Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Systematic Review Article

Autophagy and Ubiquitination as Two Major Players in Colorectal Cancer: A Review on Recent Patents

Author(s): Javad Saffari-Chaleshtori, Majid Asadi-Samani, Maryam Rasouli and Sayed Mohammad Shafiee*

Volume 15, Issue 2, 2020

Page: [143 - 153] Pages: 11

DOI: 10.2174/1574892815666200630103626

Price: $65

Abstract

Background: As one of the most commonly diagnosed cancers among men and women, Colorectal Cancer (CRC) leads to high rates of morbidity and mortality across the globe. Recent anti- CRC therapies are now targeting specific signaling pathways involved in colorectal carcinogenesis. Ubiquitin Proteasome System (UPS) and autophagy are two main protein quality control systems, which play major roles in the carcinogenesis of colorectal cancer. A balanced function of these two pathways is necessary for the regulation of cell proliferation and cell death.

Objective: In this systematic review, we discuss the available evidence regarding the roles of autophagy and ubiquitination in progression and inhibition of CRC.

Methods: The search terms “colorectal cancer” or “colon cancer” or “colorectal carcinoma” or “colon carcinoma” in combination with “ubiquitin proteasome” and “autophagy” were searched in PubMed, Web of Science, and Scopus databases, and also Google Patents (https://patents.google .com) from January 2000 to Feb 2020.

Results: The most important factors involved in UPS and autophagy have been investigated. There are many important factors involved in UPS and autophagy but this systematic review shows the studies that have mostly focused on the role of ATG, 20s proteasome and mTOR in CRC, and the more important factors such as ATG8, FIP200, and TIGAR factors that are effective in the regulation of autophagy in CRC cells have not been yet investigated.

Conclusion: The most important factors involved in UPS and autophagy such as ATG, 20s proteasome and mTOR, ATG8, FIP200, and TIGAR can be considered in drug therapy for controlling or activating autophagy.

Keywords: Apoptosis, autophagy, cell proliferation, colon cancer, cell survival, ubiquitin-proteasome system.

[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Fanelli GN, Dal Pozzo CA, Depetris I, et al. The heterogeneous clinical and pathological landscapes of metastatic Braf-mutated colorectal cancer. Cancer Cell Int 2020; 20: 30.
[http://dx.doi.org/10.1186/s12935-020-1117-2] [PMID: 32015690]
[3]
Koncina E, Haan S, Rauh S, Letellier E. Prognostic and predictive molecular biomarkers for colorectal cancer: Updates and challenges. Cancers (Basel) 2020; 12(2): E319.
[http://dx.doi.org/10.3390/cancers12020319] [PMID: 32019056]
[4]
Varkaris A, Katsiampoura A, Davis JS, et al. Circulating inflammation signature predicts overall survival and relapse-free survival in metastatic colorectal cancer. Br J Cancer 2019; 120(3): 340-5.
[http://dx.doi.org/10.1038/s41416-018-0360-y] [PMID: 30636774]
[5]
Shafiee SM, Seghatoleslam A, Nikseresht M, et al. Expression status of UBE2Q2 in colorectal primary tumors and cell lines. Iran J Med Sci 2014; 39(2)(Suppl.): 196-202.
[PMID: 24753643]
[6]
Saffari-Chaleshtori J, Tabatabaiefar MA, Ghasemi-Dehkordi P, Farokhi E, Moradi MT, Hashemzadeh-Chaleshtori M. The lack of correlation between Tp53 mutations and gastric cancer: A report from a province of Iran. Genetika-Belgrade 2017; 49(1): 235-46.
[http://dx.doi.org/10.2298/GENSR1701235S]
[7]
Simon K. Colorectal cancer development and advances in screening. Clin Interv Aging 2016; 11: 967-76.
[http://dx.doi.org/10.2147/CIA.S109285] [PMID: 27486317]
[8]
Huyghe N, Baldin P, Van den Eynde M. Immunotherapy with immune checkpoint inhibitors in colorectal cancer: What is the future beyond deficient mismatch-repair tumours? Gastroenterol Rep (Oxf) 2019; 8(1): 11-24.
[http://dx.doi.org/10.1093/gastro/goz061] [PMID: 32104582]
[9]
Morin PJ. Colorectal cancer: The APC-lncRNA link. J Clin Invest 2019; 129(2): 503-5.
[http://dx.doi.org/10.1172/JCI125985] [PMID: 30640173]
[10]
Farooqi AA, de la Roche M, Djamgoz MB, Siddik ZH, Eds. Overview of the oncogenic signaling pathways in colorectal cancer: Mechanistic insights. Seminars in cancer biology.Elsevier. 2019.
[11]
Alwers E, Jia M, Kloor M, Bläker H, Brenner H, Hoffmeister M. Associations between molecular classifications of colorectal cancer and patient survival: A systematic review. Clin Gastroenterol Hepatol 2019; 17(3): 402-10 .
[http://dx.doi.org/10.1016/j.cgh.2017.12.038]
[12]
Lowe K, Bylsma LC, Levin-Sparenberg ED, Sangaré L, Fryzek J, Alexander DD. Prevalence of KRAS, NRAS, and BRAF gene mutations in metastatic colorectal cancer patients: A systematic literature review and meta-analysis. Am J Clin Oncol, 2019;. 37: 523.
[13]
Fodde R. The APC gene in colorectal cancer. Eur J Cancer 2002; 38(7): 867-71.
[http://dx.doi.org/10.1016/S0959-8049(02)00040-0] [PMID: 11978510]
[14]
Huang D, Sun W, Zhou Y, et al. Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev 2018; 37(1): 173-87.
[http://dx.doi.org/10.1007/s10555-017-9726-5] [PMID: 29322354]
[15]
Jeong W-J, Park J-C, Kim W-S, et al. WDR76 is a RAS binding protein that functions as a tumor suppressor via RAS degradation. Nat Commun 2019; 10(1): 295.
[http://dx.doi.org/10.1038/s41467-018-08230-6] [PMID: 30655611]
[16]
Hernandez-Borrero LJ, Zhang S, Lulla A, Dicker DT, El-Deiry WS. CB002, a novel p53 tumor suppressor pathway-restoring small molecule induces tumor cell death through the pro-apoptotic protein NOXA. Cell Cycle 2018; 17(5): 557-67.
[http://dx.doi.org/10.1080/15384101.2017.1346762] [PMID: 28749203]
[17]
Ikeuchi K, Marusawa H, Fujiwara M, et al. Attenuation of proteolysis-mediated cyclin E regulation by alternatively spliced Parkin in human colorectal cancers. Int J Cancer 2009; 125(9): 2029-35.
[http://dx.doi.org/10.1002/ijc.24565] [PMID: 19585504]
[18]
Kim YJ, Lee JH, Jin S, Kim JH, Kim SH. Primate-specific miR-944 activates p53-dependent tumor suppression in human colorectal cancers. Cancer Lett 2019; 440-441: 168-79.
[http://dx.doi.org/10.1016/j.canlet.2018.10.029] [PMID: 30393117]
[19]
Zientara-Rytter K, Subramani S. The roles of ubiquitin-binding protein shuttles in the degradative fate of ubiquitinated proteins in the ubiquitin-proteasome system and autophagy. Cells 2019; 8(1): E40.
[http://dx.doi.org/10.3390/cells8010040] [PMID: 30634694]
[20]
Wu Y, Yao J, Xie J, et al. The role of autophagy in colitis-associated colorectal cancer. Signal Transduct Target Ther 2018; 3: 31.
[http://dx.doi.org/10.1038/s41392-018-0031-8] [PMID: 30510778]
[21]
Dong Z, Cui H. The autophagy-lysosomal pathways and their emerging roles in modulating proteostasis in tumors. Cells 2018; 8(1): E4.
[http://dx.doi.org/10.3390/cells8010004] [PMID: 30577555]
[22]
Statsyuk AV, An H. Analogs of adenosine monophosphate (AMP) as inhibitors of ubiquitin-like modifier-activating enzyme ATG7.US10376515, . 2019.
[23]
Scheffner M, Nuber U, Huibregtse JM. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 1995; 373(6509): 81-3.
[http://dx.doi.org/10.1038/373081a0] [PMID: 7800044]
[24]
Uddin S, Bhat AA, Krishnankutty R, Mir F, Kulinski M, Mohammad RM. Involvement of F-BOX proteins in progression and development of human malignancies. Semin Cancer Biol 2016; 36: 18-32.
[http://dx.doi.org/10.1016/j.semcancer.2015.09.008] [PMID: 26410033]
[25]
Kevei É, Pokrzywa W, Hoppe T. Repair or destruction-an intimate liaison between ubiquitin ligases and molecular chaperones in proteostasis. FEBS Lett 2017; 591(17): 2616-35.
[http://dx.doi.org/10.1002/1873-3468.12750] [PMID: 28699655]
[26]
Bonacci T, Suzuki A, Grant GD, et al. Cezanne/OTUD7B is a cell cycle-regulated deubiquitinase that antagonizes the degradation of APC/C substrates. EMBO J 2018; 37(16): e98701.
[http://dx.doi.org/10.15252/embj.201798701] [PMID: 29973362]
[27]
Gupta I, Singh K, Varshney NK, Khan S. Delineating crosstalk mechanisms of the ubiquitin proteasome system that regulate apoptosis. Front Cell Dev Biol 2018; 6: 11.
[http://dx.doi.org/10.3389/fcell.2018.00011] [PMID: 29479529]
[28]
Napoletano F, Baron O, Vandenabeele P, Mollereau B, Fanto M. Intersections between regulated cell death and autophagy. Trends Cell Biol 2019; 29(4): 323-38.
[http://dx.doi.org/10.1016/j.tcb.2018.12.007] [PMID: 30665736]
[29]
Shafiee SM, Rasti M, Seghatoleslam A, Azimi T, Owji AA. UBE2Q1 in a human breast carcinoma cell line: Overexpression and interaction with p53. Asian Pac J Cancer Prev 2015; 16(9): 3723-7.
[http://dx.doi.org/10.7314/APJCP.2015.16.9.3723] [PMID: 25987028]
[30]
Huang X, Wang XN, Yuan XD, Wu WY, Lobie PE, Wu Z. XIAP facilitates breast and colon carcinoma growth via promotion of p62 depletion through ubiquitination-dependent proteasomal degradation. Oncogene 2019; 38(9): 1448-60.
[http://dx.doi.org/10.1038/s41388-018-0513-8] [PMID: 30275562]
[31]
Liu Y, Xu X, Lin P, et al. Inhibition of the deubiquitinase USP9x induces pre-B cell homeobox 1 (PBX1) degradation and thereby stimulates prostate cancer cell apoptosis. J Biol Chem 2019; 294(12): 4572-82.
[http://dx.doi.org/10.1074/jbc.RA118.006057] [PMID: 30718275]
[32]
Shafiee SM, Seghatoleslam A, Nikseresht M, et al. UBE2Q1 expression in human colorectal tumors and cell lines. Mol Biol Rep 2013; 40(12): 7045-51.
[http://dx.doi.org/10.1007/s11033-013-2824-8] [PMID: 24197692]
[33]
Bonfili L, Cuccioloni M, Cecarini V, et al. Ghrelin induces apoptosis in colon adenocarcinoma cells via proteasome inhibition and autophagy induction. Apoptosis 2013; 18(10): 1188-200.
[http://dx.doi.org/10.1007/s10495-013-0856-0] [PMID: 23632965]
[34]
Carew JS, Medina EC, Esquivel JA II, et al. Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med 2010; 14(10): 2448-59.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00832.x] [PMID: 19583815]
[35]
Chou TF, Li K, Frankowski KJ, Schoenen FJ, Deshaies RJ. Structure-activity relationship study reveals ML240 and ML241 as potent and selective inhibitors of p97 ATPase. ChemMedChem 2013; 8(2): 297-312.
[http://dx.doi.org/10.1002/cmdc.201200520] [PMID: 23316025]
[36]
Cosper PF, Leinwand LA. Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Cancer Res 2011; 71(5): 1710-20.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3145] [PMID: 21163868]
[37]
Dutta D, Chakraborty B, Sarkar A, Chowdhury C, Das P. A potent betulinic acid analogue ascertains an antagonistic mechanism between autophagy and proteasomal degradation pathway in HT-29 cells. BMC Cancer 2016; 16(1): 23.
[http://dx.doi.org/10.1186/s12885-016-2055-1] [PMID: 26772983]
[38]
Isozaki T, Fujita M, Yamada S, et al. Effects of carbon ion irradiation and X-ray irradiation on the ubiquitylated protein accumulation. Int J Oncol 2016; 49(1): 144-52.
[http://dx.doi.org/10.3892/ijo.2016.3504] [PMID: 27175736]
[39]
Liu S, Fei W, Shi Q, Li Q, Kuang Y, Wang C, et al. CHAC2, downregulated in gastric and colorectal cancers, acted as a tumor suppressor inducing apoptosis and autophagy through unfolded protein response. Cell Death Disease 2017; 8(8): e3009.
[http://dx.doi.org/10.1038/cddis.2017.405]
[40]
Lokireddy S, Wijesoma IW, Bonala S, et al. Myostatin is a novel tumoral factor that induces cancer cachexia. Biochem J 2012; 446(1): 23-36.
[http://dx.doi.org/10.1042/BJ20112024] [PMID: 22621320]
[41]
Ma YM, Han W, Li J, Hu LH, Zhou YB. Physalin B not only inhibits the ubiquitin-proteasome pathway but also induces incomplete autophagic response in human colon cancer cells in vitro. Acta Pharmacol Sin 2015; 36(4): 517-27.
[http://dx.doi.org/10.1038/aps.2014.157] [PMID: 25832431]
[42]
Necchi V, Sommi P, Vanoli A, Manca R, Ricci V, Solcia E. Proteasome particle-rich structures are widely present in human epithelial neoplasms: correlative light, confocal and electron microscopy study. PLoS One 2011; 6(6): e21317.
[http://dx.doi.org/10.1371/journal.pone.0021317] [PMID: 21695063]
[43]
Pin F, Minero VG, Penna F, et al. Interference with Ca2+-dependent proteolysis does not alter the course of muscle wasting in experimental cancer cachexia. Front Physiol 2017; 8: 213.
[http://dx.doi.org/10.3389/fphys.2017.00213] [PMID: 28469577]
[44]
Shen T, Cai L-D, Liu Y-H, et al. Ube2v1-mediated ubiquitination and degradation of Sirt1 promotes metastasis of colorectal cancer by epigenetically suppressing autophagy. J Hematol Oncol 2018; 11(1): 95.
[http://dx.doi.org/10.1186/s13045-018-0638-9] [PMID: 30016968]
[45]
Shi W-N, Cui S-X, Song Z-Y, et al. Overexpression of SphK2 contributes to ATRA resistance in colon cancer through rapid degradation of cytoplasmic RXRα by K48/K63-linked polyubiquitination. Oncotarget 2017; 8(24): 39605-17.
[http://dx.doi.org/10.18632/oncotarget.17174] [PMID: 28465486]
[46]
Talbert EE, Metzger GA, He WA, Guttridge DC. Modeling human cancer cachexia in colon 26 tumor-bearing adult mice. J Cachexia Sarcopenia Muscle 2014; 5(4): 321-8.
[http://dx.doi.org/10.1007/s13539-014-0141-2] [PMID: 24668658]
[47]
Wang XJ, Yu J, Wong SH, et al. A novel crosstalk between two major protein degradation systems: Regulation of proteasomal activity by autophagy. Autophagy 2013; 9(10): 1500-8.
[http://dx.doi.org/10.4161/auto.25573] [PMID: 23934082]
[48]
Wang C, Guo D, Wang Q, et al. Aliskiren targets multiple systems to alleviate cancer cachexia. Oncol Rep 2016; 36(5): 3014-22.
[http://dx.doi.org/10.3892/or.2016.5118] [PMID: 27667116]
[49]
Wu WKK, Wu YC, Yu L, Li ZJ, Sung JJY, Cho CH. Induction of autophagy by proteasome inhibitor is associated with proliferative arrest in colon cancer cells. Biochem Biophys Res Commun 2008; 374(2): 258-63.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.031] [PMID: 18638451]
[50]
Wu WKK, Volta V, Cho CH, et al. Repression of protein translation and mTOR signaling by proteasome inhibitor in colon cancer cells. Biochem Biophys Res Commun 2009; 386(4): 598-601.
[http://dx.doi.org/10.1016/j.bbrc.2009.06.080] [PMID: 19540199]
[51]
Bacque E, Brollo M, Clauss A, et al. 1, 2, 3, 4-tetrahydro-pyrimido (1, 2-a) pyrimidin-6-one derivatives, preparation thereof, and pharmaceutical use thereof.Google Patents. 2014.
[52]
Nencioni A, Ballestrero A, Odetti P, Monacelli F, Caffa I, Longo V. Use of a fasting mimicking diet to enhance the efficacy of antiestrogens in cancer.US20190038591, . 2019.
[53]
Ochiya T, Takeshita F. Agent for treating cancer.US9790492, . 2017.
[54]
Pinner E, Laudon M, Zisapel N. CD44 splice variants in neurodegenerative diseases.US9018180, . 2015.
[55]
Cohen M, Carter-O’Connell I, Morgan R, Jin H. Compounds and methods used in assessing mono-parp activity.US20170146517, . 2017.
[56]
Shaw RJGJ. Detecting DIXDC (dix domain-containing protein 1) expression to determine if a tumor will respond to fak and src kinase inhibitors.WO2016011065, . 2015.
[57]
Mizushima N. Autophagy: process and function. Genes Dev 2007; 21(22): 2861-73.
[http://dx.doi.org/10.1101/gad.1599207] [PMID: 18006683]
[58]
Seiwert N, Neitzel C, Stroh S, et al. AKT2 suppresses pro-survival autophagy triggered by DNA double-strand breaks in colorectal cancer cells. Cell Death Dis 2017; 8(8): e3019.
[http://dx.doi.org/10.1038/cddis.2017.418] [PMID: 28837154]
[59]
Fang Y, Tan J, Zhang Q. Signaling pathways and mechanisms of hypoxia-induced autophagy in the animal cells. Cell Biol Int 2015; 39(8): 891-8.
[http://dx.doi.org/10.1002/cbin.10463] [PMID: 25808799]
[60]
Song S, Tan J, Miao Y, Sun Z, Zhang Q. IIntermittent-hypoxia-induced autophagy activation through the ER-stress-related PERK/eIF2α/ATF4 pathway is a protective response to pancreatic β-Cell Apoptosis. Cell Physiol Biochem 2018; 51(6): 2955-71.
[http://dx.doi.org/10.1159/000496047] [PMID: 30562747]
[61]
Liu H, Du Y, Zhang Z, et al. Autophagy contributes to hypoxia-induced epithelial to mesenchymal transition of endometrial epithelial cells in endometriosis. Biol Reprod 2018; 99(5): 968-81.
[http://dx.doi.org/10.1093/biolre/ioy128] [PMID: 29860279]
[62]
Yu L, Chen Y, Tooze SA. Autophagy pathway: Cellular and molecular mechanisms. Autophagy 2018; 14(2): 207-15.
[http://dx.doi.org/10.1080/15548627.2017.1378838] [PMID: 28933638]
[63]
Carlsson SR, Simonsen A. Membrane dynamics in autophagosome biogenesis. J Cell Sci 2015; 128(2): 193-205.
[http://dx.doi.org/10.1242/jcs.141036] [PMID: 25568151]
[64]
Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19(21): 5720-8.
[http://dx.doi.org/10.1093/emboj/19.21.5720] [PMID: 11060023]
[65]
Stolz A, Ernst A, Dikic I. Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 2014; 16(6): 495-501.
[http://dx.doi.org/10.1038/ncb2979] [PMID: 24875736]
[66]
Harrison RG Jr, Krais JJ. Enzyme conjugate and prodrug cancer therapy. US9987241, 2018
[67]
Gori JL. Optimized crispr/cas9 systems and methods for gene editing in stem cells. CA2986310A1, 2018.
[68]
Kim J, Kundu M, Viollet B, Guan K-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13(2): 132-41.
[http://dx.doi.org/10.1038/ncb2152] [PMID: 21258367]
[69]
Wu W, Luo M, Li K, et al. Cholesterol derivatives induce dephosphorylation of the histone deacetylases RPD3/HDAC1 to upregulate autophagy. Autophagy 2020; 1-17.
[http://dx.doi.org/10.1080/15548627.2020.1725376] [PMID: 32013726]
[70]
Wong KW, Law YK, Liu L, Wang J. Group of alkaloids, the novel autophagic enhancers for treatment of cancers and neurodegenerative conditions thereof. US9561222, 2017.
[71]
Pourgholami MH, Morris DL, Aston R. Compounds for the treatment of mTOR pathway related diseases. US9790176, 2018
[72]
Maiuri MC, Criollo A, Kroemer G. Crosstalk between apoptosis and autophagy within the Beclin 1 interactome. EMBO J 2010; 29(3): 515-6.
[http://dx.doi.org/10.1038/emboj.2009.377] [PMID: 20125189]
[73]
Mochida K, Oikawa Y, Kimura Y, et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 2015; 522(7556): 359-62.
[http://dx.doi.org/10.1038/nature14506] [PMID: 26040717]
[74]
Wild P, McEwan DG, Dikic I. The LC3 interactome at a glance. J Cell Sci 2014; 127: 3-9.
[http://dx.doi.org/10.1242/jcs.140426]
[75]
Yun CW, Lee SH. The roles of autophagy in cancer. Int J Mol Sci 2018; 19(11): 3466.
[http://dx.doi.org/10.3390/ijms19113466] [PMID: 30400561]
[76]
Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 1996; 65(1): 801-47.
[http://dx.doi.org/10.1146/annurev.bi.65.070196.004101] [PMID: 8811196]
[77]
Brnjic S, Padraig DA, Larsson R, Linder S. Protease deubiquitinating inhibitor screening. EP2756310, 2018.
[78]
Lyapina SA, Verma R, Deshaies R, Cope G. Regulation of target protein activity through modifier proteins US7291494, 2005
[79]
White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 2012; 12(6): 401-10.
[http://dx.doi.org/10.1038/nrc3262] [PMID: 22534666]
[80]
Maiuri MC, Tasdemir E, Criollo A, et al. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ 2009; 16(1): 87-93.
[http://dx.doi.org/10.1038/cdd.2008.131] [PMID: 18806760]
[81]
Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402(6762): 672-6.
[http://dx.doi.org/10.1038/45257] [PMID: 10604474]
[82]
Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 2003; 100(25): 15077-82.
[http://dx.doi.org/10.1073/pnas.2436255100] [PMID: 14657337]
[83]
White E, Strohecker AM, Possemato R, Sabatini DM. Identification of modulators of autophagy. Proc Natl Acad Sci USA 2013; 100(25): 15077-82.
[84]
Kung C-P, Budina A, Balaburski G, Bergenstock MK, Murphy M. Autophagy in tumor suppression and cancer therapy. Crit Rev Eukaryot Gene Expr 2011; 21(1): 71-100.
[http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v21.i1.50]
[85]
Yuan J, Ma D, Liu J, Zhang L. Potent small molecule inhibitors of autophagy, and methods of use there of. US20120258975, 2012.
[86]
Gorski SM, Qadir MA. Inhibition of autophagy genes in cancer chemotherapy. US8076308, 2011.
[87]
Luo T, Fu J, Xu A, et al. PSMD10/gankyrin induces autophagy to promote tumor progression through cytoplasmic interaction with ATG7 and nuclear transactivation of ATG7 expression. Autophagy 2016; 12(8): 1355-71.
[http://dx.doi.org/10.1080/15548627.2015.1034405] [PMID: 25905985]
[88]
Liu M, Jiang L, Fu X, et al. Cytoplasmic liver kinase B1 promotes the growth of human lung adenocarcinoma by enhancing autophagy. Cancer Sci 2018; 109(10): 3055-67.
[http://dx.doi.org/10.1111/cas.13746] [PMID: 30033530]
[89]
Mazure NM, Pouysségur J. Hypoxia-induced autophagy: Cell death or cell survival? Curr Opin Cell Biol 2010; 22(2): 177-80.
[http://dx.doi.org/10.1016/j.ceb.2009.11.015] [PMID: 20022734]
[90]
Lin K, Degtyarev M. Autophagy inducer and inhibitor combination therapy for the treatment of neoplasms . EP265561, 2014.
[91]
Kwon HJ, Kim YH. Pharmaceutical compositions for inhibiting angiogenesis comprising plant-derived natural compound. US20170239266, 2019.
[92]
Sou YS, Waguri S, Iwata J, et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 2008; 19(11): 4762-75.
[http://dx.doi.org/10.1091/mbc.e08-03-0309] [PMID: 18768753]
[93]
Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 2008; 456(7219): 264-8.
[http://dx.doi.org/10.1038/nature07383] [PMID: 18849965]
[94]
Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period. Nature 2004; 432(7020): 1032-6.
[http://dx.doi.org/10.1038/nature03029] [PMID: 15525940]
[95]
Wu C, Mountzouris JA, Hu B, Liu C. Regulation of autophagy pathway phosphorylation and uses thereof . US8148088, 2012.
[96]
Erdos A, Raso E. Compound with anti-cancer properties. US20160339036, 2016.
[97]
Li B, Wang Z, Xie JM, et al. TIGAR knockdown enhanced the anticancer effect of aescin via regulating autophagy and apoptosis in colorectal cancer cells. Acta Pharmacol Sin 2019; 40(1): 111-21.
[http://dx.doi.org/10.1038/s41401-018-0001-2] [PMID: 29769743]
[98]
Xie JM, Li B, Yu HP, et al. TIGAR has a dual role in cancer cell survival through regulating apoptosis and autophagy. Cancer Res 2014; 74(18): 5127-38.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3517] [PMID: 25085248]
[99]
Ye L, Zhao X, Lu J, Qian G, Zheng JC, Ge S. Knockdown of TIGAR by RNA interference induces apoptosis and autophagy in HepG2 hepatocellular carcinoma cells. Biochem Biophys Res Commun 2013; 437(2): 300-6.
[http://dx.doi.org/10.1016/j.bbrc.2013.06.072] [PMID: 23817040]
[100]
McCord DE, Karagiannis T. Hydroxytyrosol and oleuropein compositions for induction of DNA damage, cell death and LSD1 inhibition. US9144555, 2015.
[101]
Chu P, Peach R. Cancer stem cells expressing ABCG2. US20130244268, 2013.
[102]
Kwon YT, Ciechanover A. The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem Sci 2017; 42(11): 873-86.
[http://dx.doi.org/10.1016/j.tibs.2017.09.002] [PMID: 28947091]
[103]
Mooneyham A, Bazzaro M. Targeting deubiquitinating enzymes and autophagy in cancer. Methods Mol Biol 2017; 1513: 49-59.
[http://dx.doi.org/10.1007/978-1-4939-6539-7_5] [PMID: 27807830]
[104]
Akpinar HA, Kahraman H, Yaman I, Ochratoxin A. Ochratoxin a sequentially activates autophagy and the ubiquitin-proteasome system. Toxins (Basel) 2019; 11(11): E615.
[http://dx.doi.org/10.3390/toxins11110615] [PMID: 31653047]
[105]
Bao W, Gu Y, Ta L, Wang K, Xu Z. Induction of autophagy by the MG-132 proteasome inhibitor is associated with endoplasmic reticulum stress in MCF-7 cells. Mol Med Rep 2016; 13(1): 796-804.
[http://dx.doi.org/10.3892/mmr.2015.4599] [PMID: 26648402]
[106]
Levy N, Cau P, De Sandre-Giovannoli A, et al. Proteasome inhibitors for treating a disorder related to an accumulation of non-degraded abnormal protein or a cancer. US20170368134, 2017.
[107]
Doxsey SJ, Kuo T-C, Chen C-T. Modulation of midbody derivatives. WO2013036850, 2016.
[108]
Nanjundan M, Mills G, Smith D. Methods of treating ovarian cancer by modulating SnoN. US8211646, 2012.
[109]
Majeed M, Nagabhushanam K, Ho C. 3-hydroxypterostilbene and therapeutic applications thereof. US20160058712, 2016.
[110]
Levine BC, Wang RC, Wei Y. Beclin 1 phosphorylation. US9671412, 2017.
[111]
Thompson CB, Lum J, Bauer D. Regulation of autophagy and cell survival. US20180030502, 2018.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy