Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Higher Levels of Dynamin-related Protein 1 are Associated with Reduced Radiation Sensitivity of Glioblastoma Cells

Author(s): Wen-Yu Cheng, Kuan-Chih Chow, Ming-Tsang Chiao, Yi-Chin Yang and Chiung-Chyi Shen*

Volume 17, Issue 4, 2020

Page: [446 - 463] Pages: 18

DOI: 10.2174/1567202617666200623123638

Price: $65

Abstract

Background: Dynamin-related protein 1 (DRP1) is a GTPase involved in mitochondrial fission, mitochondrial protein import, and drug sensitivity, suggesting an association with cancer progression. This study was conducted to evaluate the prognostic significance of DRP1 in glioblastoma multiforme (GBM).

Methods: DRP1 expression was measured by immunohistochemistry and Western blotting. Correlations between DRP1 expression and clinicopathological parameters were determined by statistical analysis. Differences in survival were compared using the log-rank test. DRP1 expression was detected in 87.2% (41/47) of the investigated patients with GBM.

Results: The patients with higher DRP1 levels had worse survival (p = 0.0398). In vitro, the silencing of DRP1 reduced cell proliferation, invasive potential, and radiation resistance. The addition of shikonin inhibited DRP1 expression and increased drug uptake. Moreover, shikonin reduced the nuclear entry of DNA repair-associated enzymes and increased radiation sensitivity, suggesting that reducing DRP1 expression could inhibit DNA repair and increase the radiation sensitivity of GBM cells.

Conclusion: Our results indicate that DRP1 overexpression is a prospective radio-resistant phenotype in GBM. Therefore, DRP1 could be a potential target for improving the effectiveness of radiation therapy.

Keywords: DRP1, glioblastoma multiforme, radiation resistance, autophagy, dNA repair, nuclear transport.

[1]
Jaoude DA, Moore JA, Moore MB, Twumasi-Ankrah P, Ablah E, Moore DF Jr. Glioblastoma and increased survival with longer chemotherapy duration. Kans J Med 2019; 12(3): 65-9.
[http://dx.doi.org/10.17161/kjm.v12i3.11795] [PMID: 31489102]
[2]
Ohgaki H, Kleihues P. The definition of primary and secondary glioblastoma. Clin Cancer Res 2013; 19(4): 764-72.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3002] [PMID: 23209033]
[3]
Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10(5): 459-66.
[http://dx.doi.org/10.1016/S1470-2045(09)70025-7] [PMID: 19269895]
[4]
Shinojima N, Tada K, Shiraishi S, et al. Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 2003; 63(20): 6962-70.
[PMID: 14583498]
[5]
Sanson M, Marie Y, Paris S, et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 2009; 27(25): 4150-4.
[http://dx.doi.org/10.1200/JCO.2009.21.9832] [PMID: 19636000]
[6]
Ichimura K, Schmidt EE, Goike HM, Collins VP. Human glioblastomas with no alterations of the CDKN2A (p16INK4A, MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. Oncogene 1996; 13(5): 1065-72.
[PMID: 8806696]
[7]
Wang SI, Puc J, Li J, et al. Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res 1997; 57(19): 4183-6.
[PMID: 9331071]
[8]
Fulci G, Labuhn M, Maier D, et al. p53 gene mutation and ink4a-arf deletion appear to be two mutually exclusive events in human glioblastoma. Oncogene 2000; 19(33): 3816-22.
[http://dx.doi.org/10.1038/sj.onc.1203700] [PMID: 10949938]
[9]
Spiegl-Kreinecker S, Pirker C, Filipits M, et al. O6-Methylguanine DNA methyltransferase protein expression in tumor cells predicts outcome of temozolomide therapy in glioblastoma patients. Neuro-oncol 2010; 12(1): 28-36.
[http://dx.doi.org/10.1093/neuonc/nop003] [PMID: 20150365]
[10]
Efird JT, Friedman GD, Sidney S, et al. The risk for malignant primary adult-onset glioma in a large, multiethnic, managed-care cohort: Cigarette smoking and other lifestyle behaviors. J Neurooncol 2004; 68(1): 57-69.
[http://dx.doi.org/10.1023/B:NEON.0000024746.87666.ed] [PMID: 15174522]
[11]
Hardell L, Carlberg M, Hansson Mild K. Epidemiological evidence for an association between use of wireless phones and tumor diseases. Pathophysiology 2009; 16(2-3): 113-22.
[http://dx.doi.org/10.1016/j.pathophys.2009.01.003] [PMID: 19268551]
[12]
Efird JT. Season of birth and risk for adult onset glioma. Int J Environ Res Public Health 2010; 7(5): 1913-36.
[http://dx.doi.org/10.3390/ijerph7051913] [PMID: 20623001]
[13]
Baglietto L, Giles GG, English DR, Karahalios A, Hopper JL, Severi G. Alcohol consumption and risk of glioblastoma; Evidence from the Melbourne Collaborative Cohort Study. Int J Cancer 2011; 128(8): 1929-34.
[http://dx.doi.org/10.1002/ijc.25770] [PMID: 21344375]
[14]
Carlberg M, Hardell L. On the association between glioma, wireless phones, heredity and ionising radiation. Pathophysiology 2012; 19(4): 243-52.
[http://dx.doi.org/10.1016/j.pathophys.2012.07.001] [PMID: 22939605]
[15]
Ong MS, Deng S, Halim CE, et al. Cytoskeletal proteins in cancer and intracellular stress: A therapeutic perspective. Cancers (Basel) 2020; 12(1): E238.
[http://dx.doi.org/10.3390/cancers12010238] [PMID: 31963677]
[16]
Haas-Kogan DA, Prados MD, Tihan T, et al. Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J Natl Cancer Inst 2005; 97(12): 880-7.
[http://dx.doi.org/10.1093/jnci/dji161] [PMID: 15956649]
[17]
Huang TT, Sarkaria SM, Cloughesy TF, Mischel PS. Targeted therapy for malignant glioma patients: Lessons learned and the road ahead. Neurotherapeutics 2009; 6(3): 500-12.
[http://dx.doi.org/10.1016/j.nurt.2009.04.008] [PMID: 19560740]
[18]
Ohka F, Natsume A, Wakabayashi T. Current trends in targeted therapies for glioblastoma multiforme. Neurol Res Int 2012; 2012: 878425.
[http://dx.doi.org/10.1155/2012/878425] [PMID: 22530127]
[19]
Hu YL, DeLay M, Jahangiri A, et al. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res 2012; 72(7): 1773-83.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3831] [PMID: 22447568]
[20]
Burton TR, Henson ES, Baijal P, Eisenstat DD, Gibson SB. The pro-cell death Bcl-2 family member, BNIP3, is localized to the nucleus of human glial cells: Implications for glioblastoma multiforme tumor cell survival under hypoxia. Int J Cancer 2006; 118(7): 1660-9.
[http://dx.doi.org/10.1002/ijc.21547] [PMID: 16217754]
[21]
Daido S, Kanzawa T, Yamamoto A, Takeuchi H, Kondo Y, Kondo S. Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 2004; 64(12): 4286-93.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3084] [PMID: 15205343]
[22]
Wise DR, Ward PS, Shay JE, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA 2011; 108(49): 19611-6.
[http://dx.doi.org/10.1073/pnas.1117773108] [PMID: 22106302]
[23]
Ward PS, Thompson CB. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell 2012; 21(3): 297-308.
[http://dx.doi.org/10.1016/j.ccr.2012.02.014] [PMID: 22439925]
[24]
Wang H, Cai S, Ernstberger A, et al. Temozolomide-mediated DNA methylation in human myeloid precursor cells: Differential involvement of intrinsic and extrinsic apoptotic pathways. Clin Cancer Res 2013; 19(10): 2699-709.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2671] [PMID: 23536437]
[25]
Chiang YY, Chen SL, Hsiao YT, et al. Nuclear expression of dynamin-related protein 1 in lung adenocarcinomas. Mod Pathol 2009; 22(9): 1139-50.
[http://dx.doi.org/10.1038/modpathol.2009.83] [PMID: 19525928]
[26]
Sudhakar JN, Chow KC. Human RAD23 homolog A is required for the nuclear translocation of apoptosis-inducing factor during induction of cell death. Biol Cell 2014; 106(10): 359-76.
[http://dx.doi.org/10.1111/boc.201400013] [PMID: 25055739]
[27]
Chen X, Yao JM, Fang X, et al. Hypoxia promotes pulmonary vascular remodeling via HIF-1α to regulate mitochondrial dynamics. J Geriatr Cardiol 2019; 16(12): 855-71.
[PMID: 31911790]
[28]
Zhang D, Liu Y, Tang Y, et al. Increased mitochondrial fission is critical for hypoxia-induced pancreatic beta cell death. PLoS One 2018; 13(5): e0197266.
[http://dx.doi.org/10.1371/journal.pone.0197266] [PMID: 29768513]
[29]
Fang HY, Chang CL, Hsu SH, et al. ATPase family AAA domain-containing 3A is a novel anti-apoptotic factor in lung adenocarcinoma cells. J Cell Sci 2010; 123(Pt 7): 1171-80.
[http://dx.doi.org/10.1242/jcs.062034] [PMID: 20332122]
[30]
Chiang SF, Huang CY, Lin TY, Chiou SH, Chow KC. An alternative import pathway of AIF to the mitochondria. Int J Mol Med 2012; 29(3): 365-72.
[PMID: 22134679]
[31]
Tong M, Zablocki D, Sadoshima J. The role of Drp1 in mitophagy and cell death in the heart. J Mol Cell Cardiol 2020; 142: 138-45.
[http://dx.doi.org/10.1016/j.yjmcc.2020.04.015] [PMID: 32302592]
[32]
Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 2007; 282(15): 11521-9.
[http://dx.doi.org/10.1074/jbc.M607279200] [PMID: 17301055]
[33]
Tacka KA, Szalda D, Souid AK, Goodisman J, Dabrowiak JC. Experimental and theoretical studies on the pharmacodynamics of cisplatin in jurkat cells. Chem Res Toxicol 2004; 17(11): 1434-44.
[http://dx.doi.org/10.1021/tx0498760] [PMID: 15540941]
[34]
Simula L, Campanella M, Campello S. Targeting Drp1 and mitochondrial fission for therapeutic immune modulation. Pharmacol Res 2019; 146: 104317.
[http://dx.doi.org/10.1016/j.phrs.2019.104317] [PMID: 31220561]
[35]
Qian W, Choi S, Gibson GA, Watkins SC, Bakkenist CJ, Van Houten B. Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress. J Cell Sci 2012; 125(Pt 23): 5745-57.
[http://dx.doi.org/10.1242/jcs.109769] [PMID: 23015593]
[36]
Hasnat M, Yuan Z, Naveed M, et al. Drp1-associated mitochondrial dysfunction and mitochondrial autophagy: A novel mechanism in triptolide-induced hepatotoxicity. Cell Biol Toxicol 2019; 35(3): 267-80.
[http://dx.doi.org/10.1007/s10565-018-9447-8] [PMID: 30542779]
[37]
Chen TC, Hung YC, Lin TY, et al. Human papillomavirus infection and expression of ATPase family AAA domain containing 3A, a novel anti-autophagy factor, in uterine cervical cancer. Int J Mol Med 2011; 28(5): 689-96.
[PMID: 21743956]
[38]
Huang KH, Chow KC, Chang HW, Lin TY, Lee MC. ATPase family AAA domain containing 3A is an anti-apoptotic factor and a secretion regulator of PSA in prostate cancer. Int J Mol Med 2011; 28(1): 9-15.
[PMID: 21584487]
[39]
Remmele W, Schicketanz KH. Immunohistochemical determination of estrogen and progesterone receptor content in human breast cancer. Computer-assisted image analysis (QIC score) vs. subjective grading (IRS). Pathol Res Pract 1993; 189(8): 862-6.
[http://dx.doi.org/10.1016/S0344-0338(11)81095-2] [PMID: 8302707]
[40]
Smith JS, Alderete B, Minn Y, et al. Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype. Oncogene 1999; 18(28): 4144-52.
[http://dx.doi.org/10.1038/sj.onc.1202759] [PMID: 10435596]
[41]
Chiao MT, Cheng WY, Yang YC, Shen CC, Ko JL. Suberoylanilide hydroxamic acid (SAHA) causes tumor growth slowdown and triggers autophagy in glioblastoma stem cells. Autophagy 2013; 9(10): 1509-26.
[http://dx.doi.org/10.4161/auto.25664] [PMID: 23962875]
[42]
Cheng WY, Chiao MT, Liang YJ, Yang YC, Shen CC, Yang CY. Luteolin inhibits migration of human glioblastoma U-87 MG and T98G cells through downregulation of Cdc42 expression and PI3K/AKT activity. Mol Biol Rep 2013; 40(9): 5315-26.
[http://dx.doi.org/10.1007/s11033-013-2632-1] [PMID: 23677714]
[43]
Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 1996; 19(11): 1518-20.
[http://dx.doi.org/10.1248/bpb.19.1518] [PMID: 8951178]
[44]
1958.
[45]
Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 1966; 50(3): 163-70.
[PMID: 5910392]
[46]
Yi F, Du J, Ni W, Liu W. Tbx2 confers poor prognosis in glioblastoma and promotes temozolomide resistance with change of mitochondrial dynamics. OncoTargets Ther 2017; 10: 1059-69.
[http://dx.doi.org/10.2147/OTT.S124012] [PMID: 28260920]
[47]
Wu J, Zhang B, Wuu YR, Davidson MM, Hei TK. Targeted cytoplasmic irradiation and autophagy. Mutat Res 2017; 806: 88-97.
[http://dx.doi.org/10.1016/j.mrfmmm.2017.02.004] [PMID: 28283188]
[48]
Steponkiene S, Kavaliauskiene S, Purviniene R, Rotomskis R, Juzenas P. Quantum dots affect expression of CD133 surface antigen in melanoma cells. Int J Nanomedicine 2011; 6: 2437-44.
[PMID: 22072879]
[49]
Ma HI, Chiou SH, Hueng DY, et al. Celecoxib and radioresistant glioblastoma-derived CD133+ cells: Improvement in radiotherapeutic effects. Laboratory investigation. J Neurosurg 2011; 114(3): 651-62.
[http://dx.doi.org/10.3171/2009.11.JNS091396] [PMID: 21054139]
[50]
Chiang YY, Wang SL, Yang CL, et al. Extracts of Koelreuteria henryi Dummer induce apoptosis and autophagy by inhibiting dihydrodiol dehydrogenase, thus enhancing anticancer effects. Int J Mol Med 2013; 32(3): 577-84.
[http://dx.doi.org/10.3892/ijmm.2013.1441] [PMID: 23857115]
[51]
Park MN, Song HS, Kim M, et al. Review of natural product-derived compounds as potent antiglioblastoma drugs. BioMed Res Int 2017; 2017: 8139848.
[http://dx.doi.org/10.1155/2017/8139848] [PMID: 29181405]
[52]
You WC, Chiou SH, Huang CY, et al. Mitochondrial protein ATPase family, AAA domain containing 3A correlates with radioresistance in glioblastoma. Neuro-oncol 2013; 15(10): 1342-52.
[http://dx.doi.org/10.1093/neuonc/not077] [PMID: 24057885]
[53]
Deng HB, Parekh HK, Chow KC, Simpkins H. Increased expression of dihydrodiol dehydrogenase induces resistance to cisplatin in human ovarian carcinoma cells. J Biol Chem 2002; 277(17): 15035-43.
[http://dx.doi.org/10.1074/jbc.M112028200] [PMID: 11842089]
[54]
Eugenio-Pérez D, Briones-Herrera A, Martínez-Klimova E, Pedraza-Chaverri J. Divide et Impera: Drp1-mediated Mitochondrial Fission in Glioma Malignancy. Yale J Biol Med 2019; 92(3): 423-33.
[PMID: 31543706]
[55]
Le Calvé B, Rynkowski M, Le Mercier M, et al. Long-term in vitro treatment of human glioblastoma cells with temozolomide increases resistance in vivo through up-regulation of GLUT transporter and aldo-keto reductase enzyme AKR1C expression. Neoplasia 2010; 12(9): 727-39.
[http://dx.doi.org/10.1593/neo.10526] [PMID: 20824049]
[56]
Lai TC, Chow KC, Fang HY, et al. Expression of xeroderma pigmentosum complementation group C protein predicts cisplatin resistance in lung adenocarcinoma patients. Oncol Rep 2011; 25(5): 1243-51.
[PMID: 21327329]
[57]
Oliva CR, Nozell SE, Diers A, et al. Acquisition of temozolomide chemoresistance in gliomas leads to remodeling of mitochondrial electron transport chain. J Biol Chem 2010; 285(51): 39759-67.
[http://dx.doi.org/10.1074/jbc.M110.147504] [PMID: 20870728]
[58]
Ambrose M, Goldstine JV, Gatti RA. Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells. Hum Mol Genet 2007; 16(18): 2154-64.
[http://dx.doi.org/10.1093/hmg/ddm166] [PMID: 17606465]
[59]
Kim WJ, Vo QN, Shrivastav M, Lataxes TA, Brown KD. Aberrant methylation of the ATM promoter correlates with increased radiosensitivity in a human colorectal tumor cell line. Oncogene 2002; 21(24): 3864-71.
[http://dx.doi.org/10.1038/sj.onc.1205485] [PMID: 12032824]
[60]
Watters D, Kedar P, Spring K, et al. Localization of a portion of extranuclear ATM to peroxisomes. J Biol Chem 1999; 274(48): 34277-82.
[http://dx.doi.org/10.1074/jbc.274.48.34277] [PMID: 10567403]
[61]
Baumgart E, Vanhorebeek I, Grabenbauer M, et al. Mitochondrial alterations caused by defective peroxisomal biogenesis in a mouse model for Zellweger syndrome (PEX5 knockout mouse). Am J Pathol 2001; 159(4): 1477-94.
[http://dx.doi.org/10.1016/S0002-9440(10)62534-5] [PMID: 11583975]
[62]
Bo T, Yamamori T, Suzuki M, Sakai Y, Yamamoto K, Inanami O. Calmodulin-dependent protein kinase II (CaMKII) mediates radiation-induced mitochondrial fission by regulating the phosphorylation of dynamin-related protein 1 (Drp1) at serine 616. Biochem Biophys Res Commun 2018; 495(2): 1601-7.
[http://dx.doi.org/10.1016/j.bbrc.2017.12.012] [PMID: 29217195]
[63]
Hsu NY, Ho HC, Chow KC, et al. Overexpression of dihydrodiol dehydrogenase as a prognostic marker of non-small cell lung cancer. Cancer Res 2001; 61(6): 2727-31.
[PMID: 11289154]
[64]
Fang HY, Chen CY, Chiou SH, et al. Overexpression of optic atrophy 1 protein increases cisplatin resistance via inactivation of caspase-dependent apoptosis in lung adenocarcinoma cells. Hum Pathol 2012; 43(1): 105-14.
[http://dx.doi.org/10.1016/j.humpath.2011.04.012] [PMID: 21798574]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy