Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Investigating the Levels of Brain-Specific Proteins in Hydrocephalus Patients

Author(s): Ahmet Guzelcicek*, Ataman Gönel, Ismail Koyuncu, Gulyara Cigdem, Dogan Kose, Mehmet Karadag and Dursun Cadirci

Volume 24, Issue 3, 2021

Published on: 20 July, 2020

Page: [409 - 414] Pages: 6

DOI: 10.2174/1386207323666200720093245

Price: $65

Abstract

Background: Hydrocephalus, a common brain disorder in children, can cause permanent brain damage. A timely diagnosis of this disorder is crucial.

Objective: The aim of this study was to evaluate the levels of S-100, CK-18, and NSE brainspecific proteins in patients with hydrocephalus. We examined the levels of these proteins in the blood samples of hydrocephalic patients.

Methods: The study was conducted on the hydrocephalus (n = 31) patients and a healthy control group (n = 30). A Receiver Operating Characteristic (ROC) curve was used to assess the validity of the NSE, CK-18, and S100B to differentiate between the hydrocephalus and the control groups. The suitability of the data to the normal distribution was tested with the Shapiro Wilk test, and the Student t-test was used to compare the characteristics of the normal distribution in two independent groups. The individuals in the hydrocephalus and control groups had similar values in terms of age, height, and weight.

Results: It was observed that NSE, CK-18, and S100B mean values of the individuals in the hydrocephalus group were significantly higher than NSE, CK-18, and S100B mean values of the control group.

Conclusion: Experiments have shown that the levels of these proteins increase significantly in hydrocephalus patients compared to the healthy group. These three parameters can be considered as important markers in the diagnosis of hydrocephalus.

Keywords: NSE, CK-18, S100B, hydrocephalus, diagnosis, childhood.

[1]
Beems, T.; Simons, K.S.; Van Geel, W.J.; De Reus, H.P.; Vos, P.E.; Verbeek, M.M. Serum- and CSF-concentrations of brain specific proteins in hydrocephalus. Acta Neurochir. (Wien), 2003, 145(1), 37-43.
[http://dx.doi.org/10.1007/s00701-002-1019-1] [PMID: 12545260]
[2]
Kudo, T.; Mima, T.; Hashimoto, R.; Nakao, K.; Morihara, T.; Tanimukai, H.; Tsujio, I.; Koike, Y.; Tagami, S.; Mori, H.; Nakamura, Y.; Tanaka, T.; Mori, K.; Takeda, M. Tau protein is a potential biological marker for normal pressure hydrocephalus. Psychiatry Clin. Neurosci., 2000, 54(2), 199-202.
[http://dx.doi.org/10.1046/j.1440-1819.2000.00658.x] [PMID: 10803815]
[3]
Hebb, A.O.; Cusimano, M.D. Idiopathic normal pressure hydrocephalus: a systematic review of diagnosis and outcome. Neurosurgery, 2001, 49(5), 1166-1184.
[PMID: 11846911]
[4]
Pudenz, R.H.; Foltz, E.L. Hydrocephalus: overdrainage by ventricular shunts. A review and recommendations. Surg. Neurol., 1991, 35(3), 200-212.
[http://dx.doi.org/10.1016/0090-3019(91)90072-H] [PMID: 1996449]
[5]
Cardoso, E.R.; Galbraith, S. Posttraumatic hydrocephalus--a retrospective review. Surg. Neurol., 1985, 23(3), 261-264.
[http://dx.doi.org/10.1016/0090-3019(85)90092-8] [PMID: 3975808]
[6]
Vinchon, M.; Rekate, H.; Kulkarni, A.V. Pediatric hydrocephalus outcomes: a review. Fluids Barriers CNS, 2012, 9(1), 18.
[http://dx.doi.org/10.1186/2045-8118-9-18] [PMID: 22925451]
[7]
Vanneste, J.; Augustijn, P.; Dirven, C.; Tan, W.F.; Goedhart, Z.D. Shunting normal-pressure hydrocephalus: do the benefits outweigh the risks? A multicenter study and literature review. Neurology, 1992, 42(1), 54-59.
[http://dx.doi.org/10.1212/WNL.42.1.54] [PMID: 1734324]
[8]
Sotelo, J.; Marin, C. Hydrocephalus secondary to cysticercotic arachnoiditis. A long-term follow-up review of 92 cases. J. Neurosurg., 1987, 66(5), 686-689.
[http://dx.doi.org/10.3171/jns.1987.66.5.0686] [PMID: 3572494]
[9]
Collmann, H.; Sörensen, N.; Krauss, J. Hydrocephalus in craniosynostosis: a review. Childs Nerv. Syst., 2005, 21(10), 902-912.
[http://dx.doi.org/10.1007/s00381-004-1116-y] [PMID: 15864600]
[10]
Davidson, R.I. Peritoneal bypass in the treatment of hydrocephalus: historical review and abdominal complications. J. Neurol. Neurosurg. Psychiatry, 1976, 39(7), 640-646.
[http://dx.doi.org/10.1136/jnnp.39.7.640] [PMID: 136498]
[11]
Tully, H.M.; Dobyns, W.B. Infantile hydrocephalus: a review of epidemiology, classification and causes. Eur. J. Med. Genet., 2014, 57(8), 359-368.
[http://dx.doi.org/10.1016/j.ejmg.2014.06.002] [PMID: 24932902]
[12]
Curran, T.; Lang, A.E. Parkinsonian syndromes associated with hydrocephalus: case reports, a review of the literature, and pathophysiological hypotheses. Mov. Disord., 1994, 9(5), 508-520.
[http://dx.doi.org/10.1002/mds.870090503] [PMID: 7990846]
[13]
Zahl, S.M.; Egge, A.; Helseth, E.; Wester, K. Benign external hydrocephalus: a review, with emphasis on management. Neurosurg. Rev., 2011, 34(4), 417-432.
[http://dx.doi.org/10.1007/s10143-011-0327-4] [PMID: 21647596]
[14]
Owler, B.K.; Pickard, J.D. Normal pressure hydrocephalus and cerebral blood flow: a review. Acta Neurol. Scand., 2001, 104(6), 325-342.
[http://dx.doi.org/10.1034/j.1600-0404.2001.00092.x] [PMID: 11903086]
[15]
Davidoff, L.M. Treatment of hydrocephalus: historical review and description of a new method. Arch. Surg., 1929, 18(4), 1737-1762.
[http://dx.doi.org/10.1001/archsurg.1929.01140130837055]
[16]
Lorente, L.; Martín, M.M.; González-Rivero, A.F.; Pérez-Cejas, A.; Argueso, M.; Ramos, L.; Solé-Violán, J.; Cáceres, J.J.; Jiménez, A.; García-Marín, V. High serum caspase-cleaved cytokeratin-18 levels and mortality of traumatic brain injury patients. Brain Sci., 2019, 9(10), 269.
[http://dx.doi.org/10.3390/brainsci9100269] [PMID: 31658711]
[17]
Vuppalanchi, R.; Jain, A.K.; Deppe, R.; Yates, K.; Comerford, M.; Masuoka, H.C.; Neuschwander-Tetri, B.A.; Loomba, R.; Brunt, E.M.; Kleiner, D.E. Relationship between changes in serum levels of keratin 18 and changes in liver histology in children and adults with nonalcoholic fatty liver disease., Clin. Gastroenterol. Hepatol., 2014, 12(12), 2121–30.e1-2..
[http://dx.doi.org/10.1016/j.cgh.2014.05.010]
[18]
Shalby, M.M.; Ibrahim, S.A.; Behairy, O.G.; Behiry, E.G.; Mahmoud, D.A. Diagnostic value of serum cytokeratin-18 in children with chronic liver disease. J. Paediatr. Child Health, 2020, 56(1), 41-46.
[http://dx.doi.org/10.1111/jpc.14488] [PMID: 31054236]
[19]
Lorente, L.; Martín, M.M.; Pérez-Cejas, A.; Ramos, L.; Argueso, M.; Solé-Violán, J.; Cáceres, J.J.; Jiménez, A.; García-Marín, V. Association between serum levels of caspase-cleaved cytokeratin-18 and early mortality in patients with severe spontaneous intracerebral hemorrhage. BMC Neurosci., 2018, 19(1), 23.
[http://dx.doi.org/10.1186/s12868-018-0424-1] [PMID: 29661155]
[20]
Chabok, S.Y.; Moghadam, A.D.; Saneei, Z.; Amlashi, F.G.; Leili, E.K.; Amiri, Z.M. Neuron-specific enolase and S100BB as outcome predictors in severe diffuse axonal injury. J. Trauma Acute Care Surg., 2012, 72(6), 1654-1657.
[http://dx.doi.org/10.1097/TA.0b013e318246887e] [PMID: 22695436]
[21]
Isgrò, M.A.; Bottoni, P.; Scatena, R. Advances in Cancer Biomarkers; Springer, 2015, pp. 125-143.
[22]
Cheng, F.; Yuan, Q.; Yang, J.; Wang, W.; Liu, H. The prognostic value of serum neuron-specific enolase in traumatic brain injury: systematic review and meta-analysis. PLoS One, 2014, 9(9)e106680
[http://dx.doi.org/10.1371/journal.pone.0106680] [PMID: 25188406]
[23]
Barone, F.C.; Clark, R.K.; Price, W.J.; White, R.F.; Feuerstein, G.Z.; Storer, B.L.; Ohlstein, E.H. Neuron-specific enolase increases in cerebral and systemic circulation following focal ischemia. Brain Res., 1993, 623(1), 77-82.
[http://dx.doi.org/10.1016/0006-8993(93)90012-C] [PMID: 8221097]
[24]
Skogseid, I.M.; Nordby, H.K.; Urdal, P.; Paus, E.; Lilleaas, F. Increased serum creatine kinase BB and neuron specific enolase following head injury indicates brain damage. Acta Neurochir. (Wien), 1992, 115(3-4), 106-111.
[http://dx.doi.org/10.1007/BF01406367] [PMID: 1605077]
[25]
District, C. Serum levels of oxidants and protein S100B were associated in the first-episode drug naïve patients with schizophrenia. Global Clin. Translational Res., 2019, 84-92. 10.36316/gcatr.01.0013.
[26]
Woertgen, C.; Rothoerl, R.D.; Holzschuh, M.; Metz, C.; Brawanski, A. Comparison of serial S-100 and NSE serum measurements after severe head injury. Acta Neurochir. (Wien), 1997, 139(12), 1161-1164.
[http://dx.doi.org/10.1007/BF01410977] [PMID: 9479423]
[27]
Raabe, A.; Grolms, C.; Sorge, O.; Zimmermann, M.; Seifert, V. Serum S-100B protein in severe head injury. Neurosurgery, 1999, 45(3), 477-483.
[http://dx.doi.org/10.1097/00006123-199909000-00012] [PMID: 10493369]
[28]
Raabe, A.; Grolms, C.; Seifert, V. Serum markers of brain damage and outcome prediction in patients after severe head injury. Br. J. Neurosurg., 1999, 13(1), 56-59.
[http://dx.doi.org/10.1080/02688699944195] [PMID: 10492686]
[29]
Raabe, A.; Grolms, C.; Keller, M.; Döhnert, J.; Sorge, O.; Seifert, V. Correlation of computed tomography findings and serum brain damage markers following severe head injury. Acta Neurochir. (Wien), 1998, 140(8), 787-791.
[http://dx.doi.org/10.1007/s007010050180] [PMID: 9810445]
[30]
Aurell, A.; Rosengren, L.E.; Karlsson, B.; Olsson, J-E.; Zbornikova, V.; Haglid, K.G. Determination of S-100 and glial fibrillary acidic protein concentrations in cerebrospinal fluid after brain infarction. Stroke, 1991, 22(10), 1254-1258.
[http://dx.doi.org/10.1161/01.STR.22.10.1254] [PMID: 1926235]
[31]
Griffin, W.S.; Stanley, L.C.; Ling, C.; White, L.; MacLeod, V.; Perrot, L.J.; White, C.L., III; Araoz, C. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1989, 86(19), 7611-7615.
[http://dx.doi.org/10.1073/pnas.86.19.7611] [PMID: 2529544]
[32]
Persson, L.; Hårdemark, H-G.; Gustafsson, J.; Rundström, G.; Mendel-Hartvig, I.; Esscher, T.; Påhlman, S. S-100 protein and neuron-specific enolase in cerebrospinal fluid and serum: markers of cell damage in human central nervous system. Stroke, 1987, 18(5), 911-918.
[http://dx.doi.org/10.1161/01.STR.18.5.911] [PMID: 3629651]
[33]
McKeating, E.G.; Andrews, P.; Mascia, L. Intracranial Pressure and Neuromonitoring in Brain Injury; Springer, 1998, pp. 117-119.
[http://dx.doi.org/10.1007/978-3-7091-6475-4_35]
[34]
Herrmann, M.; Jost, S.; Kutz, S.; Ebert, A.D.; Kratz, T.; Wunderlich, M.T.; Synowitz, H. Temporal profile of release of neurobiochemical markers of brain damage after traumatic brain injury is associated with intracranial pathology as demonstrated in cranial computerized tomography. J. Neurotrauma, 2000, 17(2), 113-122.
[http://dx.doi.org/10.1089/neu.2000.17.113] [PMID: 10709869]
[35]
Lamers, K.J.; van Engelen, B.G.; Gabreëls, F.J.; Hommes, O.R.; Borm, G.F.; Wevers, R.A. Cerebrospinal neuron-specific enolase, S-100 and myelin basic protein in neurological disorders. Acta Neurol. Scand., 1995, 92(3), 247-251.
[http://dx.doi.org/10.1111/j.1600-0404.1995.tb01696.x] [PMID: 7484080]
[36]
Czupryna, P.; Grygorczuk, S.; Pancewicz, S.; Świerzbińska, R.; Zajkowska, J.; Krawczuk, K.; Dunaj, J.; Filipiuk, J.; Kruszewska, E.; Borawski, K.; Moniuszko-Malinowska, A. Evaluation of NSE and S100B in patients with tick-borne encephalitis. Brain Behav., 2018, 8(12)e01160
[http://dx.doi.org/10.1002/brb3.1160] [PMID: 30468006]
[37]
Tullberg, M.; Rosengren, L.; Blomsterwall, E.; Karlsson, J-E.; Wikkelsö, C. CSF neurofilament and glial fibrillary acidic protein in normal pressure hydrocephalus. Neurology, 1998, 50(4), 1122-1127.
[http://dx.doi.org/10.1212/WNL.50.4.1122] [PMID: 9566405]
[38]
Sutton, L.N.; Wood, J.H.; Brooks, B.R.; Barrer, S.J.; Kline, M.; Cohen, S.R. Cerebrospinal fluid myelin basic protein in hydrocephalus. J. Neurosurg., 1983, 59(3), 467-470.
[http://dx.doi.org/10.3171/jns.1983.59.3.0467] [PMID: 6193255]
[39]
Albrechtsen, M.; Sørensen, P.S.; Gjerris, F.; Bock, E. High cerebrospinal fluid concentration of glial fibrillary acidic protein (GFAP) in patients with normal pressure hydrocephalus. J. Neurol. Sci., 1985, 70(3), 269-274.
[http://dx.doi.org/10.1016/0022-510X(85)90168-6] [PMID: 4056822]
[40]
Eide, P.K.; Hansson, H-A. Blood-brain barrier leakage of blood proteins in idiopathic normal pressure hydrocephalus. Brain Res., 2020, 1727146547
[http://dx.doi.org/10.1016/j.brainres.2019.146547] [PMID: 31712085]
[41]
Carter, J.V.; Pan, J.; Rai, S.N.; Galandiuk, S. ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves. Surgery, 2016, 159(6), 1638-1645.
[http://dx.doi.org/10.1016/j.surg.2015.12.029] [PMID: 26962006]
[42]
Shibata, Y.; Mashiko, R. Clinical Value of the Measurement of Myelin Basic Protein in the Cerebrospinal Fluid of Patients with Idiopathic Normal Pressure Hydrocephalus. Adv. Clin. Translational Res., 2019, 3(1), 1-5.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy