Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Dihydroorotate Dehydrogenase Inhibitors Promote Cell Cycle Arrest and Disrupt Mitochondria Bioenergetics in Ramos Cells

Author(s): Mohamad F.A. Kadir*, Shatrah Othman* and Kavitha Nellore

Volume 21, Issue 15, 2020

Page: [1654 - 1665] Pages: 12

DOI: 10.2174/1389201021666200611113734

Price: $65

Abstract

Background: The re-emerging of targeting Dihydroorotate Dehydrogenase (DHODH) in cancer treatment particularly Acute Myelogenous Leukemia (AML) has corroborated the substantial role of DHODH in cancer and received the attention of many pharmaceutical industries.

Objective: The effects of Brequinar Sodium (BQR) and 4SC-101 on lymphoblastoid cell lines were investigated.

Methods: DHODH expression and cell proliferation inhibition of lymphoblastoid and lymphoma cell lines were analyzed using Western blot analysis and XTT assay, respectively. JC-1 probe and ATP biochemiluminescence kit were used to evaluate the mitochondrial membrane potential and ATP generation in these cell lines. Furthermore, we explored the cell cycle progression using Muse™ Cell Cycle Kit.

Results: Ramos, SUDHL-1 and RPMI-1788 cells are fast-growing cells with equal expression of DHODH enzyme and sensitivity to DHODH inhibitors that showed that the inhibition of DHODH was not cancer-specific. In ATP depletion assay, the non-cancerous RPMI-1788 cells showed only a minor ATP reduction compared to Ramos and SUDHL-1 (cancer) cells. In the mechanistic impact of DHODH inhibitors on non-cancerous vs cancerous cells, the mitochondrial membrane potential assay revealed that significant depolarization and cytochrome c release occurred with DHODH inhibitors treatment in Ramos but not in the RPMI-1788 cells, indicating a different mechanism of proliferation inhibition in normal cells.

Conclusion: The findings of this study provide evidence that DHODH inhibitors perturb the proliferation of non-cancerous cells via a distinct mechanism compared to cancerous cells. These results may lead to strategies for overcoming the impact on non-cancerous cells during treatment with DHODH inhibitors, leading to a better therapeutic window in patients.

Keywords: Dihydroorotate dehydrogenase, ATP depletion, mitochondrial membrane potential, S-phase arrest, lymphoma, brequinar sodium, 4SC-101.

Graphical Abstract

[1]
Balagué, C.; Pont, M.; Prats, N.; Godessart, N. Profiling of dihydroorotate dehydrogenase, p38 and JAK inhibitors in the rat adjuvant-induced arthritis model: A translational study. Br. J. Pharmacol., 2012, 166(4), 1320-1332.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01836.x ] [PMID: 22229697]
[2]
Baumann, P.; Mandl-Weber, S.; Völkl, A.; Adam, C.; Bumeder, I.; Oduncu, F.; Schmidmaier, R. Dihydroorotate dehydrogenase inhibitor A771726 (leflunomide) induces apoptosis and diminishes proliferation of multiple myeloma cells. Mol. Cancer Ther., 2009, 8(2), 366-375.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0664 ] [PMID: 19174558]
[3]
Reis, R.A.G.; Calil, F.A.; Feliciano, P.R.; Pinheiro, M.P.; Nonato, M.C. The dihydroorotate dehydrogenases: Past and present. Arch. Biochem. Biophys., 2017, 632, 175-191.
[http://dx.doi.org/10.1016/j.abb.2017.06.019] [PMID: 28666740]
[4]
Fang, J.; Uchiumi, T.; Yagi, M.; Matsumoto, S.; Amamoto, R.; Takazaki, S.; Yamaza, H.; Nonaka, K.; Kang, D. Dihydro-orotate dehydrogenase is physically associated with the respiratory complex and its loss leads to mitochondrial dysfunction. Biosci. Rep., 2013, 33(2)e00021
[http://dx.doi.org/10.1042/BSR20120097] [PMID: 23216091]
[5]
Sykes, D.B.; Kfoury, Y.S.; Mercier, F.E.; Wawer, M.J.; Law, J.M.; Haynes, M.K.; Lewis, T.A.; Schajnovitz, A.; Jain, E.; Lee, D.; Meyer, H.; Pierce, K.A.; Tolliday, N.J.; Waller, A.; Ferrara, S.J.; Eheim, A.L.; Stoeckigt, D.; Maxcy, K.L.; Cobert, J.M.; Bachand, J.; Szekely, B.A.; Mukherjee, S.; Sklar, L.A.; Kotz, J.D.; Clish, C.B.; Sadreyev, R.I.; Clemons, P.A.; Janzer, A.; Schreiber, S.L.; Scadden, D.T. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell, 2016, 167(1), 171-186.
[6]
Madak, J.T.; Bankhead, A., III; Cuthbertson, C.R.; Showalter, H.D.; Neamati, N. Revisiting the role of dihydroorotate dehydrogenase as a therapeutic target for cancer. Pharmacol. Ther., 2019, 195, 111-131.
[http://dx.doi.org/10.1016/j.pharmthera.2018.10.012 ] [PMID: 30347213]
[7]
Breedveld, F.C.; Dayer, J.M. Leflunomide: Mode of action in the treatment of rheumatoid arthritis. Ann. Rheum. Dis., 2000, 59(11), 841-849.
[http://dx.doi.org/10.1136/ard.59.11.841] [PMID: 11053058]
[8]
Lolli, M.L.; Sainas, S.; Pippione, A.C.; Giorgis, M.; Boschi, D.; Dosio, F. Use of human Dihydroorotate Dehydrogenase (hDHODH) inhibitors in autoimmune diseases and new perspectives in cancer therapy. Recent Pat. Anti-Can. Drug Discov., 2018, 13(1), 86-105.
[http://dx.doi.org/10.2174/1574892812666171108124218 ] [PMID: 29119937]
[9]
Hoffmann, H-H.; Kunz, A.; Simon, V.A.; Palese, P.; Shaw, M.L. Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis. Proc. Natl. Acad. Sci. USA, 2011, 108(14), 5777-5782.
[http://dx.doi.org/10.1073/pnas.1101143108] [PMID: 21436031]
[10]
Ortiz-Riaño, E.; Ngo, N.; Devito, S.; Eggink, D.; Munger, J.; Shaw, M.L.; de la Torre, J.C.; Martínez-Sobrido, L. Inhibition of arenavirus by A3, a pyrimidine biosynthesis inhibitor. J. Virol., 2014, 88(2), 878-889.
[http://dx.doi.org/10.1128/JVI.02275-13] [PMID: 24198417]
[11]
Pery, E.; Sheehy, A.; Nebane, M.N.; Misra, V.; Mankowski, M.K.; Rasmussen, L.; Lucile White, E.; Ptak, R.G.; Gabuzda, D. Redoxal, an inhibitor of de novo pyrimidine biosynthesis, augments APOBEC3G antiviral activity against human immunodeficiency virus type 1. Virology, 2015, 484, 276-287.
[http://dx.doi.org/10.1016/j.virol.2015.06.014] [PMID: 26141568]
[12]
Zhu, S.; Yan, X.; Xiang, Z.; Ding, H.F.; Cui, H. Leflunomide reduces proliferation and induces apoptosis in neuroblastoma cells,
in vitro and in vivo. PLoS One, 2013, 8(8)e71555
[http://dx.doi.org/10.1371/journal.pone.0071555] [PMID: 23977077]
[13]
Rusai, K.; Schmaderer, C.; Baumann, M.; Chmielewski, S.; Prókai, A.; Kis, E.; Szabó, A.J.; Leban, J.; Doblhofer, R.; Ammendola, A.; Lutz, J.; Heemann, U. Immunosuppression with 4SC-101, a novel inhibitor of dihydroorotate dehydrogenase, in a rat model of renal transplantation. Transplantation, 2012, 93(11), 1101-1107.
[http://dx.doi.org/10.1097/TP.0b013e31824fd861] [PMID: 22609757]
[14]
He, T.; Haapa-Paananen, S.; Kaminskyy, V.O.; Kohonen, P.; Fey, V.; Zhivotovsky, B.; Kallioniemi, O.; Perala, M. Inhibition of the mitochondrial pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase by doxorubicin and brequinar sensitizes cancer cells to TRAIL-induced apoptosis. Oncogene, 2014, 33(27), 3538-3549.
[PMID: 24013224]
[15]
Peters, G.J. Re-evaluation of Brequinar sodium, a dihydroorotate dehydrogenase inhibitor. Nucleosides Nucleotides Nucleic Acids, 2018, 37(12), 666-678.
[PMID: 30663496]
[16]
Wu, D.; Wang, W.; Chen, W.; Lian, F.; Lang, L.; Huang, Y.; Xu, Y.; Zhang, N.; Chen, Y.; Liu, M.; Nussinov, R.; Cheng, F.; Lu, W.; Huang, J. Pharmacological inhibition of dihydroorotate dehydrogenase induces apoptosis and differentiation in acute myeloid leukemia cells. Haematologica, 2018, 103(9), 1472-1483.
[http://dx.doi.org/10.3324/haematol.2018.188185] [PMID: 29880605]
[17]
Hsu, P.P.; Kfoury, Y.; Aziz, N.; Elkhoury, J.; Hallgren, B.; Scadden, D.T.; Vander Heiden, M.; Sykes, D.B. DHODH inhibitors in the treatment of acute myeloid leukemia: Defining the mechanism of action and the basis of the metabolic therapeutic window. Blood, 2018, 132(Suppl. 1), 2716.
[http://dx.doi.org/10.1182/blood-2018-99-113387]
[18]
Sainas, S.; Pippione, A.C.; Lupino, E.; Giorgis, M.; Circosta, P.; Gaidano, V.; Goyal, P.; Bonanni, D.; Rolando, B.; Cignetti, A.; Ducime, A.; Andersson, M.; Järvå, M.; Friemann, R.; Piccinini, M.; Ramondetti, C.; Buccinnà, B.; Al-Karadaghi, S.; Boschi, D.; Saglio, G.; Lolli, M.L. Targeting myeloid differentiation using potent 2-Hydroxypyrazolo[1,5- a]pyridine Scaffold-Based human dihydroorotate dehydrogenase inhibitors. J. Med. Chem., 2018, 61(14), 6034-6055.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00373] [PMID: 29939742]
[19]
Christian, S.; Merz, C.; Evans, L.; Gradl, S.; Seidel, H.; Friberg, A.; Eheim, A.; Lejeune, P.; Brzezinka, K.; Zimmermann, K.; Ferrara, S.; Meyer, H.; Lesche, R.; Stoeckigt, D.; Bauser, M.; Haegebarth, A.; Sykes, D.B.; Scadden, D.T.; Losman, J-A.; Janzer, A. The novel Dihydroorotate Dehydrogenase (DHODH) inhibitor BAY 2402234 triggers differentiation and is effective in the treatment of myeloid malignancies. Leukemia, 2019, 33(10), 2403-2415.
[http://dx.doi.org/10.1038/s41375-019-0461-5] [PMID: 30940908]
[20]
Buettner, R.; Morales, C.; Wu, X.; Sanchez, J.F.; Li, H.; Melstrom, L.G.; Rosen, S.T. Leflunomide synergizes with gemcitabine in growth inhibition of PC cells and impairs c-Myc signaling through PIM kinase targeting. Mol. Ther. Oncolytics, 2019, 14, 149-158.
[http://dx.doi.org/10.1016/j.omto.2019.04.006] [PMID: 31211245]
[21]
Hosseini, M.; Dousset, L.; Michon, P.; Mahfouf, W.; Muzotte, E.; Bergeron, V.; Bortolotto, D.; Rossignol, R.; Moisan, F.; Taieb, A.; Bouzier-Sore, A.K.; Rezvani, H.R. UVB-induced DHODH upregulation, which is driven by STAT3, is a promising target for chemoprevention and combination therapy of photocarcinogenesis. Oncogenesis, 2019, 8(10), 52.
[http://dx.doi.org/10.1038/s41389-019-0161-z] [PMID: 31551419]
[22]
Mohamad Fairus, A.K.; Choudhary, B.; Hosahalli, S.; Kavitha, N.; Shatrah, O. Dihydroorotate Dehydrogenase (DHODH) inhibitors affect ATP depletion, endogenous ROS and mediate S-phase arrest in breast cancer cells. Biochimie, 2017, 135, 154-163.
[http://dx.doi.org/10.1016/j.biochi.2017.02.003] [PMID: 28196676]
[23]
Scudiero, D.A.; Shoemaker, R.H.; Paull, K.D.; Monks, A.; Tierney, S.; Nofziger, T.H.; Currens, M.J.; Seniff, D.; Boyd, M.R. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res., 1988, 48(17), 4827-4833.
[PMID: 3409223]
[24]
Stanley, P.E. A survey of more than 90 commercially available luminometers and imaging devices for low-light measurements of chemiluminescence and bioluminescence, including instruments for manual, automatic and specialized operation, for HPLC, LC, GLC and microtitre plates. Part 1: Descriptions. J. Biolumin. Chemilumin., 1992, 7(2), 77-108.
[http://dx.doi.org/10.1002/bio.1170070202] [PMID: 1598850]
[25]
Gonzalez, M.J.; Rosario-Perez, G.; Guzman, A.M.; Miranda-Massari, J.R.; Duconge, J.; Lavergne, J.; Fernandez, N.; Ortiz, N.; Quintero, A.; Mikirova, N.; Riordan, N.H.; Ricart, C.M. Mitochondria, energy and cancer: The relationship with ascorbic acid. J. Orthomol. Med., 2010, 25(1), 29-38.
[26]
Lemasters, J.J.; Nieminen, A-L.; Qian, T.; Trost, L.C.; Elmore, S.P.; Nishimura, Y.; Crowe, R.A.; Cascio, W.E.; Bradham, C.A.; Brenner, D.A.; Herman, B. The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta, 1998, 1366(1-2), 177-196.
[http://dx.doi.org/10.1016/S0005-2728(98)00112-1] [PMID: 9714796]
[27]
Bonora, M.; Pinton, P. The mitochondrial permeability transition pore and cancer: Molecular mechanisms involved in cell death. Front. Oncol., 2014, 4, 302.
[http://dx.doi.org/10.3389/fonc.2014.00302] [PMID: 25478322]
[28]
Spodnik, J.H.; Wozniak, M.; Budzko, D.; Teranishi, M.A.; Karbowski, M.; Nishizawa, Y.; Usukura, J.; Wakabayashi, T. Mechanism of leflunomide-induced proliferation of mitochondria in mammalian cells. Mitochondrion,, 2002, 2(3), 163-179.
[http://dx.doi.org/10.1016/S1567-7249(02)00045-4] [PMID: 16120318]
[29]
Dorasamy, M.S.; Choudhary, B.; Nellore, K.; Subramanya, H.; Wong, P.F. Dihydroorotate dehydrogenase inhibitors target c-Myc and arrest melanoma, myeloma and lymphoma cells at S-phase. J. Cancer, 2017, 8(15), 3086-3098.
[http://dx.doi.org/10.7150/jca.14835] [PMID: 28928900]
[30]
Lewis, T.A.; Sykes, D.B.; Law, J.M.; Muñoz, B.; Rustiguel, J.K.; Nonato, M.C.; Scadden, D.T.; Schreiber, S.L. Development of ML390: A human DHODH inhibitor that induces differentiation in acute myeloid leukemia. ACS Med. Chem. Lett.,, 2016, 7(12), 1112-1117.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00316] [PMID: 27994748]
[31]
Sykes, D.B. The emergence of Dihydroorotate Dehydrogenase (DHODH) as a therapeutic target in acute myeloid leukemia. Expert Opin. Ther. Targets, 2018, 22(11), 893-898.
[http://dx.doi.org/10.1080/14728222.2018.1536748] [PMID: 30318938]
[32]
Xu, X.; Williams, J.W.; Shen, J.; Gong, H.; Yin, D.P.; Blinder, L.; Elder, R.T.; Sankary, H.; Finnegan, A.; Chong, A.S. In vitro and in vivo mechanisms of action of the antiproliferative and immunosuppressive agent, brequinar sodium. J. Immunol., 1998, 160(2), 846-853.
[PMID: 9551920]
[33]
Aguirre, A.J.; Meyers, R.M.; Weir, B.A.; Vazquez, F.; Zhang, C-Z.; Ben-David, U.; Cook, A.; Ha, G.; Harrington, W.F.; Doshi, M.B.; Kost-Alimova, M.; Gill, S.; Xu, H.; Ali, L.D.; Jiang, G.; Pantel, S.; Lee, Y.; Goodale, A.; Cherniack, A.D.; Oh, C.; Kryukov, G.; Cowley, G.S.; Garraway, L.A.; Stegmaier, K.; Roberts, C.W.; Golub, T.R.; Meyerson, M.; Root, D.E.; Tsherniak, A.; Hahn, W.C. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov. 2016, 6(8), 914-923.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0154] [PMID: 27260156]
[34]
Pelicano, H.; Xu, R.H.; Du, M.; Feng, L.; Sasaki, R.; Carew, J.S.; Hu, Y.; Ramdas, L.; Hu, L.; Keating, M.J.; Zhang, W.; Plunkett, W.; Huang, P. Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J. Cell Biol., 2006, 175(6), 913-923.
[http://dx.doi.org/10.1083/jcb.200512100] [PMID: 17158952]
[35]
Lu, J.; Tan, M.; Cai, Q. The Warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett., 2015, 356(2 Pt A), 156-164.
[http://dx.doi.org/10.1016/j.canlet.2014.04.001] [PMID: 24732809]
[36]
Gatenby, R.A.; Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer, 2004, 4(11), 891-899.
[http://dx.doi.org/10.1038/nrc1478] [PMID: 15516961]
[37]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[38]
Watabe, M.; Nakaki, T. ATP depletion does not account for apoptosis induced by inhibition of mitochondrial electron transport chain in human dopaminergic cells. Neuropharmacology, 2007, 52(2), 536-541.
[http://dx.doi.org/10.1016/j.neuropharm.2006.07.037] [PMID: 17027047]
[39]
Rückemann, K.; Fairbanks, L.D.; Carrey, E.A.; Hawrylowicz, C.M.; Richards, D.F.; Kirschbaum, B.; Simmonds, H.A. Leflunomide inhibits pyrimidine de novo synthesis in mitogen-stimulated T-lymphocytes from healthy humans. J. Biol. Chem., 1998, 273(34), 21682-21691.
[http://dx.doi.org/10.1074/jbc.273.34.21682] [PMID: 9705303]
[40]
Cherwinski, H.M.; Cohn, R.G.; Cheung, P.; Webster, D.J.; Xu, Y.Z.; Caulfield, J.P.; Young, J.M.; Nakano, G.; Ransom, J.T. The immunosuppressant leflunomide inhibits lymphocyte proliferation by inhibiting pyrimidine biosynthesis. J. Pharmacol. Exp. Ther., 1995, 275(2), 1043-1049.
[PMID: 7473131]
[41]
Forrest, M.D. Why cancer cells have a more hyperpolarised mitochondrial membrane potential and emergent prospects for therapy. bioRxiv, 2015.
[http://dx.doi.org/10.1101/025197.]
[42]
Britten, C.D.; Rowinsky, E.K.; Baker, S.D.; Weiss, G.R.; Smith, L.; Stephenson, J.; Rothenberg, M.; Smetzer, L.; Cramer, J.; Collins, W.; Von Hoff, D.D.; Eckhardt, S.G. A phase I and pharmacokinetic study of the mitochondrial-specific rhodacyanine dye analog MKT 077. Clin. Cancer Res., 2000, 6(1), 42-49.
[PMID: 10656430]
[43]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[44]
Reiners, J.J., Jr; Caruso, J.A.; Mathieu, P.; Chelladurai, B.; Yin, X.M.; Kessel, D. Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage. Cell Death Differ., 2002, 9(9), 934-944.
[http://dx.doi.org/10.1038/sj.cdd.4401048] [PMID: 12181744]
[45]
Kasibhatla, S.; Tseng, B. Why target apoptosis in cancer treatment? Mol. Cancer Ther., 2003, 2(6), 573-580.
[PMID: 12813137]
[46]
Karpova, M.B.; Sanmun, D.; Henter, J.I.; Smirnov, A.F.; Fadeel, B. Betulinic acid, a natural cytotoxic agent, fails to trigger apoptosis in human Burkitt’s lymphoma-derived B-cell lines. Int. J. Cancer, 2006, 118(1), 246-252.
[http://dx.doi.org/10.1002/ijc.21311] [PMID: 16003746]
[47]
Dietrich, S.; Krämer, O.H.; Hahn, E.; Schäfer, C.; Giese, T.; Hess, M.; Tretter, T.; Rieger, M.; Hüllein, J.; Zenz, T.; Ho, A.D.; Dreger, P.; Luft, T. Leflunomide induces apoptosis in fludarabine-resistant and clinically refractory CLL cells. Clin. Cancer Res, 2012, 18(2), 417-431.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1049] [PMID: 22072733]
[48]
Xiao, B.; Deng, X.; Lim, G.G.Y.; Zhou, W.; Saw, W.T.; Zhou, Z.D.; Lim, K.L.; Tan, E.K. p62-Mediated mitochondrial clustering attenuates apoptosis induced by mitochondrial depolarization. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(7), 1308-1317.
[http://dx.doi.org/10.1016/j.bbamcr.2017.04.009] [PMID: 28433685]
[49]
Heiskanen, K.M.; Bhat, M.B.; Wang, H.W.; Ma, J.; Nieminen, A.L. Mitochondrial depolarization accompanies cytochrome c release during apoptosis in PC6 cells. J. Biol. Chem., 1999, 274(9), 5654-5658.
[http://dx.doi.org/10.1074/jbc.274.9.5654] [PMID: 10026183]
[50]
Khutornenko, A.A.; Dalina, A.A.; Chernyak, B.V.; Chumakov, P.M.; Evstafieva, A.G. The role of dihydroorotate dehydrogenase in apoptosis induction in response to inhibition of the mitochondrial respiratory chain complex III. Acta Naturae, 2014, 6(1), 69-75.
[51]
Adams, C.M.; Clark-Garvey, S.; Porcu, P.; Eischen, C.M. Targeting the Bcl-2 Family in B cell lymphoma. Front. Oncol., 2019, 8, 636-636.
[http://dx.doi.org/10.3389/fonc.2018.00636] [PMID: 30671383]
[52]
Kang, M.H.; Reynolds, C.P. Bcl-2 inhibitors: Targeting mitochondrial apoptotic pathways in cancer therapy. Clin. Cancer Res., 2009, 15(4), 1126-1132.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0144]
[53]
Kowaltowski, A.J.; Castilho, R.F.; Vercesi, A.E. Mitochondrial permeability transition and oxidative stress. FEBS Lett, 2001, 495((1-2)), 12-15.
[http://dx.doi.org/10.1016/S0014-5793(01)02316-X] [PMID: 11322939]
[54]
Kowaltowski, A.J.; Cosso, R.G.; Campos, C.B.; Fiskum, G. Effect of Bcl-2 overexpression on mitochondrial structure and function. J. Biol. Chem., 2002, 277(45), 42802-42807.
[http://dx.doi.org/10.1074/jbc.M207765200] [PMID: 12207028]
[55]
Liu, L.; Dong, Z.; Lei, Q.; Yang, J.; Hu, H.; Li, Q.; Ji, Y.; Guo, L.; Zhang, Y.; Liu, Y.; Cui, H. Inactivation/deficiency of DHODH induces cell cycle arrest and programed cell death in melanoma. Oncotarget, 2017, 8(68), 112354-112370.
[http://dx.doi.org/10.18632/oncotarget.19379] [PMID: 29348830]
[56]
Hebar, A.; Rütgen, B.C.; Selzer, E. NVX-412, a new oncology drug candidate, induces S-phase arrest and DNA damage in cancer cells in a p53-independent manner. PLoS One, 2012, 7(9)e45015
[http://dx.doi.org/10.1371/journal.pone.0045015] [PMID: 23028738]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy