Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Advancing the Therapeutic Efficacy of Bioactive Molecules by Delivery Vehicle Platforms

Author(s): Antonis D. Tsiailanis, Andreas G. Tzakos and Thomas Mavromoustakos*

Volume 28, Issue 14, 2021

Published on: 05 June, 2020

Page: [2697 - 2706] Pages: 10

DOI: 10.2174/0929867327666200605154506

Price: $65

Abstract

Drugs have to overcome numerous barriers to reach their desired therapeutic targets. In several cases, drugs, especially the highly lipophilic molecules, suffer from low solubility and bioavailability and therefore their desired targeting is hampered. In addition, undesired metabolic products might be produced or off-targets could be recognized. Along these lines, nanopharmacology has provided new technological platforms, to overcome these boundaries. Specifically, numerous vehicle platforms such as cyclodextrins and calixarenes have been widely utilized to host lipophilic drugs such as antagonists of the angiotensin II AT1 receptor (AT1R), as well as quercetin and silibinin. The encapsulation of these drugs in supramolecules or other systems refines their solubility and metabolic stability, increases their selectivity and therefore decreases their effective dose and improves their therapeutic index. In this mini review we report on the formulations of silibinin and AT1R antagonist candesartan in a 2-HP-β-cyclodextrin host molecule, which displayed enhanced cytotoxicity and increased silibinin’s and candesartan’s stability, respectively. Moreover, we describe the encapsulation of quercetin in gold nanoparticles bearing a calixarene supramolecular host. Also, the encapsulation of temozolomide in a calixarene nanocapsule has been described. Finally, we report on the activity enhancement that has been achieved upon using these formulations as well as the analytical and computational methods we used to characterize these formulations and explore the molecular interactions between the host and quest molecules.

Keywords: Nanotechnology, calixarenes, cyclodextrins, AT1 antagonists, quercetin, caffeic acid, rosmarinic acid, silibinin, temozolomide.

[1]
Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn. Rev., 2016, 10(20), 84-89.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[2]
Spencer, J.P.; Kuhnle, G.G.; Williams, R.J.; Rice-Evans, C. Intracellular metabolism and bioactivity of quercetin and it’s in vivo metabolites. Biochem. J., 2003, 372(Pt 1), 173-181.
[http://dx.doi.org/10.1042/bj20021972] [PMID: 12578560]
[3]
Smith, A.J.; Kavuru, P.; Wojtas, L.; Zaworotko, M.J.; Shytle, R.D. Cocrystals of quercetin with improved solubility and oral bioavailability. Mol. Pharm., 2011, 8(5), 1867-1876.
[http://dx.doi.org/10.1021/mp200209j] [PMID: 21846121]
[4]
Day, A.J.; Mellon, F.; Barron, D.; Sarrazin, G.; Morgan, M.R.; Williamson, G. Human metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free Radic. Res., 2001, 35(6), 941-952.
[http://dx.doi.org/10.1080/10715760100301441] [PMID: 11811545]
[5]
Ferry, D.R.; Smith, A.; Malkhandi, J.; Fyfe, D.W.; deTakats, P.G.; Anderson, D.; Baker, J.; Kerr, D.J. Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin. Cancer Res., 1996, 2(4), 659-668.
[PMID: 9816216]
[6]
Gazák, R.; Walterová, D.; Kren, V. Silybin and silymarin--new and emerging applications in medicine. Curr. Med. Chem., 2007, 14(3), 315-338.
[http://dx.doi.org/10.2174/092986707779941159] [PMID: 17305535]
[7]
Kroll, D.J.; Shaw, H.S.; Oberlies, N.H. Milk thistle nomenclature: why it matters in cancer research and pharmacokinetic studies. Integr. Cancer Ther., 2007, 6(2), 110-119.
[http://dx.doi.org/10.1177/1534735407301825] [PMID: 17548790]
[8]
Zholobenko, A.; Modriansky, M. Silymarin and its constituents in cardiac preconditioning. Fitoterapia, 2014, 97, 122-132.
[http://dx.doi.org/10.1016/j.fitote.2014.05.016] [PMID: 24879900]
[9]
Gazák, R.; Sedmera, P.; Vrbacký, M.; Vostálová, J.; Drahota, Z.; Marhol, P.; Walterová, D.; Kren, V. Molecular mechanisms of silybin and 2,3-dehydrosilybin antiradical activity--role of individual hydroxyl groups. Free Radic. Biol. Med., 2009, 46(6), 745-758.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.11.016] [PMID: 19138735]
[10]
Sonnenbichler, J.; Zetl, I. Biochemical effects of the flavonolignane silibinin on RNA, protein and DNA synthesis in rat livers. Prog. Clin. Biol. Res., 1986, 213, 319-331.
[PMID: 2424029]
[11]
Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups. National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352(10), 987-996.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[12]
O’Reilly, S.M.; Newlands, E.S.; Glaser, M.G.; Brampton, M.; Rice-Edwards, J.M.; Illingworth, R.D.; Richards, P.G.; Kennard, C.; Colquhoun, I.R.; Lewis, P. Temozolomide: a new oral cytotoxic chemotherapeutic agent with promising activity against primary brain tumours. Eur. J. Cancer, 1993, 29A(7), 940-942.
[http://dx.doi.org/10.1016/S0959-8049(05)80198-4] [PMID: 8499146]
[13]
Roos, W.P.; Batista, L.F.; Naumann, S.C.; Wick, W.; Weller, M.; Menck, C.F.; Kaina, B. Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene, 2007, 26(2), 186-197.
[http://dx.doi.org/10.1038/sj.onc.1209785] [PMID: 16819506]
[14]
Zhou, Q.; Guo, P.; Wang, X.; Nuthalapati, S.; Gallo, J.M. Preclinical pharmacokinetic and pharmacodynamic evaluation of metronomic and conventional temozolomide dosing regimens. J. Pharmacol. Exp. Ther., 2007, 321(1), 265-275.
[http://dx.doi.org/10.1124/jpet.106.118265] [PMID: 17259446]
[15]
Meer, L.; Janzer, R.C.; Kleihues, P.; Kolar, G.F. In vivo metabolism and reaction with DNA of the cytostatic agent, 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide (DTIC). Biochem. Pharmacol., 1986, 35(19), 3243-3247.
[http://dx.doi.org/10.1016/0006-2952(86)90419-3] [PMID: 3094535]
[16]
Kellici, T.F.; Tzakos, A.G.; Mavromoustakos, T. Rational drug design and synthesis of molecules targeting the angiotensin II type 1 and type 2 receptors. Molecules, 2015, 20(3), 3868-3897.
[http://dx.doi.org/10.3390/molecules20033868] [PMID: 25738535]
[17]
Kellici, T.F.; Liapakis, G.; Tzakos, A.G.; Mavromoustakos, T. Pharmaceutical compositions for antihypertensive treatments: a patent review. Expert Opin. Ther. Pat., 2015, 25(11), 1305-1317.
[http://dx.doi.org/10.1517/13543776.2015.1086337] [PMID: 26358230]
[18]
Brewster, M.E.; Loftsson, T. Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev., 2007, 59(7), 645-666.
[http://dx.doi.org/10.1016/j.addr.2007.05.012] [PMID: 17601630]
[19]
Tamargo, M.; Tamargo, J. Future drug discovery in renin-angiotensin-aldosterone system intervention. Expert Opin. Drug Discov., 2017, 12(8), 827-848.
[http://dx.doi.org/10.1080/17460441.2017.1335301] [PMID: 28541811]
[20]
Irie, T.; Uekama, K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J. Pharm. Sci., 1997, 86(2), 147-162.
[http://dx.doi.org/10.1021/js960213f] [PMID: 9040088]
[21]
Gould, S.; Scott, R.C. 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): a toxicology review. Food Chem. Toxicol., 2005, 43(10), 1451-1459.
[http://dx.doi.org/10.1016/j.fct.2005.03.007] [PMID: 16018907]
[22]
Matassoli, F.L.; Leão, I.C.; Bezerra, B.B.; Pollard, R.B.; Lütjohann, D.; Hildreth, J.E.K.; Arruda, L.B. Hydroxypropyl-beta-cyclodextrin reduces inflammatory signaling from monocytes: possible implications for suppression of HIV chronic immune activation. MSphere, 2018, 3(6), e00497-e18.
[http://dx.doi.org/10.1128/mSphere.00497-18] [PMID: 30404938]
[23]
Berry-Kravis, E.; Chin, J.; Hoffmann, A.; Winston, A.; Stoner, R.; LaGorio, L.; Friedmann, K.; Hernandez, M.; Ory, D.S.; Porter, F.D.; O’Keefe, J.A. Long-term treatment of niemann-pick type C1 disease with intrathecal 2-hydroxypropyl-β-cyclodextrin. Pediatr. Neurol., 2018, 80, 24-34.
[http://dx.doi.org/10.1016/j.pediatrneurol.2017.12.014] [PMID: 29429782]
[24]
Bakke, S.S.; Aune, M.H.; Niyonzima, N.; Pilely, K.; Ryan, L.; Skjelland, M.; Garred, P.; Aukrust, P.; Halvorsen, B.; Latz, E.; Damås, J.K.; Mollnes, T.E.; Espevik, T. Cyclodextrin reduces cholesterol crystal-induced inflammation by modulating complement activation. J. Immunol., 2017, 199(8), 2910-2920.
[http://dx.doi.org/10.4049/jimmunol.1700302] [PMID: 28855312]
[25]
Kellici, T.F.; Mavromoustakos, T.; Tzakos, A.G.; Yilmaz, M. Calixarenes in lipase biocatalysis and cancer therapy. Curr. Org. Chem., 2016, 20(10), 1043-1057.
[http://dx.doi.org/10.2174/1385272820666151211192249]
[26]
Shinkai, S.; Arimura, T.; Araki, K.; Kawabata, H.; Satoh, H.; Tsubaki, T.; Manabe, O.; Sunamoto, J. Syntheses and aggregation properties of new water-soluble calixarenes. J. Chem. Soc., Perkin Trans. 1, 1989, (11), 2039-2045.
[http://dx.doi.org/10.1039/p19890002039]
[27]
Perret, F.; Coleman, A.W. Biochemistry of anionic calix[n]arenes. Chem. Commun. (Camb.), 2011, 47(26), 7303-7319.
[http://dx.doi.org/10.1039/c1cc11541c] [PMID: 21552631]
[28]
Wang, K.; Cui, J.H.; Xing, S.Y.; Dou, H.X. Molecular binding behavior of water-soluble calix[4]arenes with asymmetric 4,4′-bipyridinium guests in aqueous solution: regioselective recognition or not? Org. Biomol. Chem., 2016, 14(46), 10804-10811.
[http://dx.doi.org/10.1039/C6OB02105K] [PMID: 27830863]
[29]
Kellici, T.F.; Ntountaniotis, D.; Leonis, G.; Chatziathanasiadou, M.; Chatzikonstantinou, A.V.; Becker-Baldus, J.; Glaubitz, C.; Tzakos, A.G.; Viras, K.; Chatzigeorgiou, P.; Tzimas, S.; Kefala, E.; Valsami, G.; Archontaki, H.; Papadopoulos, M.G.; Mavromoustakos, T. Investigation of the interactions of silibinin with 2-hydroxypropyl-β-cyclodextrin through biophysical techniques and computational methods. Mol. Pharm., 2015, 12(3), 954-965.
[http://dx.doi.org/10.1021/mp5008053] [PMID: 25665128]
[30]
Al Omari, A.A.; Al Omari, M.M.; Badwan, A.A.; Al-Sou’od, K.A. Effect of cyclodextrins on the solubility and stability of candesartan cilexetil in solution and solid state. J. Pharm. Biomed. Anal., 2011, 54(3), 503-509.
[http://dx.doi.org/10.1016/j.jpba.2010.09.027] [PMID: 20971593]
[31]
Ntountaniotis, D.; Andreadelis, I.; Kellici, T.F.; Karageorgos, V.; Leonis, G.; Christodoulou, E.; Kiriakidi, S.; Becker-Baldus, J.; Stylos, E.K.; Chatziathanasiadou, M.V.; Chatzigiannis, C.M.; Damalas, D.E.; Aksoydan, B.; Javornik, U.; Valsami, G.; Glaubitz, C.; Durdagi, S.; Thomaidis, N.S.; Kolocouris, A.; Plavec, J.; Tzakos, A.G.; Liapakis, G.; Mavromoustakos, T. Host-guest interactions between candesartan and its prodrug candesartan cilexetil in complex with 2-hydroxypropyl-β-cyclodextrin: on the biological potency for angiotensin II antagonism. Mol. Pharm., 2019, 16(3), 1255-1271.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01212] [PMID: 30681344]
[32]
Yilmaz, M.; Karanastasis, A.A.; Chatziathanasiadou, M.V.; Oguz, M.; Kougioumtzi, A.; Clemente, N.; Kellici, T.F.; Zafeiropoulos, N.E.; Avgeropoulos, A.; Mavromoustakos, T.; Dianzani, U.; Karakurt, S.; Tzakos, A.G. Inclusion of quercetin in gold nanoparticles decorated with supramolecular hosts amplifies its tumor targeting properties. ACS Appl. Bio. Mat., 2019, 2(7), 2715-2725.
[http://dx.doi.org/10.1021/acsabm.8b00748]
[33]
Kellici, T.F.; Chatziathanasiadou, M.V.; Diamantis, D.; Chatzikonstantinou, A.V.; Andreadelis, I.; Christodoulou, E.; Valsami, G.; Mavromoustakos, T.; Tzakos, A.G. Mapping the interactions and bioactivity of quercetin-(2-hydroxypropyl)-β-cyclodextrin complex. Int. J. Pharm., 2016, 511(1), 303-311.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.008] [PMID: 27395802]
[34]
Renziehausen, A.; Tsiailanis, A.D.; Perryman, R.; Stylos, E.K.; Chatzigiannis, C.; O’Neill, K.; Crook, T.; Tzakos, A.G.; Syed, N. Encapsulation of temozolomide in a calixarene nanocapsule improves its stability and enhances its therapeutic efficacy against glioblastoma. Mol. Cancer Ther., 2019, 18(9), 1497-1505.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1250] [PMID: 31213505]
[35]
Da Silva, E.; Shahgaldian, P.; Coleman, A.W. Haemolytic properties of some water-soluble para-sulphonato-calix-[n]-arenes. Int. J. Pharm., 2004, 273(1-2), 57-62.
[http://dx.doi.org/10.1016/j.ijpharm.2003.12.008] [PMID: 15010130]
[36]
Verbeeck, R.K.; Musuamba, F.T. The revised EMA guideline for the investigation of bioequivalence for immediate release oral formulations with systemic action. J. Pharm. Pharm. Sci., 2012, 15(3), 376-388.
[http://dx.doi.org/10.18433/J3VC8J] [PMID: 23148877]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy