Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Synthesis, In-Vitro and In-Silico Evaluation of Silver Nanoparticles with Root Extract of Withania somnifera for Antibacterial Activity via Binding of Penicillin-Binding Protein-4

Author(s): Isha Gaurav*, Tanuja Singh, Abhimanyu Thakur, Gaurav Kumar, Parth Rathee, Puja Kumari and Kumari Sweta

Volume 21, Issue 15, 2020

Page: [1674 - 1687] Pages: 14

DOI: 10.2174/1389201021666200702152000

Price: $65

Abstract

Background: Metal Nanoparticles (NPs) have been widely used for various applications in biomedical sciences, including in drug delivery, and as therapeutic agents, but limited owing to their toxicity towards the healthy tissue. This warrants an alternative method, which can achieve the desired activity with much reduced or no toxicity. Being a biological product, Withania somnifera (W. somnifera) is environment friendly, besides being less toxic as compared to metal-based NPs. However, the exact mechanism of action of W. somnifera for its antibacterial activities has not been studied so far.

Objective: To develop “silver nanoparticles with root extract of W. somnifera (AgNPs-REWS)” for antimicrobial and anticancer activities. Furthermore, the analysis of their mechanism of action will be studied.

Methods: Using the in-silico approach, the molecular docking study was performed to evaluate the possible antibacterial mechanism of W. somnifera phytochemicals such as Anaferine, Somniferine, Stigmasterol, Withaferin A, Withanolide- A, G, M, and Withanone by the inhibition of Penicillin- Binding Protein 4 (PBP4). Next, we utilized a bottom-up approach for the green synthesis of AgNPs- REWS, performed an in-detail phytochemical analysis, confirmed the AgNPs-REWS by SEM, UVvisible spectroscopy, XRD, FT-IR, and HPLC. Eventually, we examined their antibacterial activity.

Results: The result of molecular docking suggests that WS phytochemicals (Somniferine, Withaferin A, Withanolide A, Withanolide G, Withanolide M, and Withanone) possess the higher binding affinity toward the active site of PBP4 as compared to the Ampicillin (-6.39 kcal/mol) reference molecule. These phytochemicals predicted as potent inhibitors of PBP4. Next, as a proof-of-concept, AgNPs- REWS showed significant antibacterial effect as compared to crude, and control; against Xanthomonas and Ralstonia species.

Conclusion: The in-silico and molecular docking analysis showed that active constituents of W. somnifera such as Somniferine, Withaferin A, Withanolide A, Withanolide G, Withanolide M, and Withanone possess inhibition potential for PBP4 and are responsible for the anti-bacterial property of W. somnifera extract. This study also establishes that AgNPs via the green synthesis with REWS showed enhanced antibacterial activity towards pathogenic bacteria.

Keywords: Nanoparticles, silver nanoparticles, Withania somnifera, antimicrobial activity, green synthesis, molecular docking.

Graphical Abstract

[1]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9, 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[2]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[3]
Ali, A.; Zafar, H.; Zia, M.; Ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl., 2016, 9, 49-67.
[http://dx.doi.org/10.2147/NSA.S99986] [PMID: 27578966]
[4]
Burdusel, A-C.; Gherasim, O.; Grumezescu, A.M.; Mogoantă, L.; Ficai, A.; Andronescu, E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials (Basel), 2018, 8(9), 681.
[http://dx.doi.org/10.3390/nano8090681] [PMID: 30200373]
[5]
Lee, S.H.; Jun, B-H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci., 2019, 20(4), 865.
[http://dx.doi.org/10.3390/ijms20040865] [PMID: 30781560]
[6]
Dao, V-D.; Tran, C.Q.; Ko, S-H.; Choi, H-S. Dry plasma reduction to synthesize supported platinum nanoparticles for flexible dye-sensitized solar cells. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(14), 4436.
[http://dx.doi.org/10.1039/c3ta10319f]
[7]
Oh, H-J.; Dao, V-D.; Choi, H-S. Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction. Appl. Surf. Sci., 2018, 435, 7-15.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.043]
[8]
Dao, V-D.; Vu, N.H.; Yun, S. Recent advances and challenges for solar-driven water evaporation system toward applications. Nano Energy, 2020, 68104324
[http://dx.doi.org/10.1016/j.nanoen.2019.104324]
[9]
Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci., 2014, 9(6), 385-406.
[PMID: 26339255]
[10]
Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.K.; Poinern, G.E.J. Green synthesis of metallic nanoparticles via biological entities. Materials (Basel), 2015, 8(11), 7278-7308.
[http://dx.doi.org/10.3390/ma8115377] [PMID: 28793638]
[11]
Venditti, I. Engineered gold-based nanomaterials: Morphologies and functionalities in biomedical applications. A mini review. Bioengineering (Basel), 2019, 6(2), 53.
[http://dx.doi.org/10.3390/bioengineering6020053] [PMID: 31185667]
[12]
Rani, K. Biomedical applications of silver and gold nanoparticles: Effective and safe non-viral delivery vehicles. J. Appl. Biotechnol. Bioeng., 2017, 3(2), 296-297.
[http://dx.doi.org/10.15406/jabb.2017.03.00059]
[13]
Qais, F.A.; Shafiq, A.; Khan, H.M.; Husain, F.M.; Khan, R.A.; Alenazi, B.; Alsalme, A.; Ahmad, I. Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens. Bioinorg. Chem. Appl., 2019, 20194649506
[http://dx.doi.org/10.1155/2019/4649506] [PMID: 31354799]
[14]
Vikas, S.; Krishan, K.S.; Manjit, K.S. Nanosilver: Potent antimicrobial agent and its biosynthesis. Afr. J. Biotechnol., 2014, 13(4), 546-554.
[http://dx.doi.org/10.5897/AJB2013.13147]
[15]
Kumar, S.; Kumar, G.; Tripathi, A.K.; Seena, S.; Koh, J. Enhanced fluorescence norfloxacin substituted naphthalimide derivatives: Molecular docking and antibacterial activity. J. Mol. Struct., 2018, 1157, 292-299.
[http://dx.doi.org/10.1016/j.molstruc.2017.12.067]
[16]
Singh, N.; Bhalla, M.; de Jager, P.; Gilca, M. An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda. Afr. J. Tradit. Complement. Altern. Med., 2011, 8(5)(Suppl.), 208-213.
[http://dx.doi.org/10.4314/ajtcam.v8i5S.9] [PMID: 22754076]
[17]
Sandhu, J.S.; Shah, B.; Shenoy, S.; Chauhan, S.; Lavekar, G.S.; Padhi, M.M. Effects of Withania somnifera (Ashwagandha) and Terminalia arjuna (Arjuna) on physical performance and cardiorespiratory endurance in healthy young adults. Int. J. Ayurveda Res., 2010, 1(3), 144-149.
[http://dx.doi.org/10.4103/0974-7788.72485] [PMID: 21170205]
[18]
Bisht, P.; Rawat, V. Antibacterial activity of Withania somnifera against Gram-positive isolates from pus samples. AYU (An Int Q J Res Ayurveda)., 2014, 35(3), 330-332.
[http://dx.doi.org/10.4103/0974-8520.153757] [PMID: 25972723]
[19]
Singariya, P.; Mourya, K.K.; Kumar, P. Antimicrobial activity of the crude extracts of Withania somnifera and Cenchrus setigerus in-vitro. Pharmacogn. J., 2012, 4(27), 60-65.
[http://dx.doi.org/10.5530/pj.2012.27.10]
[20]
Misra, L.; Mishra, P.; Pandey, A.; Sangwan, R.S.; Sangwan, N.S.; Tuli, R. Withanolides from Withania somnifera roots. Phytochemistry, 2008, 69(4), 1000-1004.
[http://dx.doi.org/10.1016/j.phytochem.2007.10.024 PMID: 18061221]
[21]
Ullah Khan, S.; Saleh, T.A.; Wahab, A.; Khan, M.H.U.; Khan, D.; Ullah Khan, W.; Rahim, A.; Kamal, S.; Ullah Khan, F.; Fahad, S. Nanosilver: New ageless and versatile biomedical therapeutic scaffold. Int. J. Nanomedicine, 2018, 13, 733-762.
[http://dx.doi.org/10.2147/IJN.S153167] [PMID: 29440898]
[22]
Tripathi, D.; Modi, A.; Narayan, G.; Rai, S.P. Green and cost effective synthesis of silver nanoparticles from endangered medicinal plant Withania coagulans and their potential biomedical properties. Mater. Sci. Eng. C, 2019, 100, 152-164.
[http://dx.doi.org/10.1016/j.msec.2019.02.113] [PMID: 30948049]
[23]
Halkai, K.R.; Mudda, J.A.; Shivanna, V.; Rathod, V.; Halkai, R. Antibacterial efficacy of biosynthesized silver nanoparticles against Enterococcus faecalis Biofilm: An in vitro study. Contemp. Clin. Dent., 2018, 9(2), 237-241.
[http://dx.doi.org/10.4103/ccd.ccd_828_17] [PMID: 29875567]
[24]
Halkai, K.R.; Mudda, J.A.; Shivanna, V.; Rathod, V.; Halkai, R.S. Evaluation of antibacterial efficacy of biosynthesized silver nanoparticles derived from fungi against endo-perio pathogens Porphyromonas gingivalis, Bacillus pumilus, and Enterococcus faecalis. J. Conserv. Dent., 2017, 20(6), 398-404.
[http://dx.doi.org/10.4103/JCD.JCD_173_17] [PMID: 29430090]
[25]
Halkai, K.R. Biosynthesis, characterization and antibacterial efficacy of silver nanoparticles derived from endophytic fungi against P. gingivalis. J. Clin. Diagn. Res., 2017, 11(9), ZC92-ZC96.
[http://dx.doi.org/10.7860/JCDR/2017/29434.10681]
[26]
Kawai, F.; Clarke, T.B.; Roper, D.I.; Han, G-J.; Hwang, K.Y.; Unzai, S.; Obayashi, E.; Park, S.Y.; Tame, J.R. Crystal structures of penicillin-binding proteins 4 and 5 from Haemophilus influenzae. J. Mol. Biol., 2010, 396(3), 634-645.
[http://dx.doi.org/10.1016/j.jmb.2009.11.055] [PMID: 19958776]
[27]
Kumar, G.; Paliwal, P.; Patnaik, R. Withania somnifera phytochemicals confer neuroprotection by inhibition of the catalytic domain of human matrix metalloproteinase-9. Lett. Drug Des. Discov., 2017, 14(6), 718-726.
[http://dx.doi.org/10.2174/1570180814666161121111811]
[28]
Kumar, G.; Paliwal, P.; Patnaik, N.; Patnaik, R. Withania somnifera phytochemicals confer neuroprotection by selective inhibition of nNos: An in silico study to search potent and selective inhibitors for human nNOS. J. Theor. Comput. Chem., 2017, 16(05)1750042
[http://dx.doi.org/10.1142/S0219633617500420]
[29]
Kumar, G.; Patnaik, R. Inhibition of gelatinases (MMP-2 and MMP-9) by Withania somnifera phytochemicals confers neuroprotection in stroke: An in silico analysis. Interdiscip. Sci., 2018, 10(4), 722-733.
[http://dx.doi.org/10.1007/s12539-017-0231-x] [PMID: 28488219]
[30]
Mukherjee, S.; Kumar, G.; Patnaik, R. Identification of potential inhibitors of PARP-1, a regulator of caspase-independent cell death pathway, from Withania somnifera phytochemicals for combating neurotoxicity: A structure-based in-silico study. J. Theor. Comput. Chem., 2017, 16(07)1750062
[http://dx.doi.org/10.1142/S0219633617500626]
[31]
Kumar, G.; Patnaik, R. Exploring neuroprotective potential of Withania somnifera phytochemicals by inhibition of GluN2B-containing NMDA receptors: An in silico study. Med. Hypotheses, 2016, 92, 35-43.
[http://dx.doi.org/10.1016/j.mehy.2016.04.034 PMID: 27241252]
[32]
Redfern, J.; Kinninmonth, M.; Burdass, D.; Verran, J. Using soxhlet ethanol extraction to produce and test plant material (essential oils) for their antimicrobial properties. J. Microbiol. Biol. Educ., 2014, 15(1), 45-46.
[http://dx.doi.org/10.1128/jmbe.v15i1.656] [PMID: 24839520]
[33]
Auwal, M.S.; Saka, S.; Mairiga, I.A.; Sanda, K.A.; Shuaibu, A.; Ibrahim, A. Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of Acacia nilotica (Thorn mimosa). Vet. Res. Forum Int. Q.J., 2014, 5(2), 95-100.
[34]
Paulraj, P.; Muruganantham, S.S. Green synthesis and characterization of silver nanoparticles from Withania somnifera (L.). Dunal. Asian J. Pharm. Clin. Res., 2016, 9(5), 34.
[http://dx.doi.org/10.22159/ajpcr.2016.v9i5.13204]
[35]
Ramteke, C.; Chakrabarti, T.; Sarangi, B.K.; Pandey, R-A. Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity. J. Chem., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/278925]
[36]
Driscoll, A.J.; Bhat, N.; Karron, R.A.; O’Brien, K.L.; Murdoch, D.R. Disk diffusion bioassays for the detection of antibiotic activity in body fluids: Applications for the pneumonia etiology research for child health project. Clin. Infect. Dis. 2012, 54(suppl_2), S159-S164.
[37]
Gour, A.; Jain, N.K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 844-851.
[http://dx.doi.org/10.1080/21691401.2019.1577878 PMID: 30879351]
[38]
Parveen, K.; Banse, V.; Ledwani, L. Green synthesis of nanoparticles: Their advantages and disadvantages. AIP Conf. Proc., 2016, 1724(1) 10.1063/1.4945168.
[39]
Roy, N.; Gaur, A.; Jain, A.; Bhattacharya, S.; Rani, V. Green synthesis of silver nanoparticles: An approach to overcome toxicity. Environ. Toxicol. Pharmacol., 2013, 36(3), 807-812.
[http://dx.doi.org/10.1016/j.etap.2013.07.005] [PMID: 23958974]
[40]
Kumar, V; Dey, A; Hadimani, MB; Marcovic, T; Emerald, M Chemistry and pharmacology of Withania somnifera: An update. Tang Humanitas Med 2015, 5(1), 1.1-1.13.
[41]
Erdogan, O.; Abbak, M.; Demirbolat, G.M.; Birtekocak, F.; Aksel, M.; Pasa, S.; Cevik, O. Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS One, 2019, 14(6)e0216496
[http://dx.doi.org/10.1371/journal.pone.0216496] [PMID: 31220110]
[42]
Elbossaty, W.F. Green tea as biological system for the synthesis of silver nanoparticles. J. Biotechnol. Biomater., 2017, 07(03)
[http://dx.doi.org/10.4172/2155-952X.1000269]
[43]
Bunaciu, A.A.; Udriştioiu, E.G.; Aboul-Enein, H.Y. X-ray diffraction: instrumentation and applications. Crit. Rev. Anal. Chem., 2015, 45(4), 289-299.
[http://dx.doi.org/10.1080/10408347.2014.949616] [PMID: 25831472]
[44]
Dias, A.C.P.; Marslin, G. Selvakesavan, Gregory, F.; Sarmento B. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera. Int. J. Nanomedicine, 2015, 5955.
[http://dx.doi.org/10.2147/IJN.S81271]
[45]
Awwad, M.; Salem, A.M.; Abdeen, N.O.A. biosynthesis of silver nanoparticles using Olea europaea leaves extract and its antibacterial activity. Nanosci Nanotechnol., 2013, 2(6), 164-170.
[http://dx.doi.org/10.5923/j.nn.20120206.03]
[46]
Xu, Z.; He, H.; Zhang, S.; Wang, B.; Jin, J.; Li, C. Mechanistic studies on the antibacterial behavior of Ag nanoparticles decorated with carbon dots having different oxidation degrees. Environ. Sci. Nano, 2019, 6(4), 1168-1179.
[http://dx.doi.org/10.1039/C8EN01090K]
[47]
Vaishali, C.V.; Thakur, A.; Latha, K.C.; Mishra, G.; Singh, K.; Rathee, P.; Ranjan, A. Phycocyanin extracted from Oscillatoria minima show antimicrobial, algicidal, and antiradical activities: In-silico and in-vitro analysis. Antiinflamm. Antiallergy Agents Med. Chem., 2019, 18.
[http://dx.doi.org/10.2174/1871523018666190405114524 PMID: 30950358]
[48]
Cunha, F.A.; Maia, K.R.; Mallman, E.J.J.; Cunha, M.D.; Maciel, A.A.; Souza, I.P.; Menezes, E.A.; Fechine, P.B. silver nanoparticles-disk diffusion test against Escherichia coli isolates. Rev. Inst. Med. Trop. São Paulo, 2016, 58, 73.
[http://dx.doi.org/10.1590/S1678-9946201658073] [PMID: 27680178]
[49]
Das, G.; Patra, J.K.; Basavegowda, N.; Vishnuprasad, C.N.; Shin, H-S. Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of Ipomoea batatas (L.). Lam. Int. J. Nanomed., 2019, 14, 4741-4754.
[http://dx.doi.org/10.2147/IJN.S210517] [PMID: 31456635]
[50]
Shukla, A.K.; Iravani, S. Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier, 2019.
[51]
Singh, J.; Dutta, T.; Kim, K-H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018, 16(1), 84.
[http://dx.doi.org/10.1186/s12951-018-0408-4 ] [PMID: 30373622]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy