Review Article

通过递送载体平台提高生物活性分子的治疗功效

卷 28, 期 14, 2021

发表于: 05 June, 2020

页: [2697 - 2706] 页: 10

弟呕挨: 10.2174/0929867327666200605154506

价格: $65

摘要

药物必须克服许多障碍才能达到其理想的治疗目标。在一些情况下,药物,尤其是高度亲脂性的分子,具有低溶解度和生物利用度的问题,因此它们所需的靶向性受到阻碍。此外,可能会产生不需要的代谢产物或可能识别出脱靶。沿着这些路线,纳米药理学提供了新的技术平台,以克服这些界限。具体来说,许多载体平台如环糊精和杯芳烃已被广泛用于宿主亲脂性药物,如血管紧张素 II AT1 受体 (AT1R) 拮抗剂,以及槲皮素和水飞蓟宾。将这些药物封装在超分子或其他系统中可以改善它们的溶解度和代谢稳定性,增加它们的选择性,从而降低它们的有效剂量并提高它们的治疗指数。在这篇小型综述中,我们报告了水飞蓟宾和 AT1R 拮抗剂坎地沙坦在 2-HP-β-环糊精宿主分子中的制剂,它们分别显示出增强的细胞毒性和增加的水飞蓟宾和坎地沙坦的稳定性。此外,我们描述了槲皮素在带有杯芳烃超分子宿主的金纳米颗粒中的封装。此外,已经描述了替莫唑胺在杯芳烃纳米胶囊中的包封。最后,我们报告了使用这些配方所实现的活性增强,以及我们用来表征这些配方并探索宿主和探索分子之间的分子相互作用的分析和计算方法。

关键词: 纳米技术、杯芳烃、环糊精、AT1 拮抗剂、槲皮素、咖啡酸、迷迭香酸、水飞蓟宾、替莫唑胺。

[1]
Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn. Rev., 2016, 10(20), 84-89.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[2]
Spencer, J.P.; Kuhnle, G.G.; Williams, R.J.; Rice-Evans, C. Intracellular metabolism and bioactivity of quercetin and it’s in vivo metabolites. Biochem. J., 2003, 372(Pt 1), 173-181.
[http://dx.doi.org/10.1042/bj20021972] [PMID: 12578560]
[3]
Smith, A.J.; Kavuru, P.; Wojtas, L.; Zaworotko, M.J.; Shytle, R.D. Cocrystals of quercetin with improved solubility and oral bioavailability. Mol. Pharm., 2011, 8(5), 1867-1876.
[http://dx.doi.org/10.1021/mp200209j] [PMID: 21846121]
[4]
Day, A.J.; Mellon, F.; Barron, D.; Sarrazin, G.; Morgan, M.R.; Williamson, G. Human metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free Radic. Res., 2001, 35(6), 941-952.
[http://dx.doi.org/10.1080/10715760100301441] [PMID: 11811545]
[5]
Ferry, D.R.; Smith, A.; Malkhandi, J.; Fyfe, D.W.; deTakats, P.G.; Anderson, D.; Baker, J.; Kerr, D.J. Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin. Cancer Res., 1996, 2(4), 659-668.
[PMID: 9816216]
[6]
Gazák, R.; Walterová, D.; Kren, V. Silybin and silymarin--new and emerging applications in medicine. Curr. Med. Chem., 2007, 14(3), 315-338.
[http://dx.doi.org/10.2174/092986707779941159] [PMID: 17305535]
[7]
Kroll, D.J.; Shaw, H.S.; Oberlies, N.H. Milk thistle nomenclature: why it matters in cancer research and pharmacokinetic studies. Integr. Cancer Ther., 2007, 6(2), 110-119.
[http://dx.doi.org/10.1177/1534735407301825] [PMID: 17548790]
[8]
Zholobenko, A.; Modriansky, M. Silymarin and its constituents in cardiac preconditioning. Fitoterapia, 2014, 97, 122-132.
[http://dx.doi.org/10.1016/j.fitote.2014.05.016] [PMID: 24879900]
[9]
Gazák, R.; Sedmera, P.; Vrbacký, M.; Vostálová, J.; Drahota, Z.; Marhol, P.; Walterová, D.; Kren, V. Molecular mechanisms of silybin and 2,3-dehydrosilybin antiradical activity--role of individual hydroxyl groups. Free Radic. Biol. Med., 2009, 46(6), 745-758.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.11.016] [PMID: 19138735]
[10]
Sonnenbichler, J.; Zetl, I. Biochemical effects of the flavonolignane silibinin on RNA, protein and DNA synthesis in rat livers. Prog. Clin. Biol. Res., 1986, 213, 319-331.
[PMID: 2424029]
[11]
Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups. National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352(10), 987-996.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[12]
O’Reilly, S.M.; Newlands, E.S.; Glaser, M.G.; Brampton, M.; Rice-Edwards, J.M.; Illingworth, R.D.; Richards, P.G.; Kennard, C.; Colquhoun, I.R.; Lewis, P. Temozolomide: a new oral cytotoxic chemotherapeutic agent with promising activity against primary brain tumours. Eur. J. Cancer, 1993, 29A(7), 940-942.
[http://dx.doi.org/10.1016/S0959-8049(05)80198-4] [PMID: 8499146]
[13]
Roos, W.P.; Batista, L.F.; Naumann, S.C.; Wick, W.; Weller, M.; Menck, C.F.; Kaina, B. Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene, 2007, 26(2), 186-197.
[http://dx.doi.org/10.1038/sj.onc.1209785] [PMID: 16819506]
[14]
Zhou, Q.; Guo, P.; Wang, X.; Nuthalapati, S.; Gallo, J.M. Preclinical pharmacokinetic and pharmacodynamic evaluation of metronomic and conventional temozolomide dosing regimens. J. Pharmacol. Exp. Ther., 2007, 321(1), 265-275.
[http://dx.doi.org/10.1124/jpet.106.118265] [PMID: 17259446]
[15]
Meer, L.; Janzer, R.C.; Kleihues, P.; Kolar, G.F. In vivo metabolism and reaction with DNA of the cytostatic agent, 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide (DTIC). Biochem. Pharmacol., 1986, 35(19), 3243-3247.
[http://dx.doi.org/10.1016/0006-2952(86)90419-3] [PMID: 3094535]
[16]
Kellici, T.F.; Tzakos, A.G.; Mavromoustakos, T. Rational drug design and synthesis of molecules targeting the angiotensin II type 1 and type 2 receptors. Molecules, 2015, 20(3), 3868-3897.
[http://dx.doi.org/10.3390/molecules20033868] [PMID: 25738535]
[17]
Kellici, T.F.; Liapakis, G.; Tzakos, A.G.; Mavromoustakos, T. Pharmaceutical compositions for antihypertensive treatments: a patent review. Expert Opin. Ther. Pat., 2015, 25(11), 1305-1317.
[http://dx.doi.org/10.1517/13543776.2015.1086337] [PMID: 26358230]
[18]
Brewster, M.E.; Loftsson, T. Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev., 2007, 59(7), 645-666.
[http://dx.doi.org/10.1016/j.addr.2007.05.012] [PMID: 17601630]
[19]
Tamargo, M.; Tamargo, J. Future drug discovery in renin-angiotensin-aldosterone system intervention. Expert Opin. Drug Discov., 2017, 12(8), 827-848.
[http://dx.doi.org/10.1080/17460441.2017.1335301] [PMID: 28541811]
[20]
Irie, T.; Uekama, K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J. Pharm. Sci., 1997, 86(2), 147-162.
[http://dx.doi.org/10.1021/js960213f] [PMID: 9040088]
[21]
Gould, S.; Scott, R.C. 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): a toxicology review. Food Chem. Toxicol., 2005, 43(10), 1451-1459.
[http://dx.doi.org/10.1016/j.fct.2005.03.007] [PMID: 16018907]
[22]
Matassoli, F.L.; Leão, I.C.; Bezerra, B.B.; Pollard, R.B.; Lütjohann, D.; Hildreth, J.E.K.; Arruda, L.B. Hydroxypropyl-beta-cyclodextrin reduces inflammatory signaling from monocytes: possible implications for suppression of HIV chronic immune activation. MSphere, 2018, 3(6), e00497-e18.
[http://dx.doi.org/10.1128/mSphere.00497-18] [PMID: 30404938]
[23]
Berry-Kravis, E.; Chin, J.; Hoffmann, A.; Winston, A.; Stoner, R.; LaGorio, L.; Friedmann, K.; Hernandez, M.; Ory, D.S.; Porter, F.D.; O’Keefe, J.A. Long-term treatment of niemann-pick type C1 disease with intrathecal 2-hydroxypropyl-β-cyclodextrin. Pediatr. Neurol., 2018, 80, 24-34.
[http://dx.doi.org/10.1016/j.pediatrneurol.2017.12.014] [PMID: 29429782]
[24]
Bakke, S.S.; Aune, M.H.; Niyonzima, N.; Pilely, K.; Ryan, L.; Skjelland, M.; Garred, P.; Aukrust, P.; Halvorsen, B.; Latz, E.; Damås, J.K.; Mollnes, T.E.; Espevik, T. Cyclodextrin reduces cholesterol crystal-induced inflammation by modulating complement activation. J. Immunol., 2017, 199(8), 2910-2920.
[http://dx.doi.org/10.4049/jimmunol.1700302] [PMID: 28855312]
[25]
Kellici, T.F.; Mavromoustakos, T.; Tzakos, A.G.; Yilmaz, M. Calixarenes in lipase biocatalysis and cancer therapy. Curr. Org. Chem., 2016, 20(10), 1043-1057.
[http://dx.doi.org/10.2174/1385272820666151211192249]
[26]
Shinkai, S.; Arimura, T.; Araki, K.; Kawabata, H.; Satoh, H.; Tsubaki, T.; Manabe, O.; Sunamoto, J. Syntheses and aggregation properties of new water-soluble calixarenes. J. Chem. Soc., Perkin Trans. 1, 1989, (11), 2039-2045.
[http://dx.doi.org/10.1039/p19890002039]
[27]
Perret, F.; Coleman, A.W. Biochemistry of anionic calix[n]arenes. Chem. Commun. (Camb.), 2011, 47(26), 7303-7319.
[http://dx.doi.org/10.1039/c1cc11541c] [PMID: 21552631]
[28]
Wang, K.; Cui, J.H.; Xing, S.Y.; Dou, H.X. Molecular binding behavior of water-soluble calix[4]arenes with asymmetric 4,4′-bipyridinium guests in aqueous solution: regioselective recognition or not? Org. Biomol. Chem., 2016, 14(46), 10804-10811.
[http://dx.doi.org/10.1039/C6OB02105K] [PMID: 27830863]
[29]
Kellici, T.F.; Ntountaniotis, D.; Leonis, G.; Chatziathanasiadou, M.; Chatzikonstantinou, A.V.; Becker-Baldus, J.; Glaubitz, C.; Tzakos, A.G.; Viras, K.; Chatzigeorgiou, P.; Tzimas, S.; Kefala, E.; Valsami, G.; Archontaki, H.; Papadopoulos, M.G.; Mavromoustakos, T. Investigation of the interactions of silibinin with 2-hydroxypropyl-β-cyclodextrin through biophysical techniques and computational methods. Mol. Pharm., 2015, 12(3), 954-965.
[http://dx.doi.org/10.1021/mp5008053] [PMID: 25665128]
[30]
Al Omari, A.A.; Al Omari, M.M.; Badwan, A.A.; Al-Sou’od, K.A. Effect of cyclodextrins on the solubility and stability of candesartan cilexetil in solution and solid state. J. Pharm. Biomed. Anal., 2011, 54(3), 503-509.
[http://dx.doi.org/10.1016/j.jpba.2010.09.027] [PMID: 20971593]
[31]
Ntountaniotis, D.; Andreadelis, I.; Kellici, T.F.; Karageorgos, V.; Leonis, G.; Christodoulou, E.; Kiriakidi, S.; Becker-Baldus, J.; Stylos, E.K.; Chatziathanasiadou, M.V.; Chatzigiannis, C.M.; Damalas, D.E.; Aksoydan, B.; Javornik, U.; Valsami, G.; Glaubitz, C.; Durdagi, S.; Thomaidis, N.S.; Kolocouris, A.; Plavec, J.; Tzakos, A.G.; Liapakis, G.; Mavromoustakos, T. Host-guest interactions between candesartan and its prodrug candesartan cilexetil in complex with 2-hydroxypropyl-β-cyclodextrin: on the biological potency for angiotensin II antagonism. Mol. Pharm., 2019, 16(3), 1255-1271.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01212] [PMID: 30681344]
[32]
Yilmaz, M.; Karanastasis, A.A.; Chatziathanasiadou, M.V.; Oguz, M.; Kougioumtzi, A.; Clemente, N.; Kellici, T.F.; Zafeiropoulos, N.E.; Avgeropoulos, A.; Mavromoustakos, T.; Dianzani, U.; Karakurt, S.; Tzakos, A.G. Inclusion of quercetin in gold nanoparticles decorated with supramolecular hosts amplifies its tumor targeting properties. ACS Appl. Bio. Mat., 2019, 2(7), 2715-2725.
[http://dx.doi.org/10.1021/acsabm.8b00748]
[33]
Kellici, T.F.; Chatziathanasiadou, M.V.; Diamantis, D.; Chatzikonstantinou, A.V.; Andreadelis, I.; Christodoulou, E.; Valsami, G.; Mavromoustakos, T.; Tzakos, A.G. Mapping the interactions and bioactivity of quercetin-(2-hydroxypropyl)-β-cyclodextrin complex. Int. J. Pharm., 2016, 511(1), 303-311.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.008] [PMID: 27395802]
[34]
Renziehausen, A.; Tsiailanis, A.D.; Perryman, R.; Stylos, E.K.; Chatzigiannis, C.; O’Neill, K.; Crook, T.; Tzakos, A.G.; Syed, N. Encapsulation of temozolomide in a calixarene nanocapsule improves its stability and enhances its therapeutic efficacy against glioblastoma. Mol. Cancer Ther., 2019, 18(9), 1497-1505.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1250] [PMID: 31213505]
[35]
Da Silva, E.; Shahgaldian, P.; Coleman, A.W. Haemolytic properties of some water-soluble para-sulphonato-calix-[n]-arenes. Int. J. Pharm., 2004, 273(1-2), 57-62.
[http://dx.doi.org/10.1016/j.ijpharm.2003.12.008] [PMID: 15010130]
[36]
Verbeeck, R.K.; Musuamba, F.T. The revised EMA guideline for the investigation of bioequivalence for immediate release oral formulations with systemic action. J. Pharm. Pharm. Sci., 2012, 15(3), 376-388.
[http://dx.doi.org/10.18433/J3VC8J] [PMID: 23148877]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy