: 10.2174/1381612826666200813133557

Price: $65

Abstract

The idea that performing a proper succession of imaging tests and techniques allows an accurate and early diagnosis of cardiac amyloidosis, avoiding the need to perform the myocardial biopsy, is becoming increasingly popular. Furthermore, being imaging techniques non-invasive, it is possible to perform the follow-up of the pathology through repeated image acquisitions.

In the present review, the various innovative imaging methodologies are presented, and it is discussed how they have been applied for early diagnosis of cardiac amyloidosis (CA), also to distinguish the two most frequent subtypes in CA: immunoglobulin light chain amyloidosis (AL) and transthyretin amyloidosis (ATTR); this allows to perform the therapy in a targeted and rapid manner.

Keywords: Cardiac amyloidosis (CA), immunoglobulin light chain amyloidosis (AL), transthyretin amyloidosis (ATTR), imaging techniques in cardiac amyloidosis, pathology, imaging methodologies.

[1]
Glenner GG, Ein D, Eanes ED, Bladen HA, Terry W, Page DL. Creation of “Amyloid” Fibrils from Bence Jones Proteins in vitro. Science 1971; 174(4010): 712-4.
[2]
Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med 2003; 349(6): 583-96.
[http://dx.doi.org/10.1056/NEJMra023144] [PMID: 12904524]
[3]
Lachmann HJ, Hawkins PN. Systemic amyloidosis. Curr Opin Pharmacol 2006; 6(2): 214-20.
[http://dx.doi.org/10.1016/j.coph.2005.10.005] [PMID: 16483845]
[4]
Wechalekar AD, Gillmore JD, Hawkins PN. Systemic amyloidosis. Lancet 2016; 387(10038): 2641-54.
[http://dx.doi.org/10.1016/S0140-6736(15)01274-X] [PMID: 26719234]
[5]
Martinez-Naharro A, Hawkins PN, Fontana M. Cardiac amyloidosis. Clin Med Clin Med (Northfield Il) 2018; 18(2): s30-5.
[http://dx.doi.org/10.7861/clinmedicine.18-2-s30]
[6]
Sipe JD, Benson MD, Buxbaum JN, et al. Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid 2016; 23(4): 209-13.
[http://dx.doi.org/10.1080/13506129.2016.1257986] [PMID: 27884064]
[7]
Benson MD, Buxbaum JN, Eisenberg DS, et al. Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid 2018; 25(4): 215-9.
[http://dx.doi.org/10.1080/13506129.2018.1549825] [PMID: 30614283]
[8]
Di Nunzio D, Recupero A, de Gregorio C, Zito C, Carerj S, Di Bella G. Echocardiographic Findings in Cardiac Amyloidosis: Inside Two-Dimensional, Doppler, and Strain Imaging. Curr Cardiol Rep 2019; 21(2): 7.
[http://dx.doi.org/10.1007/s11886-019-1094-z] [PMID: 30747298]
[9]
Grogan M. Light-chain cardiac amyloidosis: Strategies to promote early diagnosis and cardiac response. Heart 2017; 103(14): 1065-72.
[10]
González-López E, Gallego-Delgado M, Guzzo-Merello G, et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J 2015; 36(38): 2585-94.
[http://dx.doi.org/10.1093/eurheartj/ehv338] [PMID: 26224076]
[11]
González-López E, Gagliardi C, Dominguez F, et al. Clinical characteristics of wild-type transthyretin cardiac amyloidosis: disproving myths. Eur Heart J 2017; 38(24): 1895-904.
[http://dx.doi.org/10.1093/eurheartj/ehx043] [PMID: 28329248]
[12]
Coelho T, Maurer MS, Suhr OB. THAOS - The Transthyretin Amyloidosis Outcomes Survey: initial report on clinical manifestations in patients with hereditary and wild-type transthyretin amyloidosis. Curr Med Res Opin 2013; 29(1): 63-76.
[http://dx.doi.org/10.1185/03007995.2012.754348] [PMID: 23193944]
[13]
Castaño A, Drachman BM, Judge D, Maurer MS. Natural history and therapy of TTR-cardiac amyloidosis: emerging disease-modifying therapies from organ transplantation to stabilizer and silencer drugs. Heart Fail Rev 2015; 20(2): 163-78.
[http://dx.doi.org/10.1007/s10741-014-9462-7] [PMID: 25408161]
[14]
Maurer MS, Elliott P, Comenzo R, Semigran M, Rapezzi C. Addressing common questions encountered in the diagnosis and management of cardiac amyloidosis. Circulation 2017; 135(14): 1357-77.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.024438] [PMID: 28373528]
[15]
Mollee P, Renaut P, Gottlieb D, Goodman H. How to diagnose amyloidosis. Intern Med J 2014; 44(1): 7-17.
[http://dx.doi.org/10.1111/imj.12288] [PMID: 24024789]
[16]
Chacko L, Martone R, Cappelli F, Fontana M. Cardiac Amyloidosis: Updates in Imaging. Curr Cardiol Rep 2019; 21(9): 108.
[http://dx.doi.org/10.1007/s11886-019-1180-2] [PMID: 31375984]
[17]
Lee S-P, Park J-B, Kim H-K, Kim Y-J, Grogan M, Sohn D-W. Contemporary Imaging Diagnosis of Cardiac Amyloidosis. J Cardiovasc Imaging 2019; 27(1): 1-10.
[http://dx.doi.org/10.4250/jcvi.2019.27.e9] [PMID: 30701710]
[18]
Giorgetti A, Genovesi D, Emdin M. Cardiac amyloidosis: The starched heart. J Nucl Cardiol 2020; 27(1): 133-6.
[PMID: 30120748]
[19]
Slart RHJA, Glaudemans AWJM, Noordzij W, Bijzet J, Hazenberg BPC, Nienhuis HLA. Time for new imaging and therapeutic approaches in cardiac amyloidosis. Eur J Nucl Med Mol Imaging 2019; 46(7): 1402-6.
[http://dx.doi.org/10.1007/s00259-019-04325-4] [PMID: 31016330]
[20]
Giorgetti A, et al. Cardiac amyloidosis. Clin Transl Imaging 2019; 7(1): 21-32.
[http://dx.doi.org/10.1007/s40336-018-00311-2]
[21]
Di Bella G, Pizzino F, Minutoli F, et al. The mosaic of the cardiac amyloidosis diagnosis: role of imaging in subtypes and stages of the disease. Eur Heart J Cardiovasc Imaging 2014; 15(12): 1307-15.
[http://dx.doi.org/10.1093/ehjci/jeu158] [PMID: 25190073]
[22]
Santarelli MF, Landini L, Positano V, Buralli S, Landini L. Developments in imaging technologies related to hypertensive cardiovascular diseases. Curr Pharm Des 2011; 17(28): 3081-91.
[http://dx.doi.org/10.2174/138161211798157702] [PMID: 21861829]
[23]
Anvari A, Forsberg F, Samir AE. A primer on the physical principles of tissue harmonic imaging. Radiographics 2015; 35(7): 1955-64.
[http://dx.doi.org/10.1148/rg.2015140338] [PMID: 26562232]
[24]
Cacciapuoti F. The role of echocardiography in the non-invasive diagnosis of cardiac amyloidosis. J Echocardiogr 2015; 13(3): 84-9.
[http://dx.doi.org/10.1007/s12574-015-0249-1] [PMID: 26184746]
[25]
Koyama J, Ray-Sequin PA, Falk RH. Prognostic significance of ultrasound myocardial tissue characterization in patients with cardiac amyloidosis. Circulation 2002; 106(5): 556-61.
[http://dx.doi.org/10.1161/01.CIR.0000023530.86718.B0] [PMID: 12147536]
[26]
Marwick TH, Yu CM, Sun JP. Myocardial Imaging: Tissue Doppler and Speckle Tracking 2007 Blackwell Publishing Ltd.
[27]
Phelan D, Collier P, Thavendiranathan P, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 2012; 98(19): 1442-8.
[http://dx.doi.org/10.1136/heartjnl-2012-302353] [PMID: 22865865]
[28]
Stricagnoli M, Cameli M, Incampo E, Lunghetti S, Mondillo S. Speckle tracking echocardiography in cardiac amyloidosis. Heart Fail Rev 2019; 24(5): 701-7.
[http://dx.doi.org/10.1007/s10741-019-09796-z] [PMID: 30989593]
[29]
Bellavia D, Pellikka PA, Al-Zahrani GB, et al. Independent predictors of survival in primary systemic (Al) amyloidosis, including cardiac biomarkers and left ventricular strain imaging: an observational cohort study. J Am Soc Echocardiogr 2010; 23(6): 643-52.
[http://dx.doi.org/10.1016/j.echo.2010.03.027] [PMID: 20434879]
[30]
Siepen FAD, Bauer R, Voss A, et al. Predictors of survival stratification in patients with wild-type cardiac amyloidosis. Clin Res Cardiol 2018; 107(2): 158-69.
[http://dx.doi.org/10.1007/s00392-017-1167-1] [PMID: 28956153]
[31]
Banypersad SM. The Evolving Role of Cardiovascular Magnetic Resonance Imaging in the Evaluation of Systemic Amyloidosis 2019; 12: 1-10.
[http://dx.doi.org/10.1177/1178623X19843519]
[32]
Doltra A, Amundsen BH, Gebker R, Fleck E, Kelle S. Emerging concepts for myocardial late gadolinium enhancement MRI. Curr Cardiol Rev 2013; 9(3): 185-90.
[http://dx.doi.org/10.2174/1573403X113099990030] [PMID: 23909638]
[33]
Kellman P, Arai AE, McVeigh ER, Aletras AH. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 2002; 47(2): 372-83.
[http://dx.doi.org/10.1002/mrm.10051] [PMID: 11810682]
[34]
Fontana M, Pica S, Reant P, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2015; 132(16): 1570-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.016567] [PMID: 26362631]
[35]
Baroni M, Nava S, Quattrocchi G, et al. Role of cardiovascular magnetic resonance in suspected cardiac amyloidosis: late gadolinium enhancement pattern as mortality predictor. Neth Heart J 2018; 26(1): 34-40.
[http://dx.doi.org/10.1007/s12471-017-1046-4] [PMID: 29058206]
[36]
Boynton SJ, Geske JB, Dispenzieri A, et al. LGE Provides Incremental Prognostic Information Over Serum Biomarkers in AL Cardiac Amyloidosis. JACC Cardiovasc Imaging 2016; 9(6): 680-6.
[http://dx.doi.org/10.1016/j.jcmg.2015.10.027] [PMID: 27209101]
[37]
Wan K, Sun J, Han Y, et al. Right ventricular involvement evaluated by cardiac magnetic resonance imaging predicts mortality in patients with light chain amyloidosis. Heart Vessels 2018; 33(2): 170-9.
[http://dx.doi.org/10.1007/s00380-017-1043-y] [PMID: 28840397]
[38]
Dungu JN, Valencia O, Pinney JH, et al. CMR-based differentiation of AL and ATTR cardiac amyloidosis. JACC Cardiovasc Imaging 2014; 7(2): 133-42.
[http://dx.doi.org/10.1016/j.jcmg.2013.08.015] [PMID: 24412186]
[39]
Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M. T1 Mapping Basic Techniques and Clinical Applications JACC. Cardiovascular Imaging 2016; 9(1): 67-81.
[40]
Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 2004; 52(1): 141-6.
[http://dx.doi.org/10.1002/mrm.20110] [PMID: 15236377]
[41]
Santarelli MF, Positano V, Martini N, Valvano G, Landini L. Technological innovations in magnetic resonance for early detection of cardiovascular diseases. Curr Pharm Des 2016; 22(1): 77-89.
[http://dx.doi.org/10.2174/1381612822666151109112240] [PMID: 26548308]
[42]
Piechnik SK, Ferreira VM, Dall’Armellina E, et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 2010; 12(1): 69.
[http://dx.doi.org/10.1186/1532-429X-12-69] [PMID: 21092095]
[43]
Karamitsos TD, Piechnik SK, Banypersad SM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013; 6(4): 488-97.
[http://dx.doi.org/10.1016/j.jcmg.2012.11.013] [PMID: 23498672]
[44]
Fontana M, Banypersad SM, Treibel TA, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging 2014; 7(2): 157-65.
[http://dx.doi.org/10.1016/j.jcmg.2013.10.008] [PMID: 24412190]
[45]
Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S. Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson 2016; 18(1): 89.
[http://dx.doi.org/10.1186/s12968-016-0308-4] [PMID: 27899132]
[46]
White SK, Sado DM, Fontana M, et al. T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc Imaging 2013; 6(9): 955-62.
[http://dx.doi.org/10.1016/j.jcmg.2013.01.011] [PMID: 23582361]
[47]
Fontana M, White SK, Banypersad SM, et al. Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. J Cardiovasc Magn Reson 2012; 14(1): 88.
[http://dx.doi.org/10.1186/1532-429X-14-88] [PMID: 23272651]
[48]
Martinez-Naharro A, Treibel TA, Abdel-Gadir A, et al. Magnetic Resonance in Transthyretin Cardiac Amyloidosis. J Am Coll Cardiol 2017; 70(4): 466-77.
[http://dx.doi.org/10.1016/j.jacc.2017.05.053] [PMID: 28728692]
[49]
Banypersad SM, Sado DM, Flett AS, et al. Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging 2013; 6(1): 34-9.
[http://dx.doi.org/10.1161/CIRCIMAGING.112.978627] [PMID: 23192846]
[50]
Martinez-Naharro A, Abdel-Gadir A, Treibel TA, et al. CMR-Verified Regression of Cardiac AL Amyloid After Chemotherapy. JACC Cardiovasc Imaging 2018; 11(1): 152-4.
[http://dx.doi.org/10.1016/j.jcmg.2017.02.012] [PMID: 28412427]
[51]
Ferreira VM, Piechnik SK, Robson MD, Neubauer S, Karamitsos TD. Myocardial tissue characterization by magnetic resonance imaging: novel applications of T1 and T2 mapping. J Thorac Imaging 2014; 29(3): 147-54.
[http://dx.doi.org/10.1097/RTI.0000000000000077] [PMID: 24576837]
[52]
Kotecha T, Martinez-Naharro A, Treibel TA, et al. Myocardial Edema and Prognosis in Amyloidosis. J Am Coll Cardiol 2018; 71(25): 2919-31.
[http://dx.doi.org/10.1016/j.jacc.2018.03.536] [PMID: 29929616]
[53]
Singh V, Falk R, Di Carli MF, Kijewski M, Rapezzi C, Dorbala S. State-of-the-art radionuclide imaging in cardiac transthyretin amyloidosis. J Nucl Cardiol 2019; 26(1): 158-73.
[http://dx.doi.org/10.1007/s12350-018-01552-4] [PMID: 30569412]
[54]
Abbott BG, Case JA, Dorbala S, et al. Contemporary Cardiac SPECT Imaging-Innovations and Best Practices: An Information Statement from the American Society of Nuclear Cardiology. J Nucl Cardiol 2018; 25(5): 1847-60.
[http://dx.doi.org/10.1007/s12350-018-1348-y] [PMID: 30143954]
[55]
Gimelli A, Liga R, Duce V, Kusch A, Clemente A, Marzullo P. Accuracy of myocardial perfusion imaging in detecting multivessel coronary artery disease: A cardiac CZT study. J Nucl Cardiol 2017; 24(2): 687-95.
[http://dx.doi.org/10.1007/s12350-015-0360-8] [PMID: 26846367]
[56]
Gimelli A, Liga R, Bertasi M, Kusch A, Marzullo P. Head-to-head comparison of a CZT-based all-purpose SPECT camera and a dedicated CZT cardiac device for myocardial perfusion and functional analysis. J Nucl Cardiol 2019. In press
[http://dx.doi.org/10.1007/s12350-019-01835-4] [PMID: 31385223]
[57]
Pepys MB, Dyck RF, de Beer FC, Skinner M, Cohen AS. Binding of serum amyloid P-component (SAP) by amyloid fibrils. Clin Exp Immunol 1979; 38(2): 284-93.
[PMID: 118839]
[58]
Stats MA, Stone JR. Varying levels of small microcalcifications and macrophages in ATTR and AL cardiac amyloidosis: implications for utilizing nuclear medicine studies to subtype amyloidosis. Cardiovasc Pathol 2016; 25(5): 413-7.
[http://dx.doi.org/10.1016/j.carpath.2016.07.001] [PMID: 27469499]
[59]
Perugini E, Guidalotti PL, Salvi F, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol 2005; 46(6): 1076-84.
[http://dx.doi.org/10.1016/j.jacc.2005.05.073] [PMID: 16168294]
[60]
Bokhari S, Castaño A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging 2013; 6(2): 195-201.
[http://dx.doi.org/10.1161/CIRCIMAGING.112.000132] [PMID: 23400849]
[61]
Ng QKT, Sethi P, Saunders TA, Pampaloni MH, Flavell RR. Discordant Findings on 18F-NaF and 99mTc-HDP Bone Scans in a Patient With ATTR Cardiac Amyloidosis. Clin Nucl Med 2018; 43(3): e89-92.
[http://dx.doi.org/10.1097/RLU.0000000000001933] [PMID: 29261619]
[62]
Susuki S, Ando Y, Sato T, et al. Multi-elemental analysis of serum and amyloid fibrils in familial amyloid polyneuropathy patients. Amyloid 2008; 15(2): 108-16.
[http://dx.doi.org/10.1080/13506120802006013] [PMID: 18484337]
[63]
Nakanishi T, Yoshioka M, Moriuchi K, Yamamoto D, Tsuji M, Takubo T. S-sulfonation of transthyretin is an important trigger step in the formation of transthyretin-related amyloid fibril. Biochim Biophys Acta 2010; 1804(7): 1449-56.
[http://dx.doi.org/10.1016/j.bbapap.2010.03.010] [PMID: 20388560]
[64]
Rapezzi C, Quarta CC, Guidalotti PL, et al. Role of (99m)Tc-DPD scintigraphy in diagnosis and prognosis of hereditary transthyretin-related cardiac amyloidosis. JACC Cardiovasc Imaging 2011; 4(6): 659-70.
[http://dx.doi.org/10.1016/j.jcmg.2011.03.016] [PMID: 21679902]
[65]
Castano A, Haq M, Narotsky DL, et al. Multicenter Study of Planar Technetium 99m Pyrophosphate Cardiac Imaging: Predicting Survival for Patients With ATTR Cardiac Amyloidosis. JAMA Cardiol 2016; 1(8): 880-9.
[http://dx.doi.org/10.1001/jamacardio.2016.2839] [PMID: 27557400]
[66]
Gillmore JD, Maurer MS, Falk RH, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 2016; 133(24): 2404-12.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.021612] [PMID: 27143678]
[67]
Cappelli F, Gallini C, Di Mario C, et al. Accuracy of 99mTc-Hydroxymethylene diphosphonate scintigraphy for diagnosis of transthyretin cardiac amyloidosis. J Nucl Cardiol 2019; 26(2): 497-504.
[http://dx.doi.org/10.1007/s12350-017-0922-z] [PMID: 28537040]
[68]
Chun KA. Beta-amyloid imaging in dementia. Yeungnam Univ J Med 2018; 35(1): 1-6.
[http://dx.doi.org/10.12701/yujm.2018.35.1.1] [PMID: 31620564]
[69]
Antoni G, Lubberink M, Estrada S, et al. In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med 2013; 54(2): 213-20.
[http://dx.doi.org/10.2967/jnumed.111.102053] [PMID: 23238792]
[70]
Lee SP, Lee ES, Choi H, et al. 11C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging 2015; 8(1): 50-9.
[http://dx.doi.org/10.1016/j.jcmg.2014.09.018] [PMID: 25499132]
[71]
Pilebro B, Arvidsson S, Lindqvist P, et al. Positron emission tomography (PET) utilizing Pittsburgh compound B (PIB) for detection of amyloid heart deposits in hereditary transthyretin amyloidosis (ATTR). J Nucl Cardiol 2018; 25(1): 240-8.
[http://dx.doi.org/10.1007/s12350-016-0638-5] [PMID: 27645889]
[72]
Dorbala S, Vangala D, Semer J, et al. Imaging cardiac amyloidosis: a pilot study using 18F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging 2014; 41(9): 1652-62.
[http://dx.doi.org/10.1007/s00259-014-2787-6] [PMID: 24841414]
[73]
Law WP, Wang WYS, Moore PT, Mollee PN, Ng ACT. Cardiac Amyloid Imaging with 18F-Florbetaben PET: A Pilot Study. J Nucl Med 2016; 57(11): 1733-9.
[http://dx.doi.org/10.2967/jnumed.115.169870] [PMID: 27307344]
[74]
Genovesi D, Vergaro G, Emdin M, Giorgetti A, Marzullo P. PET-CT evaluation of amyloid systemic involvement with [18F]-florbetaben in patient with proved cardiac amyloidosis: a case report. J Nucl Cardiol 2017; 24(6): 2025-9.
[http://dx.doi.org/10.1007/s12350-017-0856-5] [PMID: 28326465]
[75]
Park MA, Padera RF, Belanger A, et al. 18F-florbetapir binds specifically to myocardial light chain and transthyretin amyloid deposits: Autoradiography study. Circ Cardiovasc Imaging 2015; 8(8): 1-8.
[http://dx.doi.org/10.1161/CIRCIMAGING.114.002954] [PMID: 26259579]
[76]
Kim YJ, Ha S, Kim Y. Cardiac amyloidosis imaging with amyloid positron emission tomography: A systematic review and meta-analysis. J Nucl Cardiol 2020; 27(1): 123-32.
[PMID: 30022405]
[77]
Kero T, Lindsjö L, Sörensen J, Lubberink M. Accurate analysis and visualization of cardiac (11)C-PIB uptake in amyloidosis with semiautomatic software. J Nucl Cardiol 2016; 23(4): 741-50.
[http://dx.doi.org/10.1007/s12350-015-0149-9] [PMID: 26173894]
[78]
Kircher M, Ihne S, Brumberg J, et al. Detection of cardiac amyloidosis with 18F-Florbetaben-PET/CT in comparison to echocardiography, cardiac MRI and DPD-scintigraphy. Eur J Nucl Med Mol Imaging 2019; 46(7): 1407-16.
[http://dx.doi.org/10.1007/s00259-019-04290-y] [PMID: 30798427]
[79]
Santarelli MF, Martini N, Positano P, Landini L. Models and methods in cardiac imaging for metabolism studies. Curr Pharm Des 2014; 20(39): 6171-81.
[http://dx.doi.org/10.2174/1381612820666140417114122] [PMID: 24745919]
[80]
Carson RE. Tracer Kinetic Modeling in PET InPositron Emission Tomography 2005. 127-59. Springer, London.
[81]
Scipioni M, Giorgetti A, Della Latta D, et al. Accelerated PET kinetic maps estimation by analytic fitting method. Comput Biol Med 2018; 99: 221-35.
[http://dx.doi.org/10.1016/j.compbiomed.2018.06.015] [PMID: 29960145]
[82]
Lubberink M, et al. Quantification of 11C-PIB kinetics in cardiac amyloidosis. J Nucl Cardiol 2020; 27(3): 774-84.
[http://dx.doi.org/10.1007/s12350-018-1349-x] [PMID: 30039218]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy