General Research Article

Transfection of TGF-β shRNA by Using Ultrasound-targeted Microbubble Destruction to Inhibit the Early Adhesion Repair of Rats Wounded Achilles Tendon In vitro and In vivo

Author(s): Songya Huang, Xi Xiang, Li Qiu*, Liyun Wang, Bihui Zhu, Ruiqian Guo and Xinyi Tang

Volume 20, Issue 1, 2020

Page: [71 - 81] Pages: 11

DOI: 10.2174/1566523220666200516165828

Price: $65

Abstract

Background: Tendon injury is a major orthopedic disorder. Ultrasound-targeted microbubble destruction (UTMD) provides a promising method for gene transfection, which can be used for the treatment of injured tendons.

Objective: The purpose of this study was to investigate the optimal transforming growth factor beta (TGF-β) short hairpin RNA (shRNA) sequence and transfection conditions using UTMD in vitro and to identify its ability for inhibiting the early adhesion repair of rats wounded achilles tendons in vivo.

Methods: The optimal sequence was selected analyzing under a fluorescence microscope and quantitative real-time reverse transcription polymerase chain reaction in vitro. In vivo, 40 rats with wounded Achilles tendons were divided into five groups: (1) control group, (2) plasmid group (3) plasmid + ultrasound group, (4) plasmid + microbubble group, (5) plasmid + microbubble + ultrasound group, and were euthanized at 14 days post treatment. TGF-β expression was evaluated using adhesion scores and pathological examinations.

Results: The optimal condition for UTMD delivery in vitro was 1W/cm2 of output intensity and a 30% duty cycle with 60 s irradiation time (P < 0.05). The transfection efficiency of the plasmid in group 5 was higher than that in other groups (P < 0.05). Moreover, the lowest adhesion index score and the least expression of TGF-β were shown in group 5 (P < 0.05). When compared with the other groups, group 5 had a milder inflammatory reaction.

Conclusion: The results suggested that UTMD delivery of TGF-β shRNA offers a promising treatment approach for a tendon injury in vivo.

Keywords: Ultrasound-targeted microbubble destruction, gene transfection, transforming growth factor, achilles tendon, tendon injury, adhesion.

« Previous
Graphical Abstract

[1]
Andarawis-Puri N, Flatow EL. Promoting effective tendon healing and remodeling. J Orthop Res 2018; 36(12): 3115-24.
[http://dx.doi.org/10.1002/jor.24133] [PMID: 30175859]
[2]
Chen Q, Lu H, Yang H. Chitosan inhibits fibroblasts growth in Achilles tendon via TGF-β1/Smad3 pathway by miR-29b. Int J Clin Exp Pathol 2014; 7(12): 8462-70.
[PMID: 25674210]
[3]
Legrand A, Kaufman Y, Long C, Fox PM. Molecular biology of flexor tendon healing in relation to reduction of tendon adhesions. J Hand Surg Am 2017; 42(9): 722-6.
[http://dx.doi.org/10.1016/j.jhsa.2017.06.013] [PMID: 28709791]
[4]
Frank C, Woo SL, Amiel D, Harwood F, Gomez M, Akeson W. Medial collateral ligament healing. A multidisciplinary assessment in rabbits. Am J Sports Med 1983; 11(6): 379-89.
[http://dx.doi.org/10.1177/036354658301100602] [PMID: 6650715]
[5]
Nakamura N, Hart DA, Boorman RS, et al. Decorin antisense gene therapy improves functional healing of early rabbit ligament scar with enhanced collagen fibrillogenesis in vivo. J Orthop Res 2000; 18(4): 517-23.
[http://dx.doi.org/10.1002/jor.1100180402] [PMID: 11052486]
[6]
Tang Y, Leng Q, Xiang X, Zhang L, Yang Y, Qiu L. Use of ultrasound-targeted microbubble destruction to transfect IGF-1 cDNA to enhance the regeneration of rat wounded Achilles tendon in vivo. Gene Ther 2015; 22(8): 610-8.
[http://dx.doi.org/10.1038/gt.2015.32] [PMID: 25840275]
[7]
Lipman K, Wang C, Ting K, Soo C, Zheng Z. Tendinopathy: injury, repair, and current exploration. Drug Des Devel Ther 2018; 12: 591-603.
[http://dx.doi.org/10.2147/DDDT.S154660] [PMID: 29593382]
[8]
Yang G, Rothrauff BB, Tuan RS. Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm. Birth Defects Res C Embryo Today 2013; 99(3): 203-22.
[http://dx.doi.org/10.1002/bdrc.21041] [PMID: 24078497]
[9]
Hartman ZC, Appledorn DM, Amalfitano A. Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications. Virus Res 2008; 132(1-2): 1-14.
[http://dx.doi.org/10.1016/j.virusres.2007.10.005] [PMID: 18036698]
[10]
Xu J, Wang Y, Li Z, Wang Q, Zhou X, Wu W. Ultrasound-Targeted Microbubble Destruction (UTMD) combined with liposome increases the effectiveness of suppressing proliferation, migration, invasion, and Epithelial- Mesenchymal Transition (EMT) via Targeting Metadherin (MTDH) by ShRNA. Med Sci Monit 2019; 25: 2640-8.
[http://dx.doi.org/10.12659/MSM.912955] [PMID: 30969950]
[11]
Li JM, Zhao MX, Su H, et al. Multifunctional quantum-dot-based siRNA delivery for HPV18 E6 gene silence and intracellular imaging. Biomaterials 2011; 32(31): 7978-87.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.011] [PMID: 21784514]
[12]
Wan C, Li F, Li H. Gene therapy for ocular diseases meditated by ultrasound and microbubbles (Review). Mol Med Rep 2015; 12(4): 4803-14.
[http://dx.doi.org/10.3892/mmr.2015.4054] [PMID: 26151686]
[13]
Wang G, Zhuo Z, Xia H, et al. Investigation into the impact of diagnostic ultrasound with microbubbles on the capillary permeability of rat hepatomas. Ultrasound Med Biol 2013; 39(4): 628-37.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2012.11.004] [PMID: 23415284]
[14]
Qiu L, Zhang L, Wang L, et al. Ultrasound-targeted microbubble destruction enhances naked plasmid DNA transfection in rabbit Achilles tendons in vivo. Gene Ther 2012; 19(7): 703-10.
[http://dx.doi.org/10.1038/gt.2011.165] [PMID: 22033463]
[15]
Andarawis-Puri N, Flatow EL, Soslowsky LJ. Tendon basic science: Development, repair, regeneration, and healing. J Orthop Res 2015; 33(6): 780-4.
[http://dx.doi.org/10.1002/jor.22869] [PMID: 25764524]
[16]
Thomopoulos S, Parks WC, Rifkin DB, Derwin KA. Mechanisms of tendon injury and repair. J Orthop Res 2015; 33(6): 832-9.
[http://dx.doi.org/10.1002/jor.22806] [PMID: 25641114]
[17]
Kim HM, Galatz LM, Das R, Havlioglu N, Rothermich SY, Thomopoulos S. The role of transforming growth factor beta isoforms in tendon-to-bone healing. Connect Tissue Res 2011; 52(2): 87-98.
[http://dx.doi.org/10.3109/03008207.2010.483026] [PMID: 20615095]
[18]
Chan KM, Fu SC, Wong YP, Hui WC, Cheuk YC, Wong MWN. Expression of transforming growth factor beta isoforms and their roles in tendon healing. Wound Repair Regen 2008; 16(3): 399-407.
[http://dx.doi.org/10.1111/j.1524-475X.2008.00379.x] [PMID: 18471258]
[19]
Tsai WC, Pang JHS, Hsu CC, Chu NK, Lin MS, Hu CF. Ultrasound stimulation of types I and III collagen expression of tendon cell and upregulation of transforming growth factor beta. J Orthop Res 2006; 24(6): 1310-6.
[http://dx.doi.org/10.1002/jor.20130] [PMID: 16705693]
[20]
Fathi E, Farahzadi R. Zinc sulphate mediates the stimulation of cell proliferation of rat adipose tissue-derived mesenchymal stem cells under high intensity of EMF exposure. Biol Trace Elem Res 2018; 184(2): 529-35.
[http://dx.doi.org/10.1007/s12011-017-1199-4] [PMID: 29189996]
[21]
Ruan H, Liu S, Li F, Li X, Fan C. prevention of tendon adhesions by ERK2 small interfering RNAs. Int J Mol Sci 2013; 14(2): 4361-71.
[http://dx.doi.org/10.3390/ijms14024361] [PMID: 23429276]
[22]
Zhou Y, Zhang L, Zhao W, Wu Y, Zhu C, Yang Y. Nanoparticle-mediated delivery of TGF-β1 miRNA plasmid for preventing flexor tendon adhesion formation. Biomaterials 2013; 34(33): 8269-78.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.072] [PMID: 23924908]
[23]
Chen ZY, Lin Y, Yang F, Jiang L, Ge Sp. Gene therapy for cardiovascular disease mediated by ultrasound and microbubbles. Cardiovasc Ultrasound 2013; 11: 11.
[http://dx.doi.org/10.1186/1476-7120-11-11] [PMID: 23594865]
[24]
Su Q, Li L, Liu Y, Zhou Y, Wang J, Wen W. Ultrasound-targeted microbubble destruction-mediated microRNA-21 transfection regulated PDCD4/NF-κB/TNF-α pathway to prevent coronary microembolization-induced cardiac dysfunction. Gene Ther 2015; 22(12): 1000-6.
[http://dx.doi.org/10.1038/gt.2015.59] [PMID: 26079407]
[25]
Zhang N, Yan F, Liang X, et al. Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved Parkinson’s disease therapy. Theranostics 2018; 8(8): 2264-77.
[http://dx.doi.org/10.7150/thno.23734] [PMID: 29721078]
[26]
Zhang Y, Ye C, Xu Y, et al. Ultrasound-mediated microbubble destruction increases renal interstitial capillary permeability in early diabetic nephropathy rats. Ultrasound Med Biol 2014; 40(6): 1273-81.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2013.12.006] [PMID: 24613211]
[27]
Saito M, Mazda O, Takahashi KA, et al. Sonoporation mediated transduction of pDNA/siRNA into joint synovium in vivo. J Orthop Res 2007; 25(10): 1308-16.
[http://dx.doi.org/10.1002/jor.20392] [PMID: 17549706]
[28]
da Cunha A, Parizotto NA, Vidal BdeC. The effect of therapeutic ultrasound on repair of the achilles tendon (tendo calcaneus) of the rat. Ultrasound Med Biol 2001; 27(12): 1691-6.
[http://dx.doi.org/10.1016/S0301-5629(01)00477-X] [PMID: 11839414]
[29]
Yeung CK, Guo X, Ng YF. Pulsed ultrasound treatment accelerates the repair of Achilles tendon rupture in rats. J Orthop Res 2006; 24(2): 193-201.
[http://dx.doi.org/10.1002/jor.20020] [PMID: 16435348]
[30]
Maeda T, Sakabe T, Sunaga A, et al. Conversion of mechanical force into TGF-β-mediated biochemical signals. Curr Biol 2011; 21(11): 933-41.
[http://dx.doi.org/10.1016/j.cub.2011.04.007] [PMID: 21600772]
[31]
Xia C, Yang XY, Wang Y, Tian S. Inhibition effect of mannose-6-phosphate on expression of transforming growth factor Beta receptor in flexor tendon cells. Orthopedics 2011; 34(1): 21.
[http://dx.doi.org/10.3928/01477447-20101123-09] [PMID: 21210624]
[32]
Wu YF, Mao WF, Zhou YL, Wang XT, Liu PY, Tang JB. Adeno-associated virus-2-mediated TGF-β1 microRNA transfection inhibits adhesion formation after digital flexor tendon injury. Gene Ther 2016; 23(2): 167-75.
[http://dx.doi.org/10.1038/gt.2015.97] [PMID: 26381218]
[33]
Voleti PB, Buckley MR, Soslowsky LJ. Tendon healing: repair and regeneration. Annu Rev Biomed Eng 2012; 14: 47-71.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150122] [PMID: 22809137]
[34]
Müller SA, Todorov A, Heisterbach PE, Martin I, Majewski M. Tendon healing: an overview of physiology, biology, and pathology of tendon healing and systematic review of state of the art in tendon bioengineering. Knee Surg Sports Traumatol Arthrosc 2015; 23(7): 2097-105.
[http://dx.doi.org/10.1007/s00167-013-2680-z] [PMID: 24057354]
[35]
Jiang C, Shao L, Wang Q, Dong Y. Repetitive mechanical stretching modulates transforming growth factor-β induced collagen synthesis and apoptosis in human patellar tendon fibroblasts. Biochem Cell Biol 2012; 90(5): 667-74.
[http://dx.doi.org/10.1139/o2012-024] [PMID: 22788736]
[36]
Branford OA, Klass BR, Grobbelaar AO, Rolfe KJ. The growth factors involved in flexor tendon repair and adhesion formation. J Hand Surg Eur Vol 2014; 39(1): 60-70.
[http://dx.doi.org/10.1177/1753193413509231] [PMID: 24162452]
[37]
Billy E, Brondani V, Zhang H, Müller U, Filipowicz W. Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc Natl Acad Sci USA 2001; 98(25): 14428-33.
[http://dx.doi.org/10.1073/pnas.261562698] [PMID: 11724966]
[38]
Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003; 33(3): 401-6.
[http://dx.doi.org/10.1038/ng1117] [PMID: 12590264]
[39]
Lu P, Zhang GR, Cai YZ, et al. Lentiviral-encoded shRNA silencing of proteoglycan decorin enhances tendon repair and regeneration within a rat model. Cell Transplant 2013; 22(9): 1507-17.
[http://dx.doi.org/10.3727/096368912X661292] [PMID: 23295185]
[40]
Klein MB, Yalamanchi N, Pham H, Longaker MT, Chang J. Flexor tendon healing in vitro: effects of TGF-beta on tendon cell collagen production. J Hand Surg Am 2002; 27(4): 615-20.
[http://dx.doi.org/10.1053/jhsu.2002.34004] [PMID: 12132085]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy