Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Dietary Quercetin Alleviated DSS-induced Colitis in Mice Through Several Possible Pathways by Transcriptome Analysis

Author(s): Yuanyang Dong, Jiaqi Lei and Bingkun Zhang*

Volume 21, Issue 15, 2020

Page: [1666 - 1673] Pages: 8

DOI: 10.2174/1389201021666200711152726

Price: $65

Abstract

Background: The prevalence of inflammatory bowel disease is rapidly increasing around the world. Quercetin is a flavonoid commonly found in vegetables and fruits and has been reported to exert numerous pharmacological activities such as enhancing antioxidant capacity or suppressing inflammation.

Objective: We aimed to explore whether quercetin was effective for IBD and the underlying mechanism of quercetin for the ameliorative effects on the DSS-induced colitis in mice.

Methods: Thirty-six mice were randomly assigned to three treatments, including the control group (Ctr), DSS-induced colitis group (DSS) and DSS-induced colitis supplemented with 500 ppm quercetin (DQ500). Colitis was induced by DSS intake, and body weight was recorded every day. After six days administration of DSS, intestinal permeability was measured, and the liver was taken for antioxidant enzyme tests. Colonic tissue was taken for the histopathlogical score and RNA-sequencing analysis.

Results: In this experiment, dietary quercetin for 500ppm alleviated the DSS-induced colitis, possibly by strengthening intestinal integrity, liver antioxidant capacity. Based on the results of the transcriptome of colon tissue, several key genes were modulated by quercetin. ERK1/2-FKBP pathway and RXR-STAT3 pathway were involved in the development of IBD, furthermore, in the down-regulation of S100a8/9, FBN2 contributed to lowering the risk of colongenesis.

Conclusion: We demonstrated that dietary quercetin alleviated the DSS-induced colitis in mice. This is most likely due to its beneficial effects on intestinal integrity and modulation of several key pathways. Based on our research, quercetin was a promising candidate for IBD and its pharmaceutical effects on both IBD and colongenesis need further research.

Keywords: Colitis, quercetin, intestinal integrity, antioxidant, transcriptome, ERK1/2.

Graphical Abstract

[1]
Wirtz, S.; Popp, V.; Kindermann, M.; Gerlach, K.; Weigmann, B.; Fichtner-Feigl, S.; Neurath, M-F. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc., 2017, 12(7), 1295-1309.
[http://dx.doi.org/10.1038/nprot.2017.044] [PMID: 28569761]
[2]
Molodecky, N-A.; Soon, I-S.; Rabi, D-M.; Ghali, W-A.; Ferris, M.; Chernoff, G.; Benchimol, E-I.; Panaccione, R.; Ghosh, S.; Barkema, H-W.; Kaplan, G-G. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology, 2012, 142(1), 46-54.e42.
[http://dx.doi.org/10.1053/j.gastro.2011.10.001] [PMID: 22001864]
[3]
Dönder, Y.; Arikan, T-B.; Baykan, M.; Akyüz, M.; Öz, A-B. Effects of quercitrin on bacterial translocation in a rat model of experimental colitis. Asian J. Surg., 2018, 41(6), 543-550.
[http://dx.doi.org/10.1016/j.asjsur.2017.12.002] [PMID: 29371051]
[4]
Bauer, C.; Duewell, P.; Mayer, C.; Lehr, H-A.; Fitzgerald, K-A.; Dauer, M.; Tschopp, J.; Endres, S.; Latz, E.; Schnurr, M. Colitis induced in mice with Dextran Sulfate Sodium (DSS) is mediated by the NLRP3 inflammasome. Gut, 2010, 59(9), 1192-1199.
[http://dx.doi.org/10.1136/gut.2009.197822] [PMID: 20442201]
[5]
Santhanam, S.; Rajamanickam, S.; Motamarry, A.; Ramakrishna, B-S.; Amirtharaj, J-G.; Ramachandran, A.; Pulimood, A.; Venkatraman, A. Mitochondrial electron transport chain complex dysfunction in the colonic mucosa in ulcerative colitis. Inflamm. Bowel Dis., 2012, 18(11), 2158-2168.
[http://dx.doi.org/10.1002/ibd.22926] [PMID: 22374887]
[6]
Duan, S.; Du, X.; Chen, S.; Liang, J.; Huang, S.; Hou, S.; Gao, J.; Ding, P. Effect of vitexin on alleviating liver inflammation in a Dextran Sulfate Sodium (DSS)-induced colitis model. Biomed. Pharmacother., 2020, 121109683
[http://dx.doi.org/10.1016/j.biopha.2019.109683 PMID: 31810123]
[7]
Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci., 2015, 16(11), 26087-26124.
[http://dx.doi.org/10.3390/ijms161125942] [PMID: 26540040]
[8]
Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods, 2018, 40, 68-75.
[http://dx.doi.org/10.1016/j.jff.2017.10.047]
[9]
Li, C.; Zhang, W.J.; Choi, J.; Frei, B. Quercetin affects glutathione levels and redox ratio in human aortic endothelial cells not through oxidation but formation and cellular export of quercetin-glutathione conjugates and upregulation of glutamate-cysteine ligase. Redox Biol., 2016, 9, 220-228.
[http://dx.doi.org/10.1016/j.redox.2016.08.012] [PMID: 27572418]
[10]
Ju, S.; Ge, Y.; Li, P.; Tian, X.; Wang, H.; Zheng, X.; Ju, S. Dietary quercetin ameliorates experimental colitis in mouse by remodeling the function of colonic macrophages via a heme oxygenase-1-dependent pathway. Cell Cycle, 2018, 17(1), 53-63.
[11]
De Santis, S.; Kunde, D.; Serino, G.; Galleggiante, V.; Caruso, M-L.; Mastronardi, M.; Cavalcanti, E.; Ranson, N.; Pinto, A.; Campiglia, P.; Santino, A.; Eri, R.; Chieppa, M. Secretory leukoprotease inhibitor is required for efficient quercetin-mediated suppression of TNFα secretion. Oncotarget, 2016, 7(46), 75800-75809.
[http://dx.doi.org/10.18632/oncotarget.12415] [PMID: 27716626]
[12]
Hollman, P. Absorption, bioavailability, and metabolism of flavonoids. Pharm. Biol., 2004, 42S, 74-83.
[http://dx.doi.org/10.3109/13880200490893492]
[13]
Barnett, M-P-G.; Cooney, J-M.; Dommels, Y-E-M.; Nones, K.; Brewster, D-T.; Park, Z.; Butts, C-A.; McNabb, W-C.; Laing, W-A.; Roy, N-C. Modulation of colonic inflammation in Mdr1a(-/-) mice by green tea polyphenols and their effects on the colon transcriptome and proteome. J. Nutr. Biochem., 2013, 24(10), 1678-1690.
[http://dx.doi.org/10.1016/j.jnutbio.2013.02.007] [PMID: 23643524]
[14]
Balmus, I.M.; Ciobica, A.; Trifan, A.; Stanciu, C. the implications of oxidative stress and antioxidant therapies in inflammatory bowel disease: Clinical aspects and animal models. Saudi J. Gastroenterol., 2016, 22(1), 3-17.
[http://dx.doi.org/10.4103/1319-3767.173753] [PMID: 26831601]
[15]
Liu, C.J.; Liao, Y.R.; Lin, J.Y. Quercetin uptake and metabolism by murine peritoneal macrophages in vitro. Yao Wu Shi Pin Fen Xi, 2015, 23(4), 692-700.
[http://dx.doi.org/10.1016/j.jfda.2014.06.011] [PMID: 28911485]
[16]
Boots, A-W.; Haenen, G-R-M-M.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol., 2008, 585(2-3), 325-337.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.008] [PMID: 18417116]
[17]
Tsai, P.Y.; Zhang, B.; He, W.Q.; Zha, J.M.; Odenwald, M-A.; Singh, G.; Tamura, A.; Shen, L.; Sailer, A.; Yeruva, S.; Kuo, W.T.; Fu, Y.X.; Tsukita, S.; Turner, J-R. IL-22 upregulates epithelial claudin-2 to drive diarrhea and enteric pathogen clearance. Cell Host Microbe, 2017, 21(6), 671-681.e4.
[http://dx.doi.org/10.1016/j.chom.2017.05.009] [PMID: 28618266]
[18]
Shigeshiro, M.; Tanabe, S.; Suzuki, T. Dietary polyphenols modulate intestinal barrier defects and inflammation in a murine model of colitis. J. Funct. Foods, 2013, 5, 949-955.
[http://dx.doi.org/10.1016/j.jff.2013.02.008]
[19]
Lin, R.; Piao, M.; Song, Y. Dietary quercetin increases colonic microbial diversity and attenuates colitis severity in Citrobacter rodentium-Infected mice. Front. Microbiol., 2019, 10, 1092.
[http://dx.doi.org/10.3389/fmicb.2019.01092] [PMID: 31156598]
[20]
Kasmi, S.; Bkhairia, I.; Harrabi, B.; Mnif, H.; Marrakchi, R.; Ghozzi, H.; Kallel, C.; Nasri, M.; Zeghal, K.; Jamoussi, K.; Hakim, A. Modulatory effects of quercetin on liver histopathological, biochemical, hematological, oxidative stress and DNA alterations in rats exposed to graded doses of score 250. Toxicol. Mech. Methods, 2018, 28(1), 12-22.
[http://dx.doi.org/10.1080/15376516.2017.1351507 PMID: 28679351]
[21]
Sann, H.; Erichsen, J.; Hessmann, M.; Pahl, A.; Hoffmeyer, A. Efficacy of drugs used in the treatment of IBD and combinations thereof in acute DSS-induced colitis in mice. Life Sci., 2013, 92(12), 708-718.
[http://dx.doi.org/10.1016/j.lfs.2013.01.028] [PMID: 23399699]
[22]
Karakoyun, B.; Ertaş, B.; Yüksel, M.; Akakın, D.; Çevik, Ö.; Şener, G. Ameliorative effects of riboflavin on acetic acid-induced colonic injury in rats. Clin. Exp. Pharmacol. Physiol., 2018, 45(6), 563-572.
[http://dx.doi.org/10.1111/1440-1681.12894] [PMID: 29164668]
[23]
Kim, T-O.; Park, J.; Kang, M-J.; Lee, S-H.; Jee, S-R.; Ryu, D-Y.; Yang, K.; Yi, J-M. DNA hypermethylation of a selective gene panel as a risk marker for colon cancer in patients with ulcerative colitis. Int. J. Mol. Med., 2013, 31(5), 1255-1261.
[http://dx.doi.org/10.3892/ijmm.2013.1317] [PMID: 23546389]
[24]
Ohashi, A.; Yasuda, H.; Kamiya, T.; Hara, H.; Adachi, T. CAPE increases the expression of SOD3 through epigenetics in human retinal endothelial cells. J. Clin. Biochem. Nutr., 2017, 61(1), 6-13.
[http://dx.doi.org/10.3164/jcbn.16-109] [PMID: 28751803]
[25]
Peng, Y.J.; Shen, T.L.; Chen, Y.S.; Mersmann, H-J.; Liu, B.H.; Ding, S.T. Adiponectin and adiponectin receptor 1 overexpression enhance inflammatory bowel disease. J. Biomed. Sci., 2018, 25(1), 24.
[http://dx.doi.org/10.1186/s12929-018-0419-3] [PMID: 29540173]
[26]
Kapiszewska, M.; Cierniak, A.; Elas, M.; Lankoff, A. Lifespan of etoposide-treated human neutrophils is affected by antioxidant ability of quercetin. Toxicol. In Vitro, 2007, 21(6), 1020-1030.
[http://dx.doi.org/10.1016/j.tiv.2007.03.005] [PMID: 17467952]
[27]
Araki, T.; Kawamura, M.; Tanaka, K.; Okita, Y.; Fujikawa, H.; Uchida, K.; Toiyama, Y.; Inoue, Y.; Mohri, Y.; Kusunoki, M. FK506-Binding protein 5 mRNA levels in ileal mucosa are associated with pouchitis in patients with ulcerative colitis. Dig. Dis. Sci., 2015, 60(6), 1617-1623.
[http://dx.doi.org/10.1007/s10620-015-3528-9] [PMID: 25596721]
[28]
Galamb, O.; Györffy, B.; Sipos, F.; Spisák, S.; Németh, A-M.; Miheller, P.; Tulassay, Z.; Dinya, E.; Molnár, B. Inflammation, adenoma and cancer: Objective classification of colon biopsy specimens with gene expression signature. Dis. Markers, 2008, 25(1), 1-16.
[http://dx.doi.org/10.1155/2008/586721] [PMID: 18776587]
[29]
Manolakis, A-C.; Kapsoritakis, A-N.; Tiaka, E-K.; Potamianos, S-P. Calprotectin, calgranulin C, and other members of the s100 protein family in inflammatory bowel disease. Dig. Dis. Sci., 2011, 56(6), 1601-1611.
[http://dx.doi.org/10.1007/s10620-010-1494-9] [PMID: 21203903]
[30]
Ye, X.; Wu, H.; Sheng, L.; Liu, Y.; Ye, F.; Wang, M.; Zhou, H.; Su, Y.; Zhang, X. Oncogenic potential of truncated RXRα during colitis-associated colorectal tumorigenesis by promoting IL-6-STAT3 signaling. Nat. Commun., 2019, 10(1), 1-5.
[http://dx.doi.org/10.1038/s41467-019-09375-8]
[31]
Xu, L.; Liu, T.; Wang, L.; Li, L.; Wu, Y.; Li, C.; Di, B.; You, Q.; Jiang, Z. 3-(1H-Benzo[d]imidazol-6-yl)-5-(4-fluorophenyl)-1,2,4- oxadiazole (DDO7232), a novel potent Nrf2/ARE inducer, ameliorates dss-induced murine colitis and protects NCM460 cells against oxidative stress via ERK1/2 phosphorylation Oxid. Med. Cell. Longev., 2018, 2018, 1-16.
[http://dx.doi.org/10.1155/2018/3271617]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy