Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Insights into Nanotherapeutic Strategies as an Impending Approach to Liver Cancer Treatment

Author(s): Archu Singh, Sadat Shafi, Tanya Upadhyay, Abul Kalam Najmi, Kanchan Kohli and Faheem Hyder Pottoo*

Volume 20, Issue 20, 2020

Page: [1839 - 1854] Pages: 16

DOI: 10.2174/1568026620666200624161801

Price: $65

Abstract

Liver cancer, being the utmost prevalent fatal malignancy worldwide, is ranked as the fifth leading cause of deaths associated with cancer. Patients with liver cancer are diagnosed often at an advanced stage, contributing to poor prognosis. Of all forms of liver cancer, hepatocellular carcinoma (HCC) contributes to 90% of cases, with chemotherapy being the treatment of choice. However, unfavorable toxicity of chemotherapy drugs and the vulnerability of nucleic acid-based drugs to degradation, have limited their application in clinical settings. So, in order to improvise their therapeutic efficacy in HCC treatment, various nanocarrier drug delivery systems have been explored. Furthermore, nanoparticle based imaging provides valuable means of accurately diagnosing HCC. Thus, in recent years, the advent of nanomedicine has shown great potential and progress in dramatically altering the approach to the diagnosis as well as treatment of liver cancer. Nanoparticles (NPs) are being explored as potential drug carriers for small molecules, miRNAs, and therapeutic genes used for liver cancer treatment. This review emphasizes on the current developments and applications of nanomedicine based therapeutic and diagnostic approaches in HCC.

Keywords: Liver cancer, Hepatocellular carcinoma, Chemotherapy, Nanomedicine, Nanotechnology, Nanotherapeutic.

« Previous
Graphical Abstract

[1]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[3]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[4]
Abeylath, S.C.; Turos, E. Glycosylated polyacrylate nanoparticles by emulsion polymerization. Carbohydr. Polym., 2007, 70(1), 32-37.
[http://dx.doi.org/10.1016/j.carbpol.2007.02.027] [PMID: 18677404]
[5]
Arzumanyan, A.; Reis, H.M.; Feitelson, M.A. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat. Rev. Cancer, 2013, 13(2), 123-135.
[http://dx.doi.org/10.1038/nrc3449] [PMID: 23344543]
[6]
Xia, W.; Low, P.S. Folate-targeted therapies for cancer. J. Med. Chem., 2010, 53(19), 6811-6824.
[http://dx.doi.org/10.1021/jm100509v] [PMID: 20666486]
[7]
Parikh, S.; Hyman, D. Hepatocellular cancer: a guide for the internist. Am. J. Med., 2007, 120(3), 194-202.
[http://dx.doi.org/10.1016/j.amjmed.2006.11.020] [PMID: 17349437]
[8]
Dutta, R.; Mahato, R.I. Recent advances in hepatocellular carcinoma therapy. Pharmacol. Ther., 2017, 173, 106-117.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.010] [PMID: 28174094]
[9]
Tsuchiya, N.; Sawada, Y.; Endo, I.; Saito, K.; Uemura, Y.; Nakatsura, T. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J. Gastroenterol., 2015, 21(37), 10573-10583.
[http://dx.doi.org/10.3748/wjg.v21.i37.10573] [PMID: 26457017]
[10]
Farinati, F.; Sergio, A.; Baldan, A.; Giacomin, A.; Di Nolfo, M.A.; Del Poggio, P.; Benvegnu, L.; Rapaccini, G.; Zoli, M.; Borzio, F.; Giannini, E.G.; Caturelli, E.; Trevisani, F. Early and very early hepatocellular carcinoma: when and how much do staging and choice of treatment really matter? A multi-center study. BMC Cancer, 2009, 9(1), 33.
[http://dx.doi.org/10.1186/1471-2407-9-33] [PMID: 19171074]
[11]
Le Grazie, M.; Biagini, M.R.; Tarocchi, M.; Polvani, S.; Galli, A. Chemotherapy for hepatocellular carcinoma: The present and the future. World J. Hepatol., 2017, 9(21), 907-920.
[http://dx.doi.org/10.4254/wjh.v9.i21.907] [PMID: 28824742]
[12]
Dimitroulis, D.; Damaskos, C.; Valsami, S.; Davakis, S.; Garmpis, N.; Spartalis, E.; Athanasiou, A.; Moris, D.; Sakellariou, S.; Kykalos, S.; Tsourouflis, G.; Garmpi, A.; Delladetsima, I.; Kontzoglou, K.; Kouraklis, G. From diagnosis to treatment of hepatocellular carcinoma: An epidemic problem for both developed and developing world. World J. Gastroenterol., 2017, 23(29), 5282-5294.
[http://dx.doi.org/10.3748/wjg.v23.i29.5282] [PMID: 28839428]
[13]
Thapa, R.K.; Choi, J.Y.; Poudel, B.K.; Hiep, T.T.; Pathak, S.; Gupta, B.; Choi, H.G.; Yong, C.S.; Kim, J.O. Multilayer-coated liquid crystalline nanoparticles for effective sorafenib delivery to hepatocellular carcinoma. ACS Appl. Mater. Interfaces, 2015, 7(36), 20360-20368.
[http://dx.doi.org/10.1021/acsami.5b06203] [PMID: 26315487]
[14]
FornerA , R.; Bruix, J. Hepatocellularcarcinoma. Lancet., 2018, 391(10127), 1301r1314..
[15]
Chen, S.; Cao, Q.; Wen, W.; Wang, H. Targeted therapy for hepatocellular carcinoma: Challenges and opportunities. Cancer Lett., 2019, 460, 1-9.
[http://dx.doi.org/10.1016/j.canlet.2019.114428] [PMID: 31207320]
[16]
Xu, X.; Tao, Y.; Shan, L.; Chen, R.; Jiang, H.; Qian, Z.; Cai, F.; Ma, L.; Yu, Y. The role of MicroRNAs in hepatocellular carcinoma. J. Cancer, 2018, 9(19), 3557-3569.
[http://dx.doi.org/10.7150/jca.26350] [PMID: 30310513]
[17]
Wang, C.; Wang, X.; Su, Z.; Fei, H.; Liu, X.; Pan, Q. MiR-25 promotes hepatocellular carcinoma cell growth, migration and invasion by inhibiting RhoGDI1. Oncotarget, 2015, 6(34), 36231-36244.
[http://dx.doi.org/10.18632/oncotarget.4740] [PMID: 26460549]
[18]
Ganju, A.; Khan, S.; Hafeez, B.B.; Behrman, S.W.; Yallapu, M.M.; Chauhan, S.C.; Jaggi, M. miRNA nanotherapeutics for cancer. Drug Discov. Today, 2017, 22(2), 424-432.
[http://dx.doi.org/10.1016/j.drudis.2016.10.014] [PMID: 27815139]
[19]
Ansari, M.A.; Chung, I.M.; Rajakumar, G.; Alzohairy, M.A.; Alomary, M.N.; Thiruvengadam, M.; Pottoo, F.H.; Ahmad, N. Current nanoparticles approaches in nose to brain drug delivery and anticancer therapy-a review. Curr. Pharm. Des., 2020.
[http://dx.doi.org/10.2174/1381612826666200116153912]
[20]
Ansari, M.A.; Badrealam, K.F.; Alam, A.; Tufail, S.; Khalique, G.; Equbal, M.J.; Alzohairy, M.A.; Almatroudi, A.; Alomary, M.N.; Pottoo, F.H. Recent nano-based therapeutic intervention of bioactive sesquiterpenes: prospects in cancer therapeutics. Curr. Pharm. Des., 2020, 26(11), 1138-1144.
[http://dx.doi.org/10.2174/1381612826666200116151522] [PMID: 31951164]
[21]
Wang, R.; Billone, P.S.; Mullett, W.M. Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials; J. Nanomat, 2013, 2013, .
[http://dx.doi.org/10.1155/2013/629681]
[22]
Pottoo, F.H.; Javed, N.; Rahman, J.; Abu-Izneid, T.; Khan, F.A. Targeted delivery of miRNA based therapeuticals in the clinical management of Glioblastoma Multiforme. In: Seminars in Cancer Biology; Elsevier: Amsterdam, 2020.
[http://dx.doi.org/10.1016/j.semcancer.2020.04.001]
[23]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[24]
Mishra, S.; Sharma, S.; Javed, M.N.; Pottoo, F.H.; Barkat, M.A. Harshita; Alam, M.S.; Amir, M.; Sarafroz, M. Bioinspired nanocomposites: applications in disease diagnosis and treatment. Pharm. Nanotechnol., 2019, 7(3), 206-219.
[http://dx.doi.org/10.2174/2211738507666190425121509] [PMID: 31030662]
[25]
Sharma, S.; Javed, M.N.; Pottoo, F.H.; Rabbani, S.A.; Barkat, M.A. Harshita; Sarafroz, M.; Amir, M. Bioresponse inspired nanomaterials for targeted drug and gene delivery. Pharm. Nanotechnol., 2019, 7(3), 220-233.
[http://dx.doi.org/10.2174/2211738507666190429103814] [PMID: 31486751]
[26]
Bertino, G.; Demma, S.; Ardiri, A.; Proiti, M.; Malaguarnera, G.; Bertino, N.; Malaguarnera, M.; Malaguarnera, M. Hepatocellular carcinoma: novel molecular targets in carcinogenesis for future therapies. BioMed Res. Int., 2014 In press
[http://dx.doi.org/10.1155/2014/203693]
[27]
Farazi, P.A.; DePinho, R.A. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat. Rev. Cancer, 2006, 6(9), 674-687.
[http://dx.doi.org/10.1038/nrc1934] [PMID: 16929323]
[28]
Spangenberg, H.C.; Thimme, R.; Blum, H.E. Targeted therapy for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol., 2009, 6(7), 423-432.
[http://dx.doi.org/10.1038/nrgastro.2009.86] [PMID: 19488072]
[29]
Singh, S.; Singh, P.P.; Roberts, L.R.; Sanchez, W. Chemopreventive strategies in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(1), 45-54.
[http://dx.doi.org/10.1038/nrgastro.2013.143] [PMID: 23938452]
[30]
Roberts, L.R.; Gores, G.J. Hepatocellular carcinoma: molecular pathways and new therapeutic targets. Semin. Liver Dis., 2005, 25(2), 212-225.
[http://dx.doi.org/10.1055/s-2005-871200] [PMID: 15918149]
[31]
Pascual, S.; Miralles, C.; Bernabé, J.M.; Irurzun, J.; Planells, M. Surveillance and diagnosis of hepatocellular carcinoma: A systematic review. WJCC, 2019, 7(16), 2269-22286.
[http://dx.doi.org/10.12998/wjcc.v7.i16.2269]
[32]
Lurje, I.; Czigany, Z.; Bednarsch, J.; Roderburg, C.; Isfort, P.; Neumann, U.P.; Lurje, G. Treatment strategies for hepatocellular carcinoma—A multidisciplinary approach. Int. J. Mol. Sci., 2019, 20(6), 1465.
[http://dx.doi.org/10.3390/ijms20061465] [PMID: 30909504]
[33]
Portolani, N.; Coniglio, A.; Ghidoni, S.; Giovanelli, M.; Benetti, A.; Tiberio, G.A.; Giulini, S.M. Early and late recurrence after liver resection for hepatocellular carcinoma: prognostic and therapeutic implications. Ann. Surg., 2006, 243(2), 229-235.
[http://dx.doi.org/10.1097/01.sla.0000197706.21803.a1] [PMID: 16432356]
[34]
European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu; European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma. J. Hepatol., 2018, 69(1), 182-236.
[http://dx.doi.org/10.1016/j.jhep.2018.03.019] [PMID: 29628281]
[35]
Majumdar, A.; Roccarina, D.; Thorburn, D.; Davidson, B.R.; Tsochatzis, E.; Gurusamy, K.S. Management of people with early‐or very early‐stage hepatocellular carcinoma. Cochrane Database Systematic Reviews., 2017, 3(3)CD011650
[http://dx.doi.org/10.1002/14651858.CD011650.pub2]
[36]
Thomas, M.B.; Jaffe, D.; Choti, M.M.; Belghiti, J.; Curley, S.; Fong, Y.; Gores, G.; Kerlan, R.; Merle, P.; O’Neil, B.; Poon, R.; Schwartz, L.; Tepper, J.; Yao, F.; Haller, D.; Mooney, M.; Venook, A. Hepatocellular carcinoma: consensus recommendations of the national cancer institute clinical trials planning meeting. J. Clin. Oncol., 2010, 28(25), 3994-4005.
[http://dx.doi.org/10.1200/JCO.2010.28.7805] [PMID: 20679622]
[37]
Asghar, U.; Meyer, T. Are there opportunities for chemotherapy in the treatment of hepatocellular cancer? J. Hepatol., 2012, 56(3), 686-695.
[http://dx.doi.org/10.1016/j.jhep.2011.07.031] [PMID: 21971559]
[38]
Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology, 2018, 68(2), 723-750.
[http://dx.doi.org/10.1002/hep.29913] [PMID: 29624699]
[39]
Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; Gerolami, R.; Masi, G.; Ross, P.J.; Song, T.; Bronowicki, J.P.; Ollivier-Hourmand, I.; Kudo, M.; Cheng, A.L.; Llovet, J.M.; Finn, R.S.; LeBerre, M.A.; Baumhauer, A.; Meinhardt, G.; Han, G. RESORCE Investigators. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 2017, 389(10064), 56-66.
[http://dx.doi.org/10.1016/S0140-6736(16)32453-9] [PMID: 27932229]
[40]
Abou-Alfa, G.K.; Meyer, T.; Cheng, A.L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.Y.; Cicin, I.; Merle, P.; Park, J.W.; Blanc, J.F.; Bolondi, L. Cabozantinib (C) versus placebo (P) in patients (pts) with advanced hepatocellular carcinoma (HCC) who have received prior sorafenib: Results from the randomized phase III CELESTIAL trial. J. Clin. Oncol., 36(15_suppl), 4019-4019.
[41]
He, X.X.; Chang, Y.; Meng, F.Y.; Wang, M.Y.; Xie, Q.H.; Tang, F.; Li, P.Y.; Song, Y.H.; Lin, J.S. MicroRNA-375 targets AEG-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo. Oncogene, 2012, 31(28), 3357-3369.
[http://dx.doi.org/10.1038/onc.2011.500] [PMID: 22056881]
[42]
Li, W.; Xie, L.; He, X.; Li, J.; Tu, K.; Wei, L.; Wu, J.; Guo, Y.; Ma, X.; Zhang, P.; Pan, Z.; Hu, X.; Zhao, Y.; Xie, H.; Jiang, G.; Chen, T.; Wang, J.; Zheng, S.; Cheng, J.; Wan, D.; Yang, S.; Li, Y.; Gu, J. Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma. Int. J. Cancer, 2008, 123(7), 1616-1622.
[http://dx.doi.org/10.1002/ijc.23693] [PMID: 18649363]
[43]
Zhao, Y.; Jia, H.L.; Zhou, H.J.; Dong, Q.Z.; Fu, L.Y.; Yan, Z.W.; Sun, J.; Ren, N.; Ye, Q.H.; Qin, L.X. Identification of metastasis-related microRNAs of hepatocellular carcinoma in hepatocellular carcinoma cell lines by quantitative real time PCR Zhonghua Gan Zang Bing Za Zhi, 2009, 17(7), 526-530.
[PMID: 19912688]
[44]
Li, F.; Wang, F.; Zhu, C.; Wei, Q.; Zhang, T.; Zhou, Y.L. miR-221 suppression through nanoparticle-based miRNA delivery system for hepatocellular carcinoma therapy and its diagnosis as a potential biomarker. Int. J. Nanomedicine, 2018, 13, 2295-2307.
[http://dx.doi.org/10.2147/IJN.S157805] [PMID: 29713162]
[45]
Chen, Y.; Gao, D-Y.; Huang, L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv. Drug Deliv. Rev., 2015, 81, 128-141.
[http://dx.doi.org/10.1016/j.addr.2014.05.009] [PMID: 24859533]
[46]
Czauderna, F.; Fechtner, M.; Dames, S.; Aygün, H.; Klippel, A.; Pronk, G.J.; Giese, K.; Kaufmann, J. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res., 2003, 31(11), 2705-2716.
[http://dx.doi.org/10.1093/nar/gkg393] [PMID: 12771196]
[47]
Pottoo, F.H.; Barkat, M.A.; Ansari, M.A.; Javed, M.N.; Jamal, Q.M.S.; Kamal, M.A. Nanotechnologoical based miRNA intervention in the therapeutic management of neuroblastoma. In: Seminars in Cancer Biology, 2019. 2019. (ePub Ahead of Print)..
[PMID: 31562954]
[48]
Muthukumar, T.; Chamundeeswari, M.; Prabhavathi, S.; Gurunathan, B.; Chandhuru, J.; Sastry, T.P. Carbon nanoparticle from a natural source fabricated for folate receptor targeting, imaging and drug delivery application in A549 lung cancer cells. Eur. J. Pharm. Biopharm., 2014, 88(3), 730-736.
[http://dx.doi.org/10.1016/j.ejpb.2014.09.011] [PMID: 25305584]
[49]
Shafi, S.; Khan, S.; Hoda, F.; Fayaz, F.; Singh, A.; Khan, M.A.; Ali, R.; Pottoo, F.H.; Tariq, S.; Najmi, A.K. Decoding novel mechanisms and emerging therapeutic strategies in breast cancer resistance. Curr. Drug Metab., 2020, 21(3), 199-210.
[http://dx.doi.org/10.2174/1389200221666200303124946] [PMID: 32124694]
[50]
Baskar, G.; Chandhuru, J.; Sheraz Fahad, K.; Praveen, A.S.; Chamundeeswari, M.; Muthukumar, T. Anticancer activity of fungal L-asparaginase conjugated with zinc oxide nanoparticles. J. Mater. Sci. Mater. Med., 2015, 26(1), 5380.
[http://dx.doi.org/10.1007/s10856-015-5380-z] [PMID: 25589205]
[51]
Elsabahy, M.; Heo, G.S.; Lim, S-M.; Sun, G.; Wooley, K.L. Polymeric nanostructures for imaging and therapy. Chem. Rev., 2015, 115(19), 10967-11011.
[http://dx.doi.org/10.1021/acs.chemrev.5b00135] [PMID: 26463640]
[52]
Zhang, F.; Zhang, S.; Pollack, S.F.; Li, R.; Gonzalez, A.M.; Fan, J.; Zou, J.; Leininger, S.E.; Pavía-Sanders, A.; Johnson, R.; Nelson, L.D.; Raymond, J.E.; Elsabahy, M.; Hughes, D.M.; Lenox, M.W.; Gustafson, T.P.; Wooley, K.L. Improving paclitaxel delivery: in vitro and in vivo characterization of PEGylated polyphosphoester-based nanocarriers. J. Am. Chem. Soc., 2015, 137(5), 2056-2066.
[http://dx.doi.org/10.1021/ja512616s] [PMID: 25629952]
[53]
Baetke, S.C.; Lammers, T.; Kiessling, F. Applications of nanoparticles for diagnosis and therapy of cancer. Br. J. Radiol., 2015, 88(1054)20150207
[http://dx.doi.org/10.1259/bjr.20150207] [PMID: 25969868]
[54]
Sanchez, F.; Sobolev, K. Nanotechnology in concrete–a review. Constr. Build. Mater., 2010, 24(11), 2060-2071.
[http://dx.doi.org/10.1016/j.conbuildmat.2010.03.014]
[55]
Yuan, H.; Liu, F.; Xin, L.I.; Guan, Y.; Wang, M. Applications of nano-drug delivery systems in interventional-targeted for hepatocellular carcinoma: a review. Chinese J. Hepat. Surgery, 2018, 24(6), 427-430.
[56]
Mohanraj, V.J.; Chen, Y. Nanoparticles-a review. Trop. J. Pharm. Res., 2006, 5(1), 561-573.
[57]
Kayser, O.; Lemke, A.; Hernández-Trejo, N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr. Pharm. Biotechnol., 2005, 6(1), 3-5.
[http://dx.doi.org/10.2174/1389201053167158] [PMID: 15727551]
[58]
Gu, M.; Wang, X.; Toh, T.B.; Hooi, L.; Tenen, D.G.; Chow, E.K. Nanodiamond‐based platform for intracellular‐specific delivery of therapeutic peptides against hepatocellular carcinoma. Adv. Ther., 2018, 1(8)1800110
[http://dx.doi.org/10.1002/adtp.201800110]
[59]
Shen, H.; Huang, X.; Min, J.; Le, S.; Wang, Q.; Wang, X.; Dogan, A.A.; Liu, X.; Zhang, P.; Draz, M.S.; Xiao, J. Nanoparticle delivery systems for DNA/RNA and their potential applications in nanomedicine. Curr. Top. Med. Chem., 2019, 19(27), 2507-2523.
[http://dx.doi.org/10.2174/1568026619666191024170212] [PMID: 31775591]
[60]
Mohamed, N.K.; Hamad, M.A.; Hafez, M.Z.E.; Wooley, K.L.; Elsabahy, M. Nanomedicine in management of hepatocellular carcinoma: Challenges and opportunities. Int. J. Cancer, 2017, 140(7), 1475-1484.
[http://dx.doi.org/10.1002/ijc.30517] [PMID: 27861850]
[61]
Barkat, M.; Das, S.S.; Pottoo, F.H.; Beg, S.; Rahman, Z. Lipid-based nanosystem as intelligent carriers for versatile drug delivery applications. Curr. Pharm. Des., 2019 In press
[62]
García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J.M. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials (Basel), 2019, 9(4), 638.
[http://dx.doi.org/10.3390/nano9040638] [PMID: 31010180]
[63]
Harshita; Barkat, M.A.; Rizwanullah, M.; Beg, S.; Pottoo, F.H.; Siddiqui, S.; Ahmad, F.J. Paclitaxel-loaded nanolipidic carriers with improved oral bioavailability and anticancer activity against human liver carcinoma. AAPS PharmSciTech, 2019, 20(2), 87.
[http://dx.doi.org/10.1208/s12249-019-1304-4] [PMID: 30675689]
[64]
Miller, A.D. Lipid-based nanoparticles in cancer diagnosis and therapy. J. Drug Deliv., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/165981]
[65]
Thanki, K.; Gangwal, R.P.; Sangamwar, A.T.; Jain, S. Oral delivery of anticancer drugs: challenges and opportunities. J. Control. Release, 2013, 170(1), 15-40.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.020] [PMID: 23648832]
[66]
Kumar, B.; Pandey, M.; Pottoo, F.H.; Fayaz, F.; Sharma, A.; Sahoo, P.K. Liposomes: novel drug delivery approach for targeting parkinson’s disease., Curr. Pharm. Des., 2020. (ePub ahead of Print).
[http://dx.doi.org/10.2174/1381612826666200128145124] [PMID: 32003666]
[67]
Singh, A.; Neupane, Y.R.; Shafi, S.; Mangla, B.; Kohli, K. PEGylated liposomes as an emerging therapeutic platform for oral nanomedicine in cancer therapy: in vitro and in vivo assessment. J. Mol. Liq., 2020, 303.
[http://dx.doi.org/10.1016/j.molliq.2020.112649]
[68]
Kulkarni, P.R.; Yadav, J.D.; Vaidya, K.A. Liposomes: a novel drug delivery system. Int. J. Curr. Pharm. Res., 2011, 3(2), 10-18.
[69]
Lao, J.; Madani, J.; Puértolas, T.; Álvarez, M.; Hernández, A.; Pazo-Cid, R.; Artal, Á.; Antón Torres, A. Liposomal doxorubicin in the treatment of breast cancer patients: a review. J. Drug Deliv., 2013. In press
[http://dx.doi.org/10.1155/2013/456409]
[70]
Gogoi, M.; Kumar, N.; Patra, S. Multifunctional magnetic liposomes for cancer imaging and therapeutic applications. In: Nanoarchitectonics Smart Delivery Drug Targeting; Elsevier: Amsteram, 2016, p. 743–82.
[http://dx.doi.org/10.1016/B978-0-323-47347-7.00027-6]
[71]
Zangabad, P.S.; Mirkiani, S.; Shahsavari, S.; Masoudi, B.; Masroor, M.; Hamed, H.; Jafari, Z.; Taghipour, Y.D.; Hashemi, H.; Karimi, M.; Hamblin, M.R. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol. Rev., 2018, 7(1), 95-122.
[http://dx.doi.org/10.1515/ntrev-2017-0154] [PMID: 29404233]
[72]
Gabizon, A.; Martin, F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs, 1997, 54(4)(Suppl. 4), 15-21.
[http://dx.doi.org/10.2165/00003495-199700544-00005] [PMID: 9361957]
[73]
Wei, M.; Xu, Y.; Zou, Q.; Tu, L.; Tang, C.; Xu, T.; Deng, L.; Wu, C. Hepatocellular carcinoma targeting effect of PEGylated liposomes modified with lactoferrin. Eur. J. Pharm. Sci., 2012, 46(3), 131-141.
[http://dx.doi.org/10.1016/j.ejps.2012.02.007] [PMID: 22369856]
[74]
Bi, Y.E.; Zhou, Y.; Wang, M.; Li, L.; Lee, R.J.; Xie, J.; Teng, L. Targeted delivery of cordycepin to liver cancer cells using transferrin-conjugated liposomes. Anticancer Res., 2017, 37(9), 5207-5214.
[PMID: 28870956]
[75]
Kaczmarek, J.C.; Kowalski, P.S.; Anderson, D.G. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med., 2017, 9(1), 60.
[http://dx.doi.org/10.1186/s13073-017-0450-0] [PMID: 28655327]
[76]
Daige, C.L.; Wiggins, J.F.; Priddy, L.; Nelligan-Davis, T.; Zhao, J.; Brown, D. Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. Mol. Cancer Ther., 2014, 13(10), 2352-2360.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0209] [PMID: 25053820]
[77]
Zhang, W.; Peng, F.; Zhou, T.; Huang, Y.; Zhang, L.; Ye, P.; Lu, M.; Yang, G.; Gai, Y.; Yang, T.; Ma, X.; Xiang, G. Targeted delivery of chemically modified anti-miR-221 to hepatocellular carcinoma with negatively charged liposomes. Int. J. Nanomedicine, 2015, 10, 4825-4836.
[PMID: 26251599]
[78]
Cheng, Y.; Zhao, P.; Wu, S.; Yang, T.; Chen, Y.; Zhang, X.; He, C.; Zheng, C.; Li, K.; Ma, X.; Xiang, G. Cisplatin and curcumin co-loaded nano-liposomes for the treatment of hepatocellular carcinoma. Int. J. Pharm., 2018, 545(1-2), 261-273.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.007] [PMID: 29730175]
[79]
Xu, F.; Liao, J.Z.; Xiang, G.Y.; Zhao, P.X.; Ye, F.; Zhao, Q.; He, X.X. MiR-101 and doxorubicin codelivered by liposomes suppressing malignant properties of hepatocellular carcinoma. Cancer Med., 2017, 6(3), 651-661.
[http://dx.doi.org/10.1002/cam4.1016] [PMID: 28135055]
[80]
Oh, H.R.; Jo, H.Y.; Park, J.S.; Kim, D.E.; Cho, J.Y.; Kim, P.H.; Kim, K.S. Galactosylated liposomes for targeted co-delivery of doxorubicin/vimentin siRNA to hepatocellular carcinoma. Nanomaterials (Basel), 2016, 6(8), 141.
[http://dx.doi.org/10.3390/nano6080141] [PMID: 28335269]
[81]
Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[82]
Pottoo, F.H.; Sharma, S.; Javed, M.N.; Barkat, M.A. Harshita; Alam, M.S.; Naim, M.J.; Alam, O.; Ansari, M.A.; Barreto, G.E.; Ashraf, G.M. Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab. Rev., 2020, 52(1), 185-204.
[http://dx.doi.org/10.1080/03602532.2020.1726942] [PMID: 32116044]
[83]
Yadav, N.; Khatak, S.; Sara, U.V.S. Solid lipid nanoparticles-a review. Int. J. App. Pharm., 2013, 5(2), 8-18.
[84]
Bayón-Cordero, L.; Alkorta, I.; Arana, L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel), 2019, 9(3), 474.
[http://dx.doi.org/10.3390/nano9030474] [PMID: 30909401]
[85]
Patel, P.; Hanini, A.; Shah, A.; Patel, D.; Patel, S.; Bhatt, P.; Pathak, Y.V. Surface modification of nanoparticles for targeted drug delivery. In: Surface Modification of Nanoparticles for Targeted Drug Delivery; Springer: Berlin, 2019; pp. 19-31.
[http://dx.doi.org/10.1007/978-3-030-06115-9_2]
[86]
Xu, Z.; Chen, L.; Gu, W.; Gao, Y.; Lin, L.; Zhang, Z.; Xi, Y.; Li, Y. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials, 2009, 30(2), 226-232.
[http://dx.doi.org/10.1016/j.biomaterials.2008.09.014] [PMID: 18851881]
[87]
Benizri, S.; Ferey, L.; Alies, B.; Mebarek, N.; Vacher, G.; Appavoo, A.; Staedel, C.; Gaudin, K.; Barthélémy, P. Nucleoside-lipid-based nanocarriers for sorafenib delivery. Nanoscale Res. Lett., 2018, 13(1), 17.
[http://dx.doi.org/10.1186/s11671-017-2420-2] [PMID: 29327307]
[88]
Grillone, A.; Riva, E.R.; Mondini, A.; Forte, C.; Calucci, L.; Innocenti, C.; de Julian Fernandez, C.; Cappello, V.; Gemmi, M.; Moscato, S.; Ronca, F.; Sacco, R.; Mattoli, V.; Ciofani, G. Active targeting of sorafenib: preparation, characterization, and in vitro testing of drug‐loaded magnetic solid lipid nanoparticles. Adv. Healthc. Mater., 2015, 4(11), 1681-1690.
[http://dx.doi.org/10.1002/adhm.201500235] [PMID: 26039933]
[89]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[90]
Singh, A.; Neupane, Y.R.; Mangla, B.; Kohli, K. Nanostructured lipid carriers for oral bioavailability enhancement of exemestane: formulation design, in vitro, ex vivo, and in vivo studies. J. Pharm. Sci., 2019, 108(10), 3382-3395.
[http://dx.doi.org/10.1016/j.xphs.2019.06.003] [PMID: 31201904]
[91]
Singh, A.; Neupane, Y.R.; Panda, B.P.; Kohli, K. Lipid Based nanoformulation of lycopene improves oral delivery: formulation optimization, ex vivo assessment and its efficacy against breast cancer. J. Microencapsul., 2017, 34(4), 416-429.
[http://dx.doi.org/10.1080/02652048.2017.1340355] [PMID: 28595495]
[92]
Jaiswal, P.; Gidwani, B.; Vyas, A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 27-40.
[http://dx.doi.org/10.3109/21691401.2014.909822] [PMID: 24813223]
[93]
Bondì, M.L.; Azzolina, A.; Craparo, E.F.; Botto, C.; Amore, E.; Giammona, G.; Cervello, M. Entrapment of an EGFR inhibitor into nanostructured lipid carriers (NLC) improves its antitumor activity against human hepatocarcinoma cells. J. Nanobiotechnology, 2014, 12(1), 21.
[http://dx.doi.org/10.1186/1477-3155-12-21] [PMID: 24886097]
[94]
Wang, H.; Liu, S.; Jia, L.; Chu, F.; Zhou, Y.; He, Z.; Guo, M.; Chen, C.; Xu, L. Nanostructured lipid carriers for MicroRNA delivery in tumor gene therapy. Cancer Cell Int., 2018, 18(1), 101.
[http://dx.doi.org/10.1186/s12935-018-0596-x] [PMID: 30008618]
[95]
Tsouris, V.; Joo, M.K.; Kim, S.H.; Kwon, I.C.; Won, Y.Y. Nano carriers that enable co-delivery of chemotherapy and RNAi agents for treatment of drug-resistant cancers. Biotechnol. Adv., 2014, 32(5), 1037-1050.
[http://dx.doi.org/10.1016/j.biotechadv.2014.05.006] [PMID: 24924617]
[96]
Gandhi, N.S.; Tekade, R.K.; Chougule, M.B. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances. J. Control. Release, 2014, 194, 238-256.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.001] [PMID: 25204288]
[97]
Yang, T.; Zhao, P.; Rong, Z.; Li, B.; Xue, H.; You, J.; He, C.; Li, W.; He, X.; Lee, R.J.; Ma, X.; Xiang, G. Anti-tumor efficiency of lipid-coated cisplatin nanoparticles co-loaded with microRNA-375. Theranostics, 2016, 6(1), 142-154.
[http://dx.doi.org/10.7150/thno.13130] [PMID: 26722380]
[98]
Santos, A.; Veiga, F.; Figueiras, A. Materials dendrimers as pharmaceutical excipients: synthesis, properties, toxicity and biomedical applications. Materials (Basel), 2020, 13(1), 65.
[http://dx.doi.org/10.3390/ma13010065]
[99]
Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci., 2014, 6(3), 139-150.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633]
[100]
Jędrzak, A.; Grześkowiak, B.F.; Coy, E.; Wojnarowicz, J.; Szutkowski, K.; Jurga, S.; Jesionowski, T.; Mrówczyński, R. Dendrimer based theranostic nanostructures for combined chemo- and photothermal therapy of liver cancer cells in vitro. Colloids Surf. B Biointerfaces, 2019, 173, 698-708.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.045] [PMID: 30384266]
[101]
Choudhary, S.; Gupta, L.; Rani, S.; Dave, K.; Gupta, U. Impact of dendrimers on solubility of hydrophobic drug molecules. Front. Pharmacol., 2017, 8, 261.
[http://dx.doi.org/10.3389/fphar.2017.00261] [PMID: 28559844]
[102]
Kuruvilla, S.P.; Tiruchinapally, G.; Crouch, A.C.; ElSayed, M.E.H.; Greve, J.M. Dendrimer-doxorubicin conjugates exhibit improved anticancer activity and reduce doxorubicin-induced cardiotoxicity in a murine hepatocellular carcinoma model. PLoS One, 2017, 12(8)e0181944
[http://dx.doi.org/10.1371/journal.pone.0181944] [PMID: 28829785]
[103]
Yousef, S.; Alsaab, H.O.; Sau, S.; Iyer, A.K. Development of asialoglycoprotein receptor directed nanoparticles for selective delivery of curcumin derivative to hepatocellular carcinoma. Heliyon, 2018, 4(12)e01071
[http://dx.doi.org/10.1016/j.heliyon.2018.e01071] [PMID: 30603704]
[104]
Sharma, A.; Goyal, A.K.; Rath, G. Recent advances in metal nanoparticles in cancer therapy. J. Drug Target., 2018, 26(8), 617-632.
[http://dx.doi.org/10.1080/1061186X.2017.1400553] [PMID: 29095640]
[105]
Barkat, M.A. Harshita; Beg, S.; Naim, M.J.; Pottoo, F.H.; Singh, S.P.; Ahmad, F.J. Current progress in synthesis, characterization and applications of silver nanoparticles: precepts and prospects. Recent Pat Antiinfect Drug Discov, 2018, 13(1), 53-69.
[http://dx.doi.org/10.2174/1574891X12666171006102833] [PMID: 28990540]
[106]
Muddineti, O.S.; Ghosh, B.; Biswas, S. Current trends in using polymer coated gold nanoparticles for cancer therapy. Int. J. Pharm., 2015, 484(1-2), 252-267.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.038] [PMID: 25701627]
[107]
Cabuzu, D.; Cirja, A.; Puiu, R.; Grumezescu, A.M. Biomedical applications of gold nanoparticles. Curr. Top. Med. Chem., 2015, 15(16), 1605-1613.
[http://dx.doi.org/10.2174/1568026615666150414144750] [PMID: 25877087]
[108]
Tomuleasa, C.; Soritau, O.; Orza, A.; Dudea, M.; Petrushev, B.; Mosteanu, O.; Susman, S.; Florea, A.; Pall, E.; Aldea, M.; Kacso, G. Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the chemoresistance of hepatocellular carcinoma-derived cancer cells. JGLD, 2012, 21(2), 187-196.
[109]
Meng, W.C.S.; Pan, Y.; Zhao, X. Epirubicin-gold nanoparticles suppress hepatocellular carcinoma xenograft growth in nude mice. J. Biomed. Res., 2015, 29(6), 486.
[PMID: 26423611]
[110]
Xue, H-Y.; Liu, Y.; Liao, J-Z.; Lin, J-S.; Li, B.; Yuan, W-G.; Lee, R.J.; Li, L.; Xu, C.R.; He, X.X. Gold nanoparticles delivered miR-375 for treatment of hepatocellular carcinoma. Oncotarget, 2016, 7(52), 86675-86686.
[http://dx.doi.org/10.18632/oncotarget.13431] [PMID: 27880727]
[111]
Cai, H.; Yang, Y.; Peng, F.; Liu, Y.; Fu, X.; Ji, B. Gold nanoparticles-loaded anti-miR221 enhances antitumor effect of sorafenib in hepatocellular carcinoma cells. Int. J. Med. Sci., 2019, 16(12), 1541-1548.
[http://dx.doi.org/10.7150/ijms.37427] [PMID: 31839741]
[112]
Shaat, H.; Mostafa, A.; Moustafa, M.; Gamal-Eldeen, A.; Emam, A.; El-Hussieny, E.; Elhefnawi, M. Modified gold nanoparticles for intracellular delivery of anti-liver cancer siRNA. Int. J. Pharm., 2016, 504(1-2), 125-133.
[http://dx.doi.org/10.1016/j.ijpharm.2016.03.051] [PMID: 27036397]
[113]
Ma, X.; Hui, H.; Jin, Y.; Dong, D.; Liang, X.; Yang, X.; Tan, K.; Dai, Z.; Cheng, Z.; Tian, J. Enhanced immunotherapy of SM5-1 in hepatocellular carcinoma by conjugating with gold nanoparticles and its in vivo bioluminescence tomographic evaluation. Biomaterials, 2016, 87, 46-56.
[http://dx.doi.org/10.1016/j.biomaterials.2016.02.007] [PMID: 26897539]
[114]
Zhu, B.; Li, Y.; Lin, Z.; Zhao, M.; Xu, T.; Wang, C.; Deng, N. Silver nanoparticles induce HePG-2 cells apoptosis through ROS-mediated signaling pathways. Nanoscale Res. Lett., 2016, 11(1), 198.
[http://dx.doi.org/10.1186/s11671-016-1419-4] [PMID: 27075340]
[115]
El Kassas, H.Y.; Attia, A.A. Bactericidal application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red seaweed Pterocladiella capillacea on the HepG2 cell line. Asian Pac. J. Cancer Prev., 2014, 15(3), 1299-1306.
[http://dx.doi.org/10.7314/APJCP.2014.15.3.1299] [PMID: 24606456]
[116]
Singh, B.G.; Baburao, C.; Pispati, V.; Pathipati, H.; Muthy, N.; Prassana, S.R.; Rathode, B.G. Carbon nanotubes. A novel drug delivery system. Int. J. Res. Pharm. Chem., 2012, 2(2), 523-532.
[117]
Mahajan, S.; Patharkar, A.; Kuche, K.; Maheshwari, R.; Deb, P.K.; Kalia, K.; Tekade, R.K. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int. J. Pharm., 2018, 548(1), 540-558.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.027] [PMID: 29997043]
[118]
Elsayed, M.M.; Mostafa, M.E.; Alaaeldin, E.; Sarhan, H.A.; Shaykoon, M.S.; Allam, S.; Ahmed, A.R.; Elsadek, B.E. Design and characterisation of novel Sorafenib-loaded carbon nanotubes with distinct tumour-suppressive activity in hepatocellular carcinoma. Int. J. Nanomedicine, 2019, 14, 8445-8467.
[http://dx.doi.org/10.2147/IJN.S223920] [PMID: 31754301]
[119]
Ji, Z.; Lin, G.; Lu, Q.; Meng, L.; Shen, X.; Dong, L.; Fu, C.; Zhang, X. Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J. Colloid Interface Sci., 2012, 365(1), 143-149.
[http://dx.doi.org/10.1016/j.jcis.2011.09.013] [PMID: 21974923]
[120]
Reddy, L.H.; Couvreur, P. Nanotechnology for therapy and imaging of liver diseases. J. Hepatol., 2011, 55(6), 1461-1466.
[http://dx.doi.org/10.1016/j.jhep.2011.05.039] [PMID: 21801699]
[121]
Majumdar, D.; Peng, X-H.; Shin, D.M. The medicinal chemistry of theragnostics, multimodality imaging and applications of nanotechnology in cancer. Curr. Top. Med. Chem., 2010, 10(12), 1211-1226.
[http://dx.doi.org/10.2174/156802610791384171] [PMID: 20388107]
[122]
Tanimoto, A.; Kuribayashi, S. Application of superparamagnetic iron oxide to imaging of hepatocellular carcinoma. Eur. J. Radiol., 2006, 58(2), 200-216.
[http://dx.doi.org/10.1016/j.ejrad.2005.11.040] [PMID: 16414230]
[123]
Yang, C-T.; Padmanabhan, P.; Gulyás, B.Z. Gadolinium (iii) based nanoparticles for T 1-weighted magnetic resonance imaging probes. RSC Advances, 2016, 6(65), 60945-60966.
[http://dx.doi.org/10.1039/C6RA07782J]
[124]
Boll, H.; Nittka, S.; Doyon, F.; Neumaier, M.; Marx, A.; Kramer, M.; Groden, C.; Brockmann, M.A. Micro-CT based experimental liver imaging using a nanoparticulate contrast agent: a longitudinal study in mice. PLoS One, 2011, 6(9)e25692
[http://dx.doi.org/10.1371/journal.pone.0025692] [PMID: 21984939]
[125]
Liu, Z.; Li, Z.; Liu, J.; Gu, S.; Yuan, Q.; Ren, J.; Qu, X. Long-circulating Er3+-doped Yb2O3 up-conversion nanoparticle as an in vivo X-Ray CT imaging contrast agent. Biomaterials, 2012, 33(28), 6748-6757.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.033] [PMID: 22770569]
[126]
Liu, H.; Wang, H.; Xu, Y.; Guo, R.; Wen, S.; Huang, Y.; Liu, W.; Shen, M.; Zhao, J.; Zhang, G.; Shi, X. Lactobionic acid-modified dendrimer-entrapped gold nanoparticles for targeted computed tomography imaging of human hepatocellular carcinoma. ACS Appl. Mater. Interfaces, 2014, 6(9), 6944-6953.
[http://dx.doi.org/10.1021/am500761x] [PMID: 24712914]
[127]
Alric, C.; Taleb, J.; Le Duc, G.; Mandon, C.; Billotey, C.; Le Meur-Herland, A.; Brochard, T.; Vocanson, F.; Janier, M.; Perriat, P.; Roux, S.; Tillement, O. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc., 2008, 130(18), 5908-5915.
[http://dx.doi.org/10.1021/ja078176p] [PMID: 18407638]
[128]
Baig, B.; Halim, S.A.; Farrukh, A.; Greish, Y.; Amin, A. Current status of nanomaterial-based treatment for hepatocellular carcinoma. Biomed. Pharmacother., 2019, 116108852
[http://dx.doi.org/10.1016/j.biopha.2019.108852] [PMID: 30999152]
[129]
De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[130]
Naahidi, S.; Jafari, M.; Edalat, F.; Raymond, K.; Khademhosseini, A.; Chen, P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release, 2013, 166(2), 182-194.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.013] [PMID: 23262199]
[131]
Noriega-Luna, B.; Godínez, L.A.; Rodríguez, F.J.; Rodríguez, A.; Zaldívar-Lelo De Larrea, G.; Sosa-Ferreyra, C.F. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J. Nanomater., 2014, 2014, 1-9.
[132]
Tran, S.; DeGiovanni, P-J.; Piel, B.; Rai, P. Cancer nanomedicine: a review of recent success in drug delivery. Clin. Transl. Med., 2017, 6(1), 44.
[http://dx.doi.org/10.1186/s40169-017-0175-0] [PMID: 29230567]
[133]
Wang, Y.; Yang, P.; Zhao, X.; Gao, D.; Sun, N.; Tian, Z.; Ma, T.; Yang, Z. Multifunctional cargo-free nanomedicine for cancer therapy. Int. J. Mol. Sci., 2018, 19(10), 2963.
[http://dx.doi.org/10.3390/ijms19102963] [PMID: 30274177]
[134]
Havel, H.; Finch, G.; Strode, P.; Wolfgang, M.; Zale, S.; Bobe, I.; Youssoufian, H.; Peterson, M.; Liu, M. Nanomedicines: from bench to bedside and beyond. AAPS J., 2016, 18(6), 1373-1378.
[http://dx.doi.org/10.1208/s12248-016-9961-7] [PMID: 27480318]
[135]
Ventola, C.L. Progress in nanomedicine: approved and investigational nanodrugs. P&T, 2017, 42(12), 742-755.
[PMID: 29234213]
[136]
ClinicalTrials.gov Study of thermodox with standardized radiofrequency ablation (RFA) for treatment of hepatocellualr carcinoma (HCC). Available from: https://clinicaltrails.govt/ct2/show/NC02112656
[137]
Tak, W.Y.; Lin, S.M.; Wang, Y.; Zheng, J.; Vecchione, A.; Park, S.Y.; Chen, M.H.; Wong, S.; Xu, R.; Peng, C.Y.; Chiou, Y.Y.; Huang, G.T.; Cai, J.; Abdullah, B.J.J.; Lee, J.S.; Lee, J.Y.; Choi, J.Y.; Gopez-Cervantes, J.; Sherman, M.; Finn, R.S.; Omata, M.; O’Neal, M.; Makris, L.; Borys, N.; Poon, R.; Lencioni, R. Phase III HEAT study adding lyso-thermosensitive liposomal doxorubicin to radiofrequency ablation in patients with unresectable hepatocellular carcinoma lesions. Clin. Cancer Res., 2018, 24(1), 73-83.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2433] [PMID: 29018051]
[138]
Yang, W.; Lee, J.C.; Chen, M.H.; Zhang, Z.Y.; Bai, X-M.; Yin, S.S.; Cao, K.; Wang, S.; Wu, W.; Yan, K. Thermosensitive liposomal doxorubicin plus radiofrequency ablation increased tumor destruction and improved survival in patients with medium and large hepatocellular carcinoma: A randomized, double-blinded, dummy-controlled clinical trial in a single center. J. Cancer Res. Ther., 2019, 15(4), 773-783.
[http://dx.doi.org/10.4103/jcrt.JCRT_801_18] [PMID: 31436231]
[139]
ClinicalTrials.gov . A Multicenter Phase I Study of MRX34, MicroRNA miR-RX34 Liposomal Injection. Available from:. https://clinicaltrials.gov/ct2/show/NCT01829971
[140]
Hong, D.S.; Kang, Y.K.; Borad, M.; Sachdev, J.; Ejadi, S.; Lim, H.Y.; Brenner, A.J.; Park, K.; Lee, J.L.; Kim, T.Y.; Shin, S.; Becerra, C.R.; Falchook, G.; Stoudemire, J.; Martin, D.; Kelnar, K.; Peltier, H.; Bonato, V.; Bader, A.G.; Smith, S.; Kim, S.; O’Neill, V.; Beg, M.S. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer, 2020, 122(11), 1630-1637.
[http://dx.doi.org/10.1038/s41416-020-0802-1] [PMID: 32238921]
[141]
Tabernero, J.; Shapiro, G.I.; LoRusso, P.M.; Cervantes, A.; Schwartz, G.K.; Weiss, G.J.; Paz-Ares, L.; Cho, D.C.; Infante, J.R.; Alsina, M.; Gounder, M.M.; Falzone, R.; Harrop, J.; White, A.C.; Toudjarska, I.; Bumcrot, D.; Meyers, R.E.; Hinkle, G.; Svrzikapa, N.; Hutabarat, R.M.; Clausen, V.A.; Cehelsky, J.; Nochur, S.V.; Gamba-Vitalo, C.; Vaishnaw, A.K.; Sah, D.W.; Gollob, J.A.; Burris, H.A. III First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov., 2013, 3(4), 406-417.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0429] [PMID: 23358650]
[142]
ClinicalTrials.gov. Multi-center, open label, extension study of ALN-VSP02 in cancer patients who have responded to ALN-VSP02 treatment. Available from:, https://clinicaltrials.gov/ct2/show/NCT01158079
[143]
Abou-Alfa, G.K.; Qin, S.; Ryoo, B.Y.; Lu, S-N.; Yen, C.J.; Feng, Y.H.; Lim, H.Y.; Izzo, F.; Colombo, M.; Sarker, D.; Bolondi, L.; Vaccaro, G.; Harris, W.P.; Chen, Z.; Hubner, R.A.; Meyer, T.; Sun, W.; Harding, J.J.; Hollywood, E.M.; Ma, J.; Wan, P.J.; Ly, M.; Bomalaski, J.; Johnston, A.; Lin, C.C.; Chao, Y.; Chen, L.T. Phase III randomized study of second line ADI-PEG 20 plus best supportive care versus placebo plus best supportive care in patients with advanced hepatocellular carcinoma. Ann. Oncol., 2018, 29(6), 1402-1408.
[http://dx.doi.org/10.1093/annonc/mdy101] [PMID: 29659672]
[144]
Ehmann, F.; Sakai-Kato, K.; Duncan, R.; Hernán Pérez de la Ossa, D.; Pita, R.; Vidal, J.M.; Kohli, A.; Tothfalusi, L.; Sanh, A.; Tinton, S.; Robert, J.L.; Silva Lima, B.; Amati, M.P. Next-generation nanomedicines and nanosimilars: EU regulators’ initiatives relating to the development and evaluation of nanomedicines. Nanomedicine (Lond.), 2013, 8(5), 849-856.
[http://dx.doi.org/10.2217/nnm.13.68] [PMID: 23656268]
[145]
Gaspar, R.; Duncan, R. Polymeric carriers: preclinical safety and the regulatory implications for design and development of polymer therapeutics. Adv. Drug Deliv. Rev., 2009, 61(13), 1220-1231.
[http://dx.doi.org/10.1016/j.addr.2009.06.003] [PMID: 19682513]
[146]
Tinkle, S.; McNeil, S.E.; Mühlebach, S.; Bawa, R.; Borchard, G.; Barenholz, Y.C.; Tamarkin, L.; Desai, N. Nanomedicines: addressing the scientific and regulatory gap. Ann. N. Y. Acad. Sci., 2014, 1313(1), 35-56.
[http://dx.doi.org/10.1111/nyas.12403] [PMID: 24673240]
[147]
Dobrovolskaia, M.A.; McNeil, S.E. Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J. Control. Release, 2013, 172(2), 456-466.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.025] [PMID: 23742883]
[148]
Gaspar, R. Therapeutic products: regulating drugs and medical devices; Edward Elgar Publishing: Cheltenham, 2010.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy