Abstract
Triple-negative Breast Cancer (TNBC) is the most aggressive and prevailing breast cancer subtype. The chemotherapeutics used in the treatment of TNBC suffer from chemoresistance, dose-limiting toxicities and off-target side effects. As a result, conventional chemotherapeutics are unable to prevent tumor growth, metastasis and result in failure of therapy. Various new targets such as BCSCs surface markers (CD44, CD133, ALDH1), signaling pathways (IL-6/JAK/STAT3, notch), pro and anti-apoptotic proteins (Bcl-2, Bcl-xL, DR4, DR5), hypoxic factors (HIF-1α, HIF-2α) and drug efflux transporters (ABCC1, ABCG2 and ABCB1) have been exploited to treat TNBC. Further, to improve the efficacy and safety of conventional chemotherapeutics, researchers have tried to deliver anticancer agents specifically to the TNBCs using nanocarrier based drug delivery. In this review, an effort has been made to highlight the various factors responsible for the chemoresistance in TNBC, novel molecular targets of TNBC and nano-delivery systems employed to achieve sitespecific drug delivery to improve efficacy and reduce off-target side effects.
Keywords: Triple-negative breast cancer, metastasis, chemoresistance, nanocarriers, chemoresistance, drug therapy.
Graphical Abstract
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1022] [PMID: 17804716]
[http://dx.doi.org/10.1007/s13346-018-0551-3] [PMID: 29978332]
[http://dx.doi.org/10.18632/oncotarget.12284] [PMID: 27765921]
[http://dx.doi.org/10.1200/JGO.2016.005397] [PMID: 28717728]
[http://dx.doi.org/10.1038/nrclinonc.2016.66] [PMID: 27184417]
[PMID: 26175926]
[http://dx.doi.org/ 10.3390/cells8090957] [PMID: 31443516]
(b) Ji, X.; Lu, Y.; Tian, H.; Meng, X.; Wei, M.; Cho, W.C. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed. Pharmacother., 2019, 114, 108800.
[http://dx.doi.org/10.1016/j.biopha.2019.108800] [PMID: 30921705]
[http://dx.doi.org/10.1007/s00210-018-1479-3] [PMID: 29476201]
[http://dx.doi.org/ 10.3390/molecules23040826] [PMID: 29617302]
(b) Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[http://dx.doi.org/10.2147/IJN.S146315]
[http://dx.doi.org/10.1155/2019/3702518]
[http://dx.doi.org/10.1016/j.bbagen.2018.09.019] [PMID: 30268729]
[http://dx.doi.org/10.1007/s00018-003-3336-9] [PMID: 15052411]
[http://dx.doi.org/10.1158/0008-5472.can-05-0592] [PMID: 16024622]
(b) Moitra, K. Overcoming multidrug resistance in cancer stem cells. biomed res. int, 2015, 2015.
[http://dx.doi.org/10.1155/2015/635745]
[http://dx.doi.org/10.1371/journal.pone.0062766 pmid: 23658771]
(b) Shervington, A.; Lu, C. Expression of multidrug resistance genes in normal and cancer stem cells. Cancer Invest., 2008, 26(5), 535-542.
[http://dx.doi.org/10.1080/07357900801904140] [PMID: 18568776]
[http://dx.doi.org/10.1007/s10549-018-4985-6] [PMID: 30306430]
[http://dx.doi.org/10.1158/1541-7786.mcr-17-0353] [PMID: 29523764]
(b) Cole, S.P. Multidrug resistance protein 1 (MRP1, ABCC1), a “multitasking” ATP-binding cassette (ABC) transporter. J. Biol. Chem., 2014, 289(45), 30880-30888.
[http://dx.doi.org/10.1074/jbc.R114.609248] [PMID: 25281745]
[http://dx.doi.org/10.1054/bjoc.2001.2144] [PMID: 11720446]
[http://dx.doi.org/10.1158/1078-0432.ccr-09-1321] [PMID: 20028753]
(b) Lal, S.; Wong, Z.W.; Sandanaraj, E.; Xiang, X.; Ang, P.C.S.; Lee, E.J.; Chowbay, B. Influence of ABCB1 and ABCG2 polymorphisms on doxorubicin disposition in Asian breast cancer patients. Cancer Sci.,, 2008, 99(4), 816-823.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00744.x] [PMID: 18377430]
(c) Vaidyanathan, A.; Sawers, L.; Gannon, A-L.; Chakravarty, P.; Scott, A.L.; Bray, S.E.; Ferguson, M.J.; Smith, G. ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells. Br. J. Cancer, 2016, 115(4), 431-441.
[http://dx.doi.org/10.1038/bjc.2016.203] [PMID: 27415012]
[http://dx.doi.org/10.1073/pnas.95.12.7024] [PMID: 9618532]
[http://dx.doi.org/10.1038/nrc2789] [PMID: 20075923]
[http://dx.doi.org/10.20517/cdr.2019.10]
[http://dx.doi.org/10.1016/j.addr.2012.09.027] [PMID: 12535572]
(b) Stacy, A.E.; Jansson, P.J.; Richardson, D.R. Molecular pharmacology of ABCG2 and its role in chemoresistance. Mol. Pharmacol., 2013, 84(5), 655-669.
[http://dx.doi.org/10.1124/mol.113.088609] [PMID: 24021215]
(c) Mao, Q.; Unadkat, J.D. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS J., 2015, 17(1), 65-82.
[http://dx.doi.org/10.1208/s12248-014-9668-6] [PMID: 25236865]
[http://dx.doi.org/10.1038/s12276-018-0197-8] [PMID: 30617282]
[http://dx.doi.org/10.3390/biomedicines6030077] [PMID: 30018256]
(b) Kai, M.; Kanaya, N.; Wu, S.V.; Mendez, C.; Nguyen, D.; Luu, T.; Chen, S. Targeting breast cancer stem cells in triple-negative breast cancer using a combination of LBH589 and salinomycin. Breast Cancer Res. Treat., 2015, 151(2), 281-294.
[http://dx.doi.org/10.1007/s10549-015-3376-5] [PMID: 25904215]
[http://dx.doi.org/10.1093/jnci/djj495] [PMID: 17179479]
(b) Saeg, F.; Anbalagan, M. Breast cancer stem cells and the challenges of eradication: a review of novel therapies. Stem Cell Investig., 2018, 5, 39.
[http://dx.doi.org/10.21037/sci.2018.10.05] [PMID: 30498750]
[http://dx.doi.org/10.1016/j.breast.2010.08.001] [PMID: 20810282]
[http://dx.doi.org/10.3892/or.2013.2943] [PMID: 24366074]
[http://dx.doi.org/10.21037/sci.2017.11.03] [PMID: 29270422]
[http://dx.doi.org/10.1097/MD.0000000000007171] [PMID: 28640095]
[http://dx.doi.org/10.1016/j.gamo.2016.01.003]
[http://dx.doi.org/10.1016/j.ctrv.2018.07.004] [PMID: 30029203]
(b) Liu, S.; Wicha, M.S. Targeting breast cancer stem cells J. Clin. Oncol, 2010, 28(25), 4006-4012.
[http://dx.doi.org/10.1200/jco.2009.27.5388] [PMID: 20498387]
(c) Dey, P.; Rathod, M.; De, A. Targeting stem cells in the realm of drug-resistant breast cancer. Breast Cancer (Dove Med. Press), 2019, 11, 115-135.
[http://dx.doi.org/10.2147/BCTT.S189224] [PMID: 30881110]
[http://dx.doi.org/10.1038/nature06188] [PMID: 17914389]
(b) Singh, A.; Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 2010, 29(34), 4741-4751.
[http://dx.doi.org/10.1038/onc.2010.215] [PMID: 20531305]
[http://dx.doi.org/10.1172/JCI39675] [PMID: 19487817]
[http://dx.doi.org/10.1038/nrc3447] [PMID: 23344542]
[http://dx.doi.org/10.4048/jbc.2015.18.4.303] [PMID: 26770236]
[http://dx.doi.org/10.1016/j.bbacli.2015.03.003] [PMID: 26676166]
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[http://dx.doi.org/10.1371/journal.pone.0180620] [PMID: 28700659]
(b) He, Y-C.; Zhou, F-L.; Shen, Y.; Liao, D-F.; Cao, D. Apoptotic death of cancer stem cells for cancer therapy. Int. J. Mol. Sci., 2014, 15(5), 8335-8351.
[http://dx.doi.org/10.3390/ijms15058335] [PMID: 24823879]
[http://dx.doi.org/10.1016/j.lfs.2019.116952] [PMID: 31622608]
(b) Semenza, G.L. HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol., 2001, 13(2), 167-171.
[http://dx.doi.org/10.1016/S0955-0674(00)00194-0] [PMID: 11248550]
[http://dx.doi.org/10.4110/in.2019.19.e23] [PMID: 31501711]
[http://dx.doi.org/10.1074/jbc.M111162200] [PMID: 11859074]
[http://dx.doi.org/10.1038/cdd.2011.95] [PMID: 21818118]
[http://dx.doi.org/10.1080/15384047.2015.1016662] [PMID: 25781910]
(b) De Francesco, E.M.; Maggiolini, M.; Musti, A.M. Crosstalk between Notch, HIF-1α and GPER in breast cancer EMT. Int. J. Mol. Sci., 2018, 19(7), 2011.
[http://dx.doi.org/10.3390/ijms19072011]
[http://dx.doi.org/10.5483/BMBRep.2019.52.7.152] [PMID: 31186087]
[http://dx.doi.org/10.1186/s12943-019-0994-2] [PMID: 30927908]
[http://dx.doi.org/10.1038/s41467-017-01829-1] [PMID: 29158506]
[http://dx.doi.org/10.1074/jbc.M101291200] [PMID: 11320092]
[http://dx.doi.org/10.18632/oncotarget.10858] [PMID: 27474173]
[http://dx.doi.org/10.1016/j.drudis.2019.09.001] [PMID: 31520748]
[http://dx.doi.org/10.1080/08977194.2018.1473393] [PMID: 29873274]
[http://dx.doi.org/10.1002/jbt.22039] [PMID: 29341321]
(b) Soleymani Abyaneh, H.; Gupta, N.; Radziwon-Balicka, A.; Jurasz, P.; Seubert, J.; Lai, R.; Lavasanifar, A. STAT3 but Not HIF-1α is important in mediating hypoxia-induced chemoresistance in MDA-MB-231, a triple negative breast cancer cell line. Cancers (Basel), 2017, 9(10), 137.
[http://dx.doi.org/10.3390/cancers9100137] [PMID: 29036915]
[http://dx.doi.org/10.1038/oncsis.2017.14] [PMID: 28368389]
[http://dx.doi.org/10.1016/j.stem.2008.01.003] [PMID: 18371452]
[http://dx.doi.org/10.1016/j.devcel.2009.06.016] [PMID: 19619488]
[http://dx.doi.org/10.1155/2019/8707053]
[http://dx.doi.org/10.1242/jcs.127308]
[http://dx.doi.org/10.1186/s12943-018-0797-x] [PMID: 29455658]
(b) Zhang, M.; Zhang, X.; Zhao, S.; Wang, Y.; Di, W.; Zhao, G.; Yang, M.; Zhang, Q. Prognostic value of survivin and EGFR protein expression in triple-negative breast cancer (TNBC) patients. Target. Oncol., 2014, 9(4), 349-357.
[http://dx.doi.org/10.1007/s11523-013-0300-y] [PMID: 24233638]
[http://dx.doi.org/10.3892/ol.2018.9290] [PMID: 30250564]
(b) Qin, J-J.; Yan, L.; Zhang, J.; Zhang, W-D. stat3 as a potential therapeutic target in triple negative breast cancer: a systematic review. j. exp. clin. cancer res., 2019, 38(1), 195.
[http://dx.doi.org/10.1186/s13046-019-1206-z] [PMID: 31088482]
(c) Poma, P.; Labbozzetta, M.; D’Alessandro, N.; Notarbartolo, M. NF-κB is a potential molecular drug target in triple-negative breast cancers. OMICS, 2017, 21(4), 225-231.
[http://dx.doi.org/10.1089/omi.2017.0020] [PMID: 28388298]
[http://dx.doi.org/10.18632/oncotarget.12065] [PMID: 27655711]
[http://dx.doi.org/10.1093/carcin/bgn079] [PMID: 18359760]
(b) Dong, Y.; Li, A.; Wang, J.; Weber, J.D.; Michel, L.S. Synthetic lethality through combined Notch-epidermal growth factor receptor pathway inhibition in basal-like breast cancer. Cancer Res., 2010, 70(13), 5465-5474.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0173] [PMID: 20570903]
[http://dx.doi.org/10.3389/fonc.2014.00360] [PMID: 25566499]
[http://dx.doi.org/10.1038/onc.2008.149] [PMID: 18469855]
[http://dx.doi.org/10.1038/bjc.2011.321] [PMID: 21847123]
[http://dx.doi.org/10.3389/fcell.2017.00018] [PMID: 28326306]
[http://dx.doi.org/10.5966/sctm.2015-0048] [PMID: 26136504]
[http://dx.doi.org/10.1186/s13045-018-0605-5] [PMID: 29747682]
[PMID: 22552741]
[http://dx.doi.org/10.1016/j.febslet.2005.03.079] [PMID: 15862315]
[http://dx.doi.org/10.1091/mbc.12.6.1859] [PMID: 11408591]
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3478] [PMID: 16061646]
[http://dx.doi.org/10.1016/j.biocel.2018.10.013] [PMID: 30399449]
[http://dx.doi.org/10.1186/1476-4598-13-207] [PMID: 25200065]
[http://dx.doi.org/10.1038/onc.2012.85] [PMID: 22469978]
[http://dx.doi.org/10.1016/j.ajpath.2012.03.019] [PMID: 22626806]
[http://dx.doi.org/10.1016/j.jconrel.2013.07.014] [PMID: 23871962]
[http://dx.doi.org/10.5301/JBM.5000048] [PMID: 24338721]
[http://dx.doi.org/10.1111/j.1582-4934.2008.00455.x] [PMID: 18681906]
[http://dx.doi.org/10.18632/oncotarget.19544] [PMID: 29245909]
(b) Rodriguez-Torres, M.; Allan, A.L. Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors. Clin. Exp. Metastasis, 2016, 33(1), 97-113.
[http://dx.doi.org/10.1007/s10585-015-9755-9] [PMID: 26445849]
[http://dx.doi.org/10.6061/clinics/2013(05)03] [PMID: 23778413]
[http://dx.doi.org/10.1007/s10549-011-1692-y] [PMID: 21818590]
[http://dx.doi.org/10.1016/j.pharmthera.2013.02.003] [PMID: 23458608]
[PMID: 21036696]
(b) Schweisguth, F. Regulation of notch signaling activity. Curr. Biol., 2004, 14(3), R129-R138.
[http://dx.doi.org/10.1016/j.cub.2004.01.023] [PMID: 14986688]
[http://dx.doi.org/10.5114/wo.2013.35588] [PMID: 24596507] [http://dx.doi.org/10.1007/978-1-4614-0899-4_23]
[http://dx.doi.org/10.1016/j.stem.2009.05.019] [PMID: 19664991]
(b) Yen, W-C.; Fischer, M.M.; Hynes, M.; Wu, J.; Kim, E.; Beviglia, L.; Yeung, V.P.; Song, X.; Kapoun, A.M.; Lewicki, J.; Gurney, A.; Simeone, D.M.; Hoey, T. Anti-DLL4 has broad spectrum activity in pancreatic cancer dependent on targeting DLL4-Notch signaling in both tumor and vasculature cells. Clin. Cancer Res., 2012, 18(19), 5374-5386.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0736] [PMID: 22952347]
[http://dx.doi.org/10.1016/j.canlet.2015.12.025] [PMID: 26739060]
[http://dx.doi.org/10.1172/jci44745] [PMID: 21633165]
(b) Moreira, M.P.; da Conceição Braga, L.; Cassali, G.D.; Silva, L.M. STAT3 as a promising chemoresistance biomarker associated with the CD44+/high/CD24-/low/ALDH+ BCSCs-like subset of the triple-negative breast cancer (TNBC) cell line. Exp. Cell Res., 2018, 363(2), 283-290.
[http://dx.doi.org/10.1016/j.yexcr.2018.01.018] [PMID: 29352988]
[http://dx.doi.org/10.1038/nrc1275 ] [PMID: 14964307]
(b) Geiger, J.L.; Grandis, J.R.; Bauman, J.E. The STAT3 pathway as a therapeutic target in head and neck cancer: Barriers and innovations. Oral Oncol., 2016, 56, 84-92.
[http://dx.doi.org/10.1016/j.oraloncology.2015.11.022] [PMID: 26733183]
[http://dx.doi.org/10.1002/ijc.29923] [PMID: 26559373]
[http://dx.doi.org/ 10.3892/ijo.2017.3846] [PMID: 28098855]
[http://dx.doi.org/10.1016/j.cellsig.2013.01.007] [PMID: 23333246]
[http://dx.doi.org/10.1038/s41388-018-0340-y] [PMID: 29855616]
[http://dx.doi.org/10.1016/j.devcel.2011.06.017] [PMID: 21763611]
[http://dx.doi.org/10.15252/embr.201439675] [PMID: 26253117]
[http://dx.doi.org/10.1038/sj.cgt.7700706] [PMID: 15031723]
[http://dx.doi.org/10.3892/ijmm.2015.2441] [PMID: 26707081]
(b) Liang, D.H.; El-Zein, R.; Dave, B. Autophagy inhibition to increase radiosensitization in breast cancer. J. Nucl. Med. Radiat. Ther., 2015, 6(5), 254.
[http://dx.doi.org/10.4172/2155-9619.1000254] [PMID: 26613064]
[http://dx.doi.org/10.1007/s10549-011-1763-0] [PMID: 21915634]
[http://dx.doi.org/10.4161/cbt.29183] [PMID: 25084100]
[http://dx.doi.org/10.1016/j.molmed.2013.03.005] [PMID: 23601906]
(b) He, L.; Gu, J.; Lim, L.Y.; Yuan, Z.X.; Mo, J. Nanomedicine-mediated therapies to target breast cancer stem cells. Front. Pharmacol., 2016, 7, 313.
[http://dx.doi.org/10.3389/fphar.2016.00313] [PMID: 27679576]
[http://dx.doi.org/10.2147/ott.s158206] [PMID: 29872312]
(b) Lan, J.; Lu, H.; Samanta, D.; Salman, S.; Lu, Y.; Semenza, G.L. Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment. Proc. Natl. Acad. Sci. USA, 2018, 115(41), E9640-E9648.
[http://dx.doi.org/10.1073/pnas.1809695115] [PMID: 30242135]
[http://dx.doi.org/10.1007/978-94-007-7359-2_13]
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
(b) Rabindran, S.K.; He, H.; Singh, M.; Brown, E.; Collins, K.I.; Annable, T.; Greenberger, L.M. reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin c. cancer res., 1998, 58(24), 5850-5858.
[PMID: 9865745]
(c) Robey, R.W.; Steadman, K.; Polgar, O.; Morisaki, K.; Blayney, M.; Mistry, P.; Bates, S.E. Pheophorbide a is a specific probe for ABCG2 function and inhibition. cancer res., 2004, 64(4), 1242-1246.
[http://dx.doi.org/10.1158/0008-5472.can-03-3298] [PMID: 14973080]
(d) Woehlecke, H.; Osada, H.; Herrmann, A.; Lage, H. Reversal of breast cancer resistance protein-mediated drug resistance by tryprostatin A. Int. J. Cancer, 2003, 107(5), 721-728.
[http://dx.doi.org/10.1002/ijc.11444] [PMID: 14566821]
[http://dx.doi.org/10.1371/journal.pone.0005172] [PMID: 19390592]
[http://dx.doi.org/10.1016/j.jconrel.2008.04.013] [PMID: 18534704]
[http://dx.doi.org/10.1016/j.jconrel.2010.01.004] [PMID: 20074598]
[http://dx.doi.org/10.1016/j.drup.2017.07.002] [PMID: 29145974]
(b) Thakur, V.; Kutty, R.V. Recent advances in nanotheranostics for triple negative breast cancer treatment. J. Exp. Clin. Cancer Res., 2019, 38(1), 430.
[http://dx.doi.org/10.1186/s13046-019-1443-1] [PMID: 31661003]
[http://dx.doi.org/10.2147/IJN.S168053] [PMID: 30154657]
[PMID: 11356986]
(b) Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. nat. nanotechnol, 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
(c) Anselmo, A.C.; Mitragotri, S. Cell-mediated delivery of nanoparticles: Taking advantage of circulatory cells to target nanoparticles. J. Control. Release, 2014, 190, 531-541.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.050] [PMID: 24747161]
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
(b) Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J., 2011, 19(3), 129-141.
[http://dx.doi.org/10.1016/j.jsps.2011.04.001] [PMID: 23960751]
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.075] [PMID: 27045981]
[http://dx.doi.org/10.1021/nn506928p] [PMID: 26004286]
[http://dx.doi.org/10.1088/0957-4484/27/6/065103] [PMID: 26754042]
[http://dx.doi.org/10.1016/j.ymthe.2019.04.018] [PMID: 31085078]
[http://dx.doi.org/10.1016/j.jconrel.2014.11.011] [PMID: 25445694]
[http://dx.doi.org/10.1038/mt.2016.42] [PMID: 26916284]
[http://dx.doi.org/10.1039/C5NR00403A] [PMID: 25785368]
[http://dx.doi.org/10.1080/03639045.2018.1539496] [PMID: 30348020]
[PMID: 21976975]
[http://dx.doi.org/10.1016/j.ijpharm.2019.118637] [PMID: 31550511]
[http://dx.doi.org/10.1016/j.jconrel.2014.12.043] [PMID: 25575864]
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.048] [PMID: 26344365]
[http://dx.doi.org/10.1080/21691401.2017.1366337] [PMID: 28826237]
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
(b) Liu, X.; Zhang, Y.; Li, J.; Wang, D.; Wu, Y.; Li, Y.; Lu, Z.; Yu, S.C.; Li, R.; Yang, X. Cognitive deficits and decreased locomotor activity induced by single-walled carbon nanotubes and neuroprotective effects of ascorbic acid. int. j. nanomedicine, 2014, 9, 823-839.
[PMID: 24596461]
(c) Bai, Y.; Zhang, Y.; Zhang, J.; Mu, Q.; Zhang, W.; Butch, E.R.; Snyder, S.E.; Yan, B. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat. Nanotechnol., 2010, 5(9), 683-689.
[http://dx.doi.org/10.1038/nnano.2010.153] [PMID: 20693989]
[http://dx.doi.org/10.1039/c1cs15188f] [PMID: 22170510]
(b) Kagan, V.E.; Konduru, N.V.; Feng, W.; Allen, B.L.; Conroy, J.; Volkov, Y.; Vlasova, I.I.; Belikova, N.A.; Yanamala, N.; Kapralov, A.; Tyurina, Y.Y.; Shi, J.; Kisin, E.R.; Murray, A.R.; Franks, J.; Stolz, D.; Gou, P.; Klein-Seetharaman, J.; Fadeel, B.; Star, A.; Shvedova, A.A. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. nat. nanotechnol., 2010, 5(5), 354-359.
[http://dx.doi.org/10.1038/nnano.2010.44] [PMID: 20364135]
(c) Klebanoff, S.J.; Kettle, A.J.; Rosen, H.; Winterbourn, C.C.; Nauseef, W.M. Myeloperoxidase: A front-line defender against phagocytosed microorganisms. J. Leukoc. Biol., 2013, 93(2), 185-198.
[http://dx.doi.org/10.1189/jlb.0712349] [PMID: 23066164]
[http://dx.doi.org/10.1201/b11989]
(b) Niska, K.; Pyszka, K.; Tukaj, C.; Wozniak, M.; Radomski, M.W.; Inkielewicz-Stepniak, I. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells. Int. J. Nanomedicine, 2015, 10, 1095-1107.
[PMID: 25709434]