摘要
三阴性乳腺癌(TNBC)是最具侵袭性和最普遍的乳腺癌亚型。化疗药物用于治疗TNBC存在化疗耐药性、剂量限制毒副作用和脱靶副作用。因此,传统的化疗药物无法阻止肿瘤的生长、转移,导致治疗失败。各种新的靶点如BCSCs表面标记物(CD44、CD133、ALDH1)、信号通路(IL-6/JAK/STAT3、notch)、促凋亡和抗凋亡蛋白(Bcl-2、Bcl-xL、DR4、DR5)、缺氧因子(HIF-1 - 3、HIF-2 - 3)和药物外排转运体(ABCC1、ABCG2、ABCB1)已被开发用于治疗TNBC。此外,为了提高传统化疗药物的疗效和安全性,研究人员已经尝试使用基于纳米载体的药物给药,专门为TNBC提供抗癌药物。在这篇综述中,我们着重介绍了导致三氧化二氮耐药性的各种因素、三氧化二氮的新分子靶点以及利用纳米给药系统实现位点特异性给药以提高疗效和减少脱靶副作用。
关键词: 三阴性乳腺癌,转移,化疗耐药性,纳米载体,化疗耐药性,药物治疗。
图形摘要
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1022] [PMID: 17804716]
[http://dx.doi.org/10.1007/s13346-018-0551-3] [PMID: 29978332]
[http://dx.doi.org/10.18632/oncotarget.12284] [PMID: 27765921]
[http://dx.doi.org/10.1200/JGO.2016.005397] [PMID: 28717728]
[http://dx.doi.org/10.1038/nrclinonc.2016.66] [PMID: 27184417]
[PMID: 26175926]
[http://dx.doi.org/ 10.3390/cells8090957] [PMID: 31443516]
(b) Ji, X.; Lu, Y.; Tian, H.; Meng, X.; Wei, M.; Cho, W.C. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed. Pharmacother., 2019, 114, 108800.
[http://dx.doi.org/10.1016/j.biopha.2019.108800] [PMID: 30921705]
[http://dx.doi.org/10.1007/s00210-018-1479-3] [PMID: 29476201]
[http://dx.doi.org/ 10.3390/molecules23040826] [PMID: 29617302]
(b) Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[http://dx.doi.org/10.2147/IJN.S146315]
[http://dx.doi.org/10.1155/2019/3702518]
[http://dx.doi.org/10.1016/j.bbagen.2018.09.019] [PMID: 30268729]
[http://dx.doi.org/10.1007/s00018-003-3336-9] [PMID: 15052411]
[http://dx.doi.org/10.1158/0008-5472.can-05-0592] [PMID: 16024622]
(b) Moitra, K. Overcoming multidrug resistance in cancer stem cells. biomed res. int, 2015, 2015.
[http://dx.doi.org/10.1155/2015/635745]
[http://dx.doi.org/10.1371/journal.pone.0062766 pmid: 23658771]
(b) Shervington, A.; Lu, C. Expression of multidrug resistance genes in normal and cancer stem cells. Cancer Invest., 2008, 26(5), 535-542.
[http://dx.doi.org/10.1080/07357900801904140] [PMID: 18568776]
[http://dx.doi.org/10.1007/s10549-018-4985-6] [PMID: 30306430]
[http://dx.doi.org/10.1158/1541-7786.mcr-17-0353] [PMID: 29523764]
(b) Cole, S.P. Multidrug resistance protein 1 (MRP1, ABCC1), a “multitasking” ATP-binding cassette (ABC) transporter. J. Biol. Chem., 2014, 289(45), 30880-30888.
[http://dx.doi.org/10.1074/jbc.R114.609248] [PMID: 25281745]
[http://dx.doi.org/10.1054/bjoc.2001.2144] [PMID: 11720446]
[http://dx.doi.org/10.1158/1078-0432.ccr-09-1321] [PMID: 20028753]
(b) Lal, S.; Wong, Z.W.; Sandanaraj, E.; Xiang, X.; Ang, P.C.S.; Lee, E.J.; Chowbay, B. Influence of ABCB1 and ABCG2 polymorphisms on doxorubicin disposition in Asian breast cancer patients. Cancer Sci.,, 2008, 99(4), 816-823.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00744.x] [PMID: 18377430]
(c) Vaidyanathan, A.; Sawers, L.; Gannon, A-L.; Chakravarty, P.; Scott, A.L.; Bray, S.E.; Ferguson, M.J.; Smith, G. ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells. Br. J. Cancer, 2016, 115(4), 431-441.
[http://dx.doi.org/10.1038/bjc.2016.203] [PMID: 27415012]
[http://dx.doi.org/10.1073/pnas.95.12.7024] [PMID: 9618532]
[http://dx.doi.org/10.1038/nrc2789] [PMID: 20075923]
[http://dx.doi.org/10.20517/cdr.2019.10]
[http://dx.doi.org/10.1016/j.addr.2012.09.027] [PMID: 12535572]
(b) Stacy, A.E.; Jansson, P.J.; Richardson, D.R. Molecular pharmacology of ABCG2 and its role in chemoresistance. Mol. Pharmacol., 2013, 84(5), 655-669.
[http://dx.doi.org/10.1124/mol.113.088609] [PMID: 24021215]
(c) Mao, Q.; Unadkat, J.D. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS J., 2015, 17(1), 65-82.
[http://dx.doi.org/10.1208/s12248-014-9668-6] [PMID: 25236865]
[http://dx.doi.org/10.1038/s12276-018-0197-8] [PMID: 30617282]
[http://dx.doi.org/10.3390/biomedicines6030077] [PMID: 30018256]
(b) Kai, M.; Kanaya, N.; Wu, S.V.; Mendez, C.; Nguyen, D.; Luu, T.; Chen, S. Targeting breast cancer stem cells in triple-negative breast cancer using a combination of LBH589 and salinomycin. Breast Cancer Res. Treat., 2015, 151(2), 281-294.
[http://dx.doi.org/10.1007/s10549-015-3376-5] [PMID: 25904215]
[http://dx.doi.org/10.1093/jnci/djj495] [PMID: 17179479]
(b) Saeg, F.; Anbalagan, M. Breast cancer stem cells and the challenges of eradication: a review of novel therapies. Stem Cell Investig., 2018, 5, 39.
[http://dx.doi.org/10.21037/sci.2018.10.05] [PMID: 30498750]
[http://dx.doi.org/10.1016/j.breast.2010.08.001] [PMID: 20810282]
[http://dx.doi.org/10.3892/or.2013.2943] [PMID: 24366074]
[http://dx.doi.org/10.21037/sci.2017.11.03] [PMID: 29270422]
[http://dx.doi.org/10.1097/MD.0000000000007171] [PMID: 28640095]
[http://dx.doi.org/10.1016/j.gamo.2016.01.003]
[http://dx.doi.org/10.1016/j.ctrv.2018.07.004] [PMID: 30029203]
(b) Liu, S.; Wicha, M.S. Targeting breast cancer stem cells J. Clin. Oncol, 2010, 28(25), 4006-4012.
[http://dx.doi.org/10.1200/jco.2009.27.5388] [PMID: 20498387]
(c) Dey, P.; Rathod, M.; De, A. Targeting stem cells in the realm of drug-resistant breast cancer. Breast Cancer (Dove Med. Press), 2019, 11, 115-135.
[http://dx.doi.org/10.2147/BCTT.S189224] [PMID: 30881110]
[http://dx.doi.org/10.1038/nature06188] [PMID: 17914389]
(b) Singh, A.; Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 2010, 29(34), 4741-4751.
[http://dx.doi.org/10.1038/onc.2010.215] [PMID: 20531305]
[http://dx.doi.org/10.1172/JCI39675] [PMID: 19487817]
[http://dx.doi.org/10.1038/nrc3447] [PMID: 23344542]
[http://dx.doi.org/10.4048/jbc.2015.18.4.303] [PMID: 26770236]
[http://dx.doi.org/10.1016/j.bbacli.2015.03.003] [PMID: 26676166]
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[http://dx.doi.org/10.1371/journal.pone.0180620] [PMID: 28700659]
(b) He, Y-C.; Zhou, F-L.; Shen, Y.; Liao, D-F.; Cao, D. Apoptotic death of cancer stem cells for cancer therapy. Int. J. Mol. Sci., 2014, 15(5), 8335-8351.
[http://dx.doi.org/10.3390/ijms15058335] [PMID: 24823879]
[http://dx.doi.org/10.1016/j.lfs.2019.116952] [PMID: 31622608]
(b) Semenza, G.L. HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol., 2001, 13(2), 167-171.
[http://dx.doi.org/10.1016/S0955-0674(00)00194-0] [PMID: 11248550]
[http://dx.doi.org/10.4110/in.2019.19.e23] [PMID: 31501711]
[http://dx.doi.org/10.1074/jbc.M111162200] [PMID: 11859074]
[http://dx.doi.org/10.1038/cdd.2011.95] [PMID: 21818118]
[http://dx.doi.org/10.1080/15384047.2015.1016662] [PMID: 25781910]
(b) De Francesco, E.M.; Maggiolini, M.; Musti, A.M. Crosstalk between Notch, HIF-1α and GPER in breast cancer EMT. Int. J. Mol. Sci., 2018, 19(7), 2011.
[http://dx.doi.org/10.3390/ijms19072011]
[http://dx.doi.org/10.5483/BMBRep.2019.52.7.152] [PMID: 31186087]
[http://dx.doi.org/10.1186/s12943-019-0994-2] [PMID: 30927908]
[http://dx.doi.org/10.1038/s41467-017-01829-1] [PMID: 29158506]
[http://dx.doi.org/10.1074/jbc.M101291200] [PMID: 11320092]
[http://dx.doi.org/10.18632/oncotarget.10858] [PMID: 27474173]
[http://dx.doi.org/10.1016/j.drudis.2019.09.001] [PMID: 31520748]
[http://dx.doi.org/10.1080/08977194.2018.1473393] [PMID: 29873274]
[http://dx.doi.org/10.1002/jbt.22039] [PMID: 29341321]
(b) Soleymani Abyaneh, H.; Gupta, N.; Radziwon-Balicka, A.; Jurasz, P.; Seubert, J.; Lai, R.; Lavasanifar, A. STAT3 but Not HIF-1α is important in mediating hypoxia-induced chemoresistance in MDA-MB-231, a triple negative breast cancer cell line. Cancers (Basel), 2017, 9(10), 137.
[http://dx.doi.org/10.3390/cancers9100137] [PMID: 29036915]
[http://dx.doi.org/10.1038/oncsis.2017.14] [PMID: 28368389]
[http://dx.doi.org/10.1016/j.stem.2008.01.003] [PMID: 18371452]
[http://dx.doi.org/10.1016/j.devcel.2009.06.016] [PMID: 19619488]
[http://dx.doi.org/10.1155/2019/8707053]
[http://dx.doi.org/10.1242/jcs.127308]
[http://dx.doi.org/10.1186/s12943-018-0797-x] [PMID: 29455658]
(b) Zhang, M.; Zhang, X.; Zhao, S.; Wang, Y.; Di, W.; Zhao, G.; Yang, M.; Zhang, Q. Prognostic value of survivin and EGFR protein expression in triple-negative breast cancer (TNBC) patients. Target. Oncol., 2014, 9(4), 349-357.
[http://dx.doi.org/10.1007/s11523-013-0300-y] [PMID: 24233638]
[http://dx.doi.org/10.3892/ol.2018.9290] [PMID: 30250564]
(b) Qin, J-J.; Yan, L.; Zhang, J.; Zhang, W-D. stat3 as a potential therapeutic target in triple negative breast cancer: a systematic review. j. exp. clin. cancer res., 2019, 38(1), 195.
[http://dx.doi.org/10.1186/s13046-019-1206-z] [PMID: 31088482]
(c) Poma, P.; Labbozzetta, M.; D’Alessandro, N.; Notarbartolo, M. NF-κB is a potential molecular drug target in triple-negative breast cancers. OMICS, 2017, 21(4), 225-231.
[http://dx.doi.org/10.1089/omi.2017.0020] [PMID: 28388298]
[http://dx.doi.org/10.18632/oncotarget.12065] [PMID: 27655711]
[http://dx.doi.org/10.1093/carcin/bgn079] [PMID: 18359760]
(b) Dong, Y.; Li, A.; Wang, J.; Weber, J.D.; Michel, L.S. Synthetic lethality through combined Notch-epidermal growth factor receptor pathway inhibition in basal-like breast cancer. Cancer Res., 2010, 70(13), 5465-5474.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0173] [PMID: 20570903]
[http://dx.doi.org/10.3389/fonc.2014.00360] [PMID: 25566499]
[http://dx.doi.org/10.1038/onc.2008.149] [PMID: 18469855]
[http://dx.doi.org/10.1038/bjc.2011.321] [PMID: 21847123]
[http://dx.doi.org/10.3389/fcell.2017.00018] [PMID: 28326306]
[http://dx.doi.org/10.5966/sctm.2015-0048] [PMID: 26136504]
[http://dx.doi.org/10.1186/s13045-018-0605-5] [PMID: 29747682]
[PMID: 22552741]
[http://dx.doi.org/10.1016/j.febslet.2005.03.079] [PMID: 15862315]
[http://dx.doi.org/10.1091/mbc.12.6.1859] [PMID: 11408591]
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3478] [PMID: 16061646]
[http://dx.doi.org/10.1016/j.biocel.2018.10.013] [PMID: 30399449]
[http://dx.doi.org/10.1186/1476-4598-13-207] [PMID: 25200065]
[http://dx.doi.org/10.1038/onc.2012.85] [PMID: 22469978]
[http://dx.doi.org/10.1016/j.ajpath.2012.03.019] [PMID: 22626806]
[http://dx.doi.org/10.1016/j.jconrel.2013.07.014] [PMID: 23871962]
[http://dx.doi.org/10.5301/JBM.5000048] [PMID: 24338721]
[http://dx.doi.org/10.1111/j.1582-4934.2008.00455.x] [PMID: 18681906]
[http://dx.doi.org/10.18632/oncotarget.19544] [PMID: 29245909]
(b) Rodriguez-Torres, M.; Allan, A.L. Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors. Clin. Exp. Metastasis, 2016, 33(1), 97-113.
[http://dx.doi.org/10.1007/s10585-015-9755-9] [PMID: 26445849]
[http://dx.doi.org/10.6061/clinics/2013(05)03] [PMID: 23778413]
[http://dx.doi.org/10.1007/s10549-011-1692-y] [PMID: 21818590]
[http://dx.doi.org/10.1016/j.pharmthera.2013.02.003] [PMID: 23458608]
[PMID: 21036696]
(b) Schweisguth, F. Regulation of notch signaling activity. Curr. Biol., 2004, 14(3), R129-R138.
[http://dx.doi.org/10.1016/j.cub.2004.01.023] [PMID: 14986688]
[http://dx.doi.org/10.5114/wo.2013.35588] [PMID: 24596507] [http://dx.doi.org/10.1007/978-1-4614-0899-4_23]
[http://dx.doi.org/10.1016/j.stem.2009.05.019] [PMID: 19664991]
(b) Yen, W-C.; Fischer, M.M.; Hynes, M.; Wu, J.; Kim, E.; Beviglia, L.; Yeung, V.P.; Song, X.; Kapoun, A.M.; Lewicki, J.; Gurney, A.; Simeone, D.M.; Hoey, T. Anti-DLL4 has broad spectrum activity in pancreatic cancer dependent on targeting DLL4-Notch signaling in both tumor and vasculature cells. Clin. Cancer Res., 2012, 18(19), 5374-5386.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0736] [PMID: 22952347]
[http://dx.doi.org/10.1016/j.canlet.2015.12.025] [PMID: 26739060]
[http://dx.doi.org/10.1172/jci44745] [PMID: 21633165]
(b) Moreira, M.P.; da Conceição Braga, L.; Cassali, G.D.; Silva, L.M. STAT3 as a promising chemoresistance biomarker associated with the CD44+/high/CD24-/low/ALDH+ BCSCs-like subset of the triple-negative breast cancer (TNBC) cell line. Exp. Cell Res., 2018, 363(2), 283-290.
[http://dx.doi.org/10.1016/j.yexcr.2018.01.018] [PMID: 29352988]
[http://dx.doi.org/10.1038/nrc1275 ] [PMID: 14964307]
(b) Geiger, J.L.; Grandis, J.R.; Bauman, J.E. The STAT3 pathway as a therapeutic target in head and neck cancer: Barriers and innovations. Oral Oncol., 2016, 56, 84-92.
[http://dx.doi.org/10.1016/j.oraloncology.2015.11.022] [PMID: 26733183]
[http://dx.doi.org/10.1002/ijc.29923] [PMID: 26559373]
[http://dx.doi.org/ 10.3892/ijo.2017.3846] [PMID: 28098855]
[http://dx.doi.org/10.1016/j.cellsig.2013.01.007] [PMID: 23333246]
[http://dx.doi.org/10.1038/s41388-018-0340-y] [PMID: 29855616]
[http://dx.doi.org/10.1016/j.devcel.2011.06.017] [PMID: 21763611]
[http://dx.doi.org/10.15252/embr.201439675] [PMID: 26253117]
[http://dx.doi.org/10.1038/sj.cgt.7700706] [PMID: 15031723]
[http://dx.doi.org/10.3892/ijmm.2015.2441] [PMID: 26707081]
(b) Liang, D.H.; El-Zein, R.; Dave, B. Autophagy inhibition to increase radiosensitization in breast cancer. J. Nucl. Med. Radiat. Ther., 2015, 6(5), 254.
[http://dx.doi.org/10.4172/2155-9619.1000254] [PMID: 26613064]
[http://dx.doi.org/10.1007/s10549-011-1763-0] [PMID: 21915634]
[http://dx.doi.org/10.4161/cbt.29183] [PMID: 25084100]
[http://dx.doi.org/10.1016/j.molmed.2013.03.005] [PMID: 23601906]
(b) He, L.; Gu, J.; Lim, L.Y.; Yuan, Z.X.; Mo, J. Nanomedicine-mediated therapies to target breast cancer stem cells. Front. Pharmacol., 2016, 7, 313.
[http://dx.doi.org/10.3389/fphar.2016.00313] [PMID: 27679576]
[http://dx.doi.org/10.2147/ott.s158206] [PMID: 29872312]
(b) Lan, J.; Lu, H.; Samanta, D.; Salman, S.; Lu, Y.; Semenza, G.L. Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment. Proc. Natl. Acad. Sci. USA, 2018, 115(41), E9640-E9648.
[http://dx.doi.org/10.1073/pnas.1809695115] [PMID: 30242135]
[http://dx.doi.org/10.1007/978-94-007-7359-2_13]
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
(b) Rabindran, S.K.; He, H.; Singh, M.; Brown, E.; Collins, K.I.; Annable, T.; Greenberger, L.M. reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin c. cancer res., 1998, 58(24), 5850-5858.
[PMID: 9865745]
(c) Robey, R.W.; Steadman, K.; Polgar, O.; Morisaki, K.; Blayney, M.; Mistry, P.; Bates, S.E. Pheophorbide a is a specific probe for ABCG2 function and inhibition. cancer res., 2004, 64(4), 1242-1246.
[http://dx.doi.org/10.1158/0008-5472.can-03-3298] [PMID: 14973080]
(d) Woehlecke, H.; Osada, H.; Herrmann, A.; Lage, H. Reversal of breast cancer resistance protein-mediated drug resistance by tryprostatin A. Int. J. Cancer, 2003, 107(5), 721-728.
[http://dx.doi.org/10.1002/ijc.11444] [PMID: 14566821]
[http://dx.doi.org/10.1371/journal.pone.0005172] [PMID: 19390592]
[http://dx.doi.org/10.1016/j.jconrel.2008.04.013] [PMID: 18534704]
[http://dx.doi.org/10.1016/j.jconrel.2010.01.004] [PMID: 20074598]
[http://dx.doi.org/10.1016/j.drup.2017.07.002] [PMID: 29145974]
(b) Thakur, V.; Kutty, R.V. Recent advances in nanotheranostics for triple negative breast cancer treatment. J. Exp. Clin. Cancer Res., 2019, 38(1), 430.
[http://dx.doi.org/10.1186/s13046-019-1443-1] [PMID: 31661003]
[http://dx.doi.org/10.2147/IJN.S168053] [PMID: 30154657]
[PMID: 11356986]
(b) Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. nat. nanotechnol, 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
(c) Anselmo, A.C.; Mitragotri, S. Cell-mediated delivery of nanoparticles: Taking advantage of circulatory cells to target nanoparticles. J. Control. Release, 2014, 190, 531-541.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.050] [PMID: 24747161]
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
(b) Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J., 2011, 19(3), 129-141.
[http://dx.doi.org/10.1016/j.jsps.2011.04.001] [PMID: 23960751]
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.075] [PMID: 27045981]
[http://dx.doi.org/10.1021/nn506928p] [PMID: 26004286]
[http://dx.doi.org/10.1088/0957-4484/27/6/065103] [PMID: 26754042]
[http://dx.doi.org/10.1016/j.ymthe.2019.04.018] [PMID: 31085078]
[http://dx.doi.org/10.1016/j.jconrel.2014.11.011] [PMID: 25445694]
[http://dx.doi.org/10.1038/mt.2016.42] [PMID: 26916284]
[http://dx.doi.org/10.1039/C5NR00403A] [PMID: 25785368]
[http://dx.doi.org/10.1080/03639045.2018.1539496] [PMID: 30348020]
[PMID: 21976975]
[http://dx.doi.org/10.1016/j.ijpharm.2019.118637] [PMID: 31550511]
[http://dx.doi.org/10.1016/j.jconrel.2014.12.043] [PMID: 25575864]
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.048] [PMID: 26344365]
[http://dx.doi.org/10.1080/21691401.2017.1366337] [PMID: 28826237]
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
(b) Liu, X.; Zhang, Y.; Li, J.; Wang, D.; Wu, Y.; Li, Y.; Lu, Z.; Yu, S.C.; Li, R.; Yang, X. Cognitive deficits and decreased locomotor activity induced by single-walled carbon nanotubes and neuroprotective effects of ascorbic acid. int. j. nanomedicine, 2014, 9, 823-839.
[PMID: 24596461]
(c) Bai, Y.; Zhang, Y.; Zhang, J.; Mu, Q.; Zhang, W.; Butch, E.R.; Snyder, S.E.; Yan, B. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat. Nanotechnol., 2010, 5(9), 683-689.
[http://dx.doi.org/10.1038/nnano.2010.153] [PMID: 20693989]
[http://dx.doi.org/10.1039/c1cs15188f] [PMID: 22170510]
(b) Kagan, V.E.; Konduru, N.V.; Feng, W.; Allen, B.L.; Conroy, J.; Volkov, Y.; Vlasova, I.I.; Belikova, N.A.; Yanamala, N.; Kapralov, A.; Tyurina, Y.Y.; Shi, J.; Kisin, E.R.; Murray, A.R.; Franks, J.; Stolz, D.; Gou, P.; Klein-Seetharaman, J.; Fadeel, B.; Star, A.; Shvedova, A.A. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. nat. nanotechnol., 2010, 5(5), 354-359.
[http://dx.doi.org/10.1038/nnano.2010.44] [PMID: 20364135]
(c) Klebanoff, S.J.; Kettle, A.J.; Rosen, H.; Winterbourn, C.C.; Nauseef, W.M. Myeloperoxidase: A front-line defender against phagocytosed microorganisms. J. Leukoc. Biol., 2013, 93(2), 185-198.
[http://dx.doi.org/10.1189/jlb.0712349] [PMID: 23066164]
[http://dx.doi.org/10.1201/b11989]
(b) Niska, K.; Pyszka, K.; Tukaj, C.; Wozniak, M.; Radomski, M.W.; Inkielewicz-Stepniak, I. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells. Int. J. Nanomedicine, 2015, 10, 1095-1107.
[PMID: 25709434]