Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

靶向药物治疗三阴性乳腺癌克服化疗耐药性的研究

卷 20, 期 8, 2020

页: [559 - 572] 页: 14

弟呕挨: 10.2174/1568009620666200506110850

价格: $65

摘要

三阴性乳腺癌(TNBC)是最具侵袭性和最普遍的乳腺癌亚型。化疗药物用于治疗TNBC存在化疗耐药性、剂量限制毒副作用和脱靶副作用。因此,传统的化疗药物无法阻止肿瘤的生长、转移,导致治疗失败。各种新的靶点如BCSCs表面标记物(CD44、CD133、ALDH1)、信号通路(IL-6/JAK/STAT3、notch)、促凋亡和抗凋亡蛋白(Bcl-2、Bcl-xL、DR4、DR5)、缺氧因子(HIF-1 - 3、HIF-2 - 3)和药物外排转运体(ABCC1、ABCG2、ABCB1)已被开发用于治疗TNBC。此外,为了提高传统化疗药物的疗效和安全性,研究人员已经尝试使用基于纳米载体的药物给药,专门为TNBC提供抗癌药物。在这篇综述中,我们着重介绍了导致三氧化二氮耐药性的各种因素、三氧化二氮的新分子靶点以及利用纳米给药系统实现位点特异性给药以提高疗效和减少脱靶副作用。

关键词: 三阴性乳腺癌,转移,化疗耐药性,纳米载体,化疗耐药性,药物治疗。

Next »
图形摘要

[1]
Konishi, J.; Kawaguchi, K.S.; Vo, H.; Haruki, N.; Gonzalez, A.; Carbone, D.P.; Dang, T.P. γ-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Res., 2007, 67(17), 8051-8057.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1022] [PMID: 17804716]
[2]
Al-Mahmood, S.; Sapiezynski, J.; Garbuzenko, O.B.; Minko, T. Metastatic and triple-negative breast cancer: Challenges and treatment options. Drug Deliv. Transl. Res., 2018, 8(5), 1483-1507.
[http://dx.doi.org/10.1007/s13346-018-0551-3] [PMID: 29978332]
[3]
Yao, H.; He, G.; Yan, S.; Chen, C.; Song, L.; Rosol, T.J.; Deng, X. Triple-negative breast cancer: Is there a treatment on the horizon? Oncotarget, 2017, 8(1), 1913-1924.
[http://dx.doi.org/10.18632/oncotarget.12284] [PMID: 27765921]
[4]
Sandhu, G.S.; Erqou, S.; Patterson, H.; Mathew, A. Prevalence of triple-negative breast cancer in India: Systematic review and meta-analysis. J. Glob. Oncol., 2016, 2(6), 412-421.
[http://dx.doi.org/10.1200/JGO.2016.005397] [PMID: 28717728]
[5]
Bianchini, G.; Balko, J.M.; Mayer, I.A.; Sanders, M.E.; Gianni, L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol., 2016, 13(11), 674-690.
[http://dx.doi.org/10.1038/nrclinonc.2016.66] [PMID: 27184417]
[6]
Wahba, H.A.; El-Hadaad, H.A. Current approaches in treatment of triple-negative breast cancer. Cancer Biol. Med., 2015, 12(2), 106-116.
[PMID: 26175926]
[7]
(a) Nedeljković, M.; Damjanović, A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. cells, 2019, 8(9), 957.
[http://dx.doi.org/ 10.3390/cells8090957] [PMID: 31443516]
(b) Ji, X.; Lu, Y.; Tian, H.; Meng, X.; Wei, M.; Cho, W.C. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed. Pharmacother., 2019, 114, 108800.
[http://dx.doi.org/10.1016/j.biopha.2019.108800] [PMID: 30921705]
[8]
Pindiprolu, S.K.S.S.; Krishnamurthy, P.T.; Chintamaneni, P.K. Pharmacological targets of breast cancer stem cells: A review. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(5), 463-479.
[http://dx.doi.org/10.1007/s00210-018-1479-3] [PMID: 29476201]
[9]
(a) Zhao, C-Y.; Cheng, R.; Yang, Z.; Tian, Z-M. Nanotechnology for cancer therapy based on chemotherapy. molecules, 2018, 23(4), 826.
[http://dx.doi.org/ 10.3390/molecules23040826] [PMID: 29617302]
(b) Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[10]
ud Din, F.; Aman, W.; Ullah, I.; Qureshi, O. S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291.
[http://dx.doi.org/10.2147/IJN.S146315]
[11]
Lombardo, D.; Kiselev, M. A.; Caccamo, M. T. smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. j. nanomaterials, 2019, 2019.
[http://dx.doi.org/10.1155/2019/3702518]
[12]
Domenichini, A.; Adamska, A.; Falasca, M. ABC transporters as cancer drivers: Potential functions in cancer development. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(1), 52-60.
[http://dx.doi.org/10.1016/j.bbagen.2018.09.019] [PMID: 30268729]
[13]
Jones, P.M.; George, A.M. The ABC transporter structure and mechanism: perspectives on recent research. Cell. Mol. Life Sci., 2004, 61(6), 682-699.
[http://dx.doi.org/10.1007/s00018-003-3336-9] [PMID: 15052411]
[14]
(a) Patrawala, L.; Calhoun, T.; Schneider-Broussard, R.; Zhou, J.; Claypool, K.; Tang, D.G. side population is enriched in tumorigenic, stem-like cancer cells, whereas abcg2+ and abcg2- cancer cells are similarly tumorigenic. cancer res., 2005, 65(14), 6207-6219.
[http://dx.doi.org/10.1158/0008-5472.can-05-0592] [PMID: 16024622]
(b) Moitra, K. Overcoming multidrug resistance in cancer stem cells. biomed res. int, 2015, 2015.
[http://dx.doi.org/10.1155/2015/635745]
[15]
(a) Kim, B.; Fatayer, H.; Hanby, A.M.; Horgan, K.; Perry, S.L.; Valleley, E.M.; Verghese, E.T.; Williams, B.J.; Thorne, J.L.; Hughes, T.A. Neoadjuvant chemotherapy induces expression levels of breast cancer resistance protein that predict disease-free survival in breast cancer PLoS One, 2013, 8(5), e62766.
[http://dx.doi.org/10.1371/journal.pone.0062766 pmid: 23658771]
(b) Shervington, A.; Lu, C. Expression of multidrug resistance genes in normal and cancer stem cells. Cancer Invest., 2008, 26(5), 535-542.
[http://dx.doi.org/10.1080/07357900801904140] [PMID: 18568776]
[16]
Guestini, F.; Ono, K.; Miyashita, M.; Ishida, T.; Ohuchi, N.; Nakagawa, S.; Hirakawa, H.; Tamaki, K.; Ohi, Y.; Rai, Y.; Sagara, Y.; Sasano, H.; McNamara, K.M. Impact of topoisomerase IIα, PTEN, ABCC1/MRP1, and KI67 on triple-negative breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res. Treat., 2019, 173(2), 275-288.
[http://dx.doi.org/10.1007/s10549-018-4985-6] [PMID: 30306430]
[17]
(a) Yamada, A.; Nagahashi, M.; Aoyagi, T.; Huang, W-C.; Lima, S.; Hait, N.C.; Maiti, A.; Kida, K.; Terracina, K.P.; Miyazaki, H.; Ishikawa, T.; Endo, I.; Waters, M.R.; Qi, Q.; Yan, L.; Milstien, S.; Spiegel, S.; Takabe, K. ABCC1-exported sphingosine-1-phosphate, produced by sphingosine kinase 1, shortens survival of mice and patients with breast cancer Mol. Cancer Res, 2018, 16(6), 1059-1070.
[http://dx.doi.org/10.1158/1541-7786.mcr-17-0353] [PMID: 29523764]
(b) Cole, S.P. Multidrug resistance protein 1 (MRP1, ABCC1), a “multitasking” ATP-binding cassette (ABC) transporter. J. Biol. Chem., 2014, 289(45), 30880-30888.
[http://dx.doi.org/10.1074/jbc.R114.609248] [PMID: 25281745]
[18]
Peaston, A.E.; Gardaneh, M.; Franco, A.V.; Hocker, J.E.; Murphy, K.M.; Farnsworth, M.L.; Catchpoole, D.R.; Haber, M.; Norris, M.D.; Lock, R.B.; Marshall, G.M. MRP1 gene expression level regulates the death and differentiation response of neuroblastoma cells. Br. J. Cancer, 2001, 85(10), 1564-1571.
[http://dx.doi.org/10.1054/bjoc.2001.2144] [PMID: 11720446]
[19]
(a) Lagas, J.S.; Fan, L.; Wagenaar, E.; Vlaming, M.L.; van Tellingen, O.; Beijnen, J.H.; Schinkel, A.H. P-glycoprotein (Pgp/ Abcb1), Abcc2, and Abcc3 determine the pharmacokinetics of etoposide. Clin. Cancer Res, 2010, 16(1), 130-140.
[http://dx.doi.org/10.1158/1078-0432.ccr-09-1321] [PMID: 20028753]
(b) Lal, S.; Wong, Z.W.; Sandanaraj, E.; Xiang, X.; Ang, P.C.S.; Lee, E.J.; Chowbay, B. Influence of ABCB1 and ABCG2 polymorphisms on doxorubicin disposition in Asian breast cancer patients. Cancer Sci.,, 2008, 99(4), 816-823.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00744.x] [PMID: 18377430]
(c) Vaidyanathan, A.; Sawers, L.; Gannon, A-L.; Chakravarty, P.; Scott, A.L.; Bray, S.E.; Ferguson, M.J.; Smith, G. ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells. Br. J. Cancer, 2016, 115(4), 431-441.
[http://dx.doi.org/10.1038/bjc.2016.203] [PMID: 27415012]
[20]
Smyth, M.J.; Krasovskis, E.; Sutton, V.R.; Johnstone, R.W. The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc. Natl. Acad. Sci. USA, 1998, 95(12), 7024-7029.
[http://dx.doi.org/10.1073/pnas.95.12.7024] [PMID: 9618532]
[21]
Fletcher, J.I.; Haber, M.; Henderson, M.J.; Norris, M.D. ABC transporters in cancer: More than just drug efflux pumps. Nat. Rev. Cancer, 2010, 10(2), 147-156.
[http://dx.doi.org/10.1038/nrc2789] [PMID: 20075923]
[22]
Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist., 2019, 2, 141-160.
[http://dx.doi.org/10.20517/cdr.2019.10]
[23]
(a) Schinkel, A.H.; Jonker, J.W. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: An overview Adv. Drug Deliv. Rev, 2012, 64, 138-153.
[http://dx.doi.org/10.1016/j.addr.2012.09.027] [PMID: 12535572]
(b) Stacy, A.E.; Jansson, P.J.; Richardson, D.R. Molecular pharmacology of ABCG2 and its role in chemoresistance. Mol. Pharmacol., 2013, 84(5), 655-669.
[http://dx.doi.org/10.1124/mol.113.088609] [PMID: 24021215]
(c) Mao, Q.; Unadkat, J.D. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS J., 2015, 17(1), 65-82.
[http://dx.doi.org/10.1208/s12248-014-9668-6] [PMID: 25236865]
[24]
Arumugam, A.; Subramani, R.; Nandy, S.B.; Terreros, D.; Dwivedi, A.K.; Saltzstein, E.; Lakshmanaswamy, R. Silencing growth hormone receptor inhibits estrogen receptor negative breast cancer through ATP-binding cassette sub-family G member 2. Exp. Mol. Med., 2019, 51(1), 1-13.
[http://dx.doi.org/10.1038/s12276-018-0197-8] [PMID: 30617282]
[25]
(a) Crabtree, J.S.; Miele, L. Breast cancer stem cells. Biomedicines, 2018, 6(3), 77.
[http://dx.doi.org/10.3390/biomedicines6030077] [PMID: 30018256]
(b) Kai, M.; Kanaya, N.; Wu, S.V.; Mendez, C.; Nguyen, D.; Luu, T.; Chen, S. Targeting breast cancer stem cells in triple-negative breast cancer using a combination of LBH589 and salinomycin. Breast Cancer Res. Treat., 2015, 151(2), 281-294.
[http://dx.doi.org/10.1007/s10549-015-3376-5] [PMID: 25904215]
[26]
(a) Phillips, T.M.; McBride, W.H.; Pajonk, F. The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation J. Natl. Cancer Inst, 2006, 98(24), 1777-1785.
[http://dx.doi.org/10.1093/jnci/djj495] [PMID: 17179479]
(b) Saeg, F.; Anbalagan, M. Breast cancer stem cells and the challenges of eradication: a review of novel therapies. Stem Cell Investig., 2018, 5, 39.
[http://dx.doi.org/10.21037/sci.2018.10.05] [PMID: 30498750]
[27]
Kim, H.J.; Kim, M-J.; Ahn, S.H.; Son, B.H.; Kim, S.B.; Ahn, J.H.; Noh, W.C.; Gong, G. Different prognostic significance of CD24 and CD44 expression in breast cancer according to hormone receptor status. Breast, 2011, 20(1), 78-85.
[http://dx.doi.org/10.1016/j.breast.2010.08.001] [PMID: 20810282]
[28]
Camerlingo, R.; Ferraro, G.A.; De Francesco, F.; Romano, M.; Nicoletti, G.; Di Bonito, M.; Rinaldo, M.; D’Andrea, F.; Pirozzi, G. The role of CD44+/CD24-/low biomarker for screening, diagnosis and monitoring of breast cancer. Oncol. Rep., 2014, 31(3), 1127-1132.
[http://dx.doi.org/10.3892/or.2013.2943] [PMID: 24366074]
[29]
Sin, W.C.; Lim, C.L. Breast cancer stem cells-from origins to targeted therapy. Stem Cell Investig., 2017, 4, 96.
[http://dx.doi.org/10.21037/sci.2017.11.03] [PMID: 29270422]
[30]
Yao, J.; Jin, Q.; Wang, X.D.; Zhu, H.J.; Ni, Q.C. Aldehyde dehydrogenase 1 expression is correlated with poor prognosis in breast cancer. Medicine (Baltimore), 2017, 96(25), e7171.
[http://dx.doi.org/10.1097/MD.0000000000007171] [PMID: 28640095]
[31]
Tume, L.; Paco, K.; Ubidia-Incio, R.; Moya, J. CD133 in breast cancer cells and in breast cancer stem cells as another target for immunotherapy. Gaceta Mexicana de Oncología, 2016, 15(1), 22-30.
[http://dx.doi.org/10.1016/j.gamo.2016.01.003]
[32]
(a) Bai, X.; Ni, J.; Beretov, J.; Graham, P.; Li, Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat. Rev, 2018, 69, 152-163.
[http://dx.doi.org/10.1016/j.ctrv.2018.07.004] [PMID: 30029203]
(b) Liu, S.; Wicha, M.S. Targeting breast cancer stem cells J. Clin. Oncol, 2010, 28(25), 4006-4012.
[http://dx.doi.org/10.1200/jco.2009.27.5388] [PMID: 20498387]
(c) Dey, P.; Rathod, M.; De, A. Targeting stem cells in the realm of drug-resistant breast cancer. Breast Cancer (Dove Med. Press), 2019, 11, 115-135.
[http://dx.doi.org/10.2147/BCTT.S189224] [PMID: 30881110]
[33]
(a) Karnoub, A.E.; Dash, A.B.; Vo, A.P.; Sullivan, A.; Brooks, M.W.; Bell, G.W.; Richardson, A.L.; Polyak, K.; Tubo, R.; Weinberg, R.A. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 2007, 449(7162), 557-563.
[http://dx.doi.org/10.1038/nature06188] [PMID: 17914389]
(b) Singh, A.; Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 2010, 29(34), 4741-4751.
[http://dx.doi.org/10.1038/onc.2010.215] [PMID: 20531305]
[34]
Kalluri, R. EMT: when epithelial cells decide to become mesenchymal-like cells. J. Clin. Invest., 2009, 119(6), 1417-1419.
[http://dx.doi.org/10.1172/JCI39675] [PMID: 19487817]
[35]
De Craene, B.; Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer, 2013, 13(2), 97-110.
[http://dx.doi.org/10.1038/nrc3447] [PMID: 23344542]
[36]
Bozorgi, A.; Khazaei, M.; Khazaei, M.R. New findings on breast cancer stem cells: A review. J. Breast Cancer, 2015, 18(4), 303-312.
[http://dx.doi.org/10.4048/jbc.2015.18.4.303] [PMID: 26770236]
[37]
O’Reilly, E.A.; Gubbins, L.; Sharma, S.; Tully, R.; Guang, M.H.Z.; Weiner-Gorzel, K.; McCaffrey, J.; Harrison, M.; Furlong, F.; Kell, M.; McCann, A. The fate of chemoresistance in triple negative breast cancer (TNBC). BBA Clin., 2015, 3, 257-275.
[http://dx.doi.org/10.1016/j.bbacli.2015.03.003] [PMID: 26676166]
[38]
Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY), 2016, 8(4), 603-619.
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[39]
Liu, P-F.; Hu, Y-C.; Kang, B-H.; Tseng, Y-K.; Wu, P-C.; Liang, C-C.; Hou, Y-Y.; Fu, T-Y.; Liou, H-H.; Hsieh, I-C.; Ger, L.P.; Shu, C.W. Expression levels of cleaved caspase-3 and caspase-3 in tumorigenesis and prognosis of oral tongue squamous cell carcinoma. PLoS One, 2017, 12(7), e0180620.
[http://dx.doi.org/10.1371/journal.pone.0180620] [PMID: 28700659]
[40]
(a) Safa, A.R. Resistance to cell death and its modulation in cancer stem cells. Critical Reviews™ in Oncogenesis, 2016, 21, 3-4.[http://dx.doi.org/10.1615/ Crit Rev Oncog., 2016016976
(b) He, Y-C.; Zhou, F-L.; Shen, Y.; Liao, D-F.; Cao, D. Apoptotic death of cancer stem cells for cancer therapy. Int. J. Mol. Sci., 2014, 15(5), 8335-8351.
[http://dx.doi.org/10.3390/ijms15058335] [PMID: 24823879]
[41]
(a) Hajizadeh, F.; Okoye, I.; Esmaily, M.; Ghasemi Chaleshtari, M.; Masjedi, A.; Azizi, G.; Irandoust, M.; Ghalamfarsa, G.; Jadidi-Niaragh, F. Hypoxia inducible factors in the tumor microenvironment as therapeutic targets of cancer stem cells. life sci, 2019. 237, 116952.
[http://dx.doi.org/10.1016/j.lfs.2019.116952] [PMID: 31622608]
(b) Semenza, G.L. HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol., 2001, 13(2), 167-171.
[http://dx.doi.org/10.1016/S0955-0674(00)00194-0] [PMID: 11248550]
[42]
Arab, S.; Hadjati, J. Adenosine blockage in tumor microenvironment and improvement of cancer immunotherapy. Immune Netw., 2019, 19(4), e23.
[http://dx.doi.org/10.4110/in.2019.19.e23] [PMID: 31501711]
[43]
Arsham, A.M.; Plas, D.R.; Thompson, C.B.; Simon, M.C. Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1 α nor sufficient for HIF-1-dependent target gene transcription. J. Biol. Chem., 2002, 277(17), 15162-15170.
[http://dx.doi.org/10.1074/jbc.M111162200] [PMID: 11859074]
[44]
Qiang, L.; Wu, T.; Zhang, H.W.; Lu, N.; Hu, R.; Wang, Y.J.; Zhao, L.; Chen, F.H.; Wang, X.T.; You, Q.D.; Guo, Q.L. HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death Differ., 2012, 19(2), 284-294.
[http://dx.doi.org/10.1038/cdd.2011.95] [PMID: 21818118]
[45]
(a) Liu, Z-H.; Dai, X-M.; Du, B. Hes1: A key role in stemness, metastasis and multidrug resistance. cancer biol. ther., 2015, 16(3), 353-359.
[http://dx.doi.org/10.1080/15384047.2015.1016662] [PMID: 25781910]
(b) De Francesco, E.M.; Maggiolini, M.; Musti, A.M. Crosstalk between Notch, HIF-1α and GPER in breast cancer EMT. Int. J. Mol. Sci., 2018, 19(7), 2011.
[http://dx.doi.org/10.3390/ijms19072011]
[46]
Lee, H.; Jeong, A.J.; Ye, S-K. Highlighted STAT3 as a potential drug target for cancer therapy. BMB Rep., 2019, 52(7), 415-423.
[http://dx.doi.org/10.5483/BMBRep.2019.52.7.152] [PMID: 31186087]
[47]
Ahmed, N.; Escalona, R.; Leung, D.; Chan, E.; Kannourakis, G. Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells, Seminars in cancer biology; Elsevier, 2018, pp. 265-281.
[48]
Fiori, M.E.; Di Franco, S.; Villanova, L.; Bianca, P.; Stassi, G.; De Maria, R. Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol. Cancer, 2019, 18(1), 70.
[http://dx.doi.org/10.1186/s12943-019-0994-2] [PMID: 30927908]
[49]
Fusella, F.; Seclì, L.; Busso, E.; Krepelova, A.; Moiso, E.; Rocca, S.; Conti, L.; Annaratone, L.; Rubinetto, C.; Mello-Grand, M.; Singh, V.; Chiorino, G.; Silengo, L.; Altruda, F.; Turco, E.; Morotti, A.; Oliviero, S.; Castellano, I.; Cavallo, F.; Provero, P.; Tarone, G.; Brancaccio, M. The IKK/NF-κB signaling pathway requires Morgana to drive breast cancer metastasis. Nat. Commun., 2017, 8(1), 1636.
[http://dx.doi.org/10.1038/s41467-017-01829-1] [PMID: 29158506]
[50]
Kang, K-H.; Lee, K-H.; Kim, M-Y.; Choi, K-H. Caspase-3-mediated cleavage of the NF-κ B subunit p65 at the NH2 terminus potentiates naphthoquinone analog-induced apoptosis. J. Biol. Chem., 2001, 276(27), 24638-24644.
[http://dx.doi.org/10.1074/jbc.M101291200] [PMID: 11320092]
[51]
Massihnia, D.; Galvano, A.; Fanale, D.; Perez, A.; Castiglia, M.; Incorvaia, L.; Listì, A.; Rizzo, S.; Cicero, G.; Bazan, V.; Castorina, S.; Russo, A. Triple negative breast cancer: shedding light onto the role of pi3k/akt/mtor pathway. Oncotarget, 2016, 7(37), 60712-60722.
[http://dx.doi.org/10.18632/oncotarget.10858] [PMID: 27474173]
[52]
Khan, M.A.; Jain, V.K.; Rizwanullah, M.; Ahmad, J.; Jain, K. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: A review on drug discovery and future challenges. Drug Discov. Today, 2019, 24(11), 2181-2191.
[http://dx.doi.org/10.1016/j.drudis.2019.09.001] [PMID: 31520748]
[53]
Guanizo, A.C.; Fernando, C.D.; Garama, D.J.; Gough, D.J. STAT3: a multifaceted oncoprotein. Growth Factors, 2018, 36(1-2), 1-14.
[http://dx.doi.org/10.1080/08977194.2018.1473393] [PMID: 29873274]
[54]
(a) Wang, K.; Zhu, X.; Zhang, K.; Yin, Y.; Chen, Y.; Zhang, T. interleukin-6 contributes to chemoresistance in mda-mb-231 cells via targeting hif-1α. j. biochem. mol. toxicol. 2018, 32(3), e22039.
[http://dx.doi.org/10.1002/jbt.22039] [PMID: 29341321]
(b) Soleymani Abyaneh, H.; Gupta, N.; Radziwon-Balicka, A.; Jurasz, P.; Seubert, J.; Lai, R.; Lavasanifar, A. STAT3 but Not HIF-1α is important in mediating hypoxia-induced chemoresistance in MDA-MB-231, a triple negative breast cancer cell line. Cancers (Basel), 2017, 9(10), 137.
[http://dx.doi.org/10.3390/cancers9100137] [PMID: 29036915]
[55]
Pohl, S-G.; Brook, N.; Agostino, M.; Arfuso, F.; Kumar, A.P.; Dharmarajan, A. Wnt signaling in triple-negative breast cancer. Oncogenesis, 2017, 6(4), e310.
[http://dx.doi.org/10.1038/oncsis.2017.14] [PMID: 28368389]
[56]
Fleming, H.E.; Janzen, V.; Lo Celso, C.; Guo, J.; Leahy, K.M.; Kronenberg, H.M.; Scadden, D.T. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell, 2008, 2(3), 274-283.
[http://dx.doi.org/10.1016/j.stem.2008.01.003] [PMID: 18371452]
[57]
MacDonald, B.T.; Tamai, K.; He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell, 2009, 17(1), 9-26.
[http://dx.doi.org/10.1016/j.devcel.2009.06.016] [PMID: 19619488]
[58]
Giuli, M.; Giuliani, E.; Screpanti, I.; Bellavia, D.; Checquolo, S. notch signaling activation as a hallmark for triple-negative breast cancer subtype. j. oncol 2019 2019.
[http://dx.doi.org/10.1155/2019/8707053]
[59]
Hori, K.; Sen, A.; Artavanis-Tsakonas, S. Notch signaling at a glance; The Company of Biologists Ltd, 2013.
[http://dx.doi.org/10.1242/jcs.127308]
[60]
(a) Butti, R.; Das, S.; Gunasekaran, V.P.; Yadav, A.S.; Kumar, D.; Kundu, G.C. receptor tyrosine kinases (rtks) in breast cancer: signaling, therapeutic implications and challenges. mol. cancer, 2018, 17(1), 34.
[http://dx.doi.org/10.1186/s12943-018-0797-x] [PMID: 29455658]
(b) Zhang, M.; Zhang, X.; Zhao, S.; Wang, Y.; Di, W.; Zhao, G.; Yang, M.; Zhang, Q. Prognostic value of survivin and EGFR protein expression in triple-negative breast cancer (TNBC) patients. Target. Oncol., 2014, 9(4), 349-357.
[http://dx.doi.org/10.1007/s11523-013-0300-y] [PMID: 24233638]
[61]
(a) Wu, N.; Zhang, J.; Zhao, J.; Mu, K.; Zhang, J.; Jin, Z.; Yu, J.; Liu, J. Precision medicine based on tumorigenic signaling pathways for triple-negative breast cancer. oncol. lett., 2018, 16(4), 4984-4996.
[http://dx.doi.org/10.3892/ol.2018.9290] [PMID: 30250564]
(b) Qin, J-J.; Yan, L.; Zhang, J.; Zhang, W-D. stat3 as a potential therapeutic target in triple negative breast cancer: a systematic review. j. exp. clin. cancer res., 2019, 38(1), 195.
[http://dx.doi.org/10.1186/s13046-019-1206-z] [PMID: 31088482]
(c) Poma, P.; Labbozzetta, M.; D’Alessandro, N.; Notarbartolo, M. NF-κB is a potential molecular drug target in triple-negative breast cancers. OMICS, 2017, 21(4), 225-231.
[http://dx.doi.org/10.1089/omi.2017.0020] [PMID: 28388298]
[62]
Linklater, E.S.; Tovar, E.A.; Essenburg, C.J.; Turner, L.; Madaj, Z.; Winn, M.E.; Melnik, M.K.; Korkaya, H.; Maroun, C.R.; Christensen, J.G.; Steensma, M.R.; Boerner, J.L.; Graveel, C.R. Targeting MET and EGFR crosstalk signaling in triple-negative breast cancers. Oncotarget, 2016, 7(43), 69903-69915.
[http://dx.doi.org/10.18632/oncotarget.12065] [PMID: 27655711]
[63]
(a) Purow, B.W.; Sundaresan, T.K.; Burdick, M.J.; Kefas, B.A.; Comeau, L.D.; Hawkinson, M.P.; Su, Q.; Kotliarov, Y.; Lee, J.; Zhang, W.; Fine, H.A. Notch-1 regulates transcription of the epidermal growth factor receptor through p53. carcinogenesis, 2008, 29(5), 918-925.
[http://dx.doi.org/10.1093/carcin/bgn079] [PMID: 18359760]
(b) Dong, Y.; Li, A.; Wang, J.; Weber, J.D.; Michel, L.S. Synthetic lethality through combined Notch-epidermal growth factor receptor pathway inhibition in basal-like breast cancer. Cancer Res., 2010, 70(13), 5465-5474.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0173] [PMID: 20570903]
[64]
Baker, A.T.; Zlobin, A.; Osipo, C. Notch-EGFR/HER2 bidirectional crosstalk in breast cancer. Front. Oncol., 2014, 4, 360.
[http://dx.doi.org/10.3389/fonc.2014.00360] [PMID: 25566499]
[65]
Osipo, C.; Patel, P.; Rizzo, P.; Clementz, A.G.; Hao, L.; Golde, T.E.; Miele, L. ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a γ-secretase inhibitor. Oncogene, 2008, 27(37), 5019-5032.
[http://dx.doi.org/10.1038/onc.2008.149] [PMID: 18469855]
[66]
Pandya, K.; Meeke, K.; Clementz, A.G.; Rogowski, A.; Roberts, J.; Miele, L.; Albain, K.S.; Osipo, C. Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence. Br. J. Cancer, 2011, 105(6), 796-806.
[http://dx.doi.org/10.1038/bjc.2011.321] [PMID: 21847123]
[67]
Senbanjo, L.T.; Chellaiah, M.A. CD44: A multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front. Cell Dev. Biol., 2017, 5, 18.
[http://dx.doi.org/10.3389/fcell.2017.00018] [PMID: 28326306]
[68]
Yan, Y.; Zuo, X.; Wei, D. Concise review: Emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl. Med., 2015, 4(9), 1033-1043.
[http://dx.doi.org/10.5966/sctm.2015-0048] [PMID: 26136504]
[69]
Chen, C.; Zhao, S.; Karnad, A.; Freeman, J.W. The biology and role of CD44 in cancer progression: Therapeutic implications. J. Hematol. Oncol., 2018, 11(1), 64.
[http://dx.doi.org/10.1186/s13045-018-0605-5] [PMID: 29747682]
[70]
Cho, S.H.; Park, Y.S.; Kim, H.J.; Kim, C.H.; Lim, S.W.; Huh, J.W.; Lee, J.H.; Kim, H.R. CD44 enhances the epithelial-mesenchymal transition in association with colon cancer invasion. Int. J. Oncol., 2012, 41(1), 211-218.
[PMID: 22552741]
[71]
Yoshihara, S.; Kon, A.; Kudo, D.; Nakazawa, H.; Kakizaki, I.; Sasaki, M.; Endo, M.; Takagaki, K. A hyaluronan synthase suppressor, 4-methylumbelliferone, inhibits liver metastasis of melanoma cells. FEBS Lett., 2005, 579(12), 2722-2726.
[http://dx.doi.org/10.1016/j.febslet.2005.03.079] [PMID: 15862315]
[72]
Bourguignon, L.Y. In: Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression, Seminars in cancer biology; Elsevier, 2008, pp. 251-259.
[73]
Sohara, Y.; Ishiguro, N.; Machida, K.; Kurata, H.; Thant, A.A.; Senga, T.; Matsuda, S.; Kimata, K.; Iwata, H.; Hamaguchi, M. Hyaluronan activates cell motility of v-Src-transformed cells via Ras-mitogen-activated protein kinase and phosphoinositide 3-kinase-Akt in a tumor-specific manner. Mol. Biol. Cell, 2001, 12(6), 1859-1868.
[http://dx.doi.org/10.1091/mbc.12.6.1859] [PMID: 11408591]
[74]
Miletti-González, K.E.; Chen, S.; Muthukumaran, N.; Saglimbeni, G.N.; Wu, X.; Yang, J.; Apolito, K.; Shih, W.J.; Hait, W.N.; Rodríguez-Rodríguez, L. The CD44 receptor interacts with P-glycoprotein to promote cell migration and invasion in cancer. Cancer Res., 2005, 65(15), 6660-6667.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3478] [PMID: 16061646]
[75]
Brugnoli, F.; Grassilli, S.; Al-Qassab, Y.; Capitani, S.; Bertagnolo, V. cd133 in breast cancer cells: more than a stem cell marker. j. oncol. 2019 2019.
[76]
Liou, G-Y. CD133 as a regulator of cancer metastasis through the cancer stem cells. Int. J. Biochem. Cell Biol., 2019, 106, 1-7.
[http://dx.doi.org/10.1016/j.biocel.2018.10.013] [PMID: 30399449]
[77]
Zhang, D.; Sun, B.; Zhao, X.; Ma, Y.; Ji, R.; Gu, Q.; Dong, X.; Li, J.; Liu, F.; Jia, X.; Leng, X.; Zhang, C.; Sun, R.; Chi, J. Twist1 expression induced by sunitinib accelerates tumor cell vasculogenic mimicry by increasing the population of CD133+ cells in triple-negative breast cancer. Mol. Cancer, 2014, 13(1), 207.
[http://dx.doi.org/10.1186/1476-4598-13-207] [PMID: 25200065]
[78]
Liu, T.J.; Sun, B.C.; Zhao, X.L.; Zhao, X.M.; Sun, T.; Gu, Q.; Yao, Z.; Dong, X.Y.; Zhao, N.; Liu, N. CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene, 2013, 32(5), 544-553.
[http://dx.doi.org/10.1038/onc.2012.85] [PMID: 22469978]
[79]
Kagara, N.; Huynh, K.T.; Kuo, C.; Okano, H.; Sim, M.S.; Elashoff, D.; Chong, K.; Giuliano, A.E.; Hoon, D.S. Epigenetic regulation of cancer stem cell genes in triple-negative breast cancer. Am. J. Pathol., 2012, 181(1), 257-267.
[http://dx.doi.org/10.1016/j.ajpath.2012.03.019] [PMID: 22626806]
[80]
Swaminathan, S.K.; Roger, E.; Toti, U.; Niu, L.; Ohlfest, J.R.; Panyam, J. CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. J. Control. Release, 2013, 171(3), 280-287.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.014] [PMID: 23871962]
[81]
Li, H.; Ma, F.; Wang, H.; Lin, C.; Fan, Y.; Zhang, X.; Qian, H.; Xu, B. Stem cell marker aldehyde dehydrogenase 1 (ALDH1)-expressing cells are enriched in triple-negative breast cancer. Int. J. Biol. Markers, 2013, 28(4), e357-e364.
[http://dx.doi.org/10.5301/JBM.5000048] [PMID: 24338721]
[82]
Croker, A.K.; Goodale, D.; Chu, J.; Postenka, C.; Hedley, B.D.; Hess, D.A.; Allan, A.L. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J. Cell. Mol. Med., 2009, 13(8B), 2236-2252.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00455.x] [PMID: 18681906]
[83]
(a) Park, J.W.; Jung, K-H.; Lee, J.H.; Moon, S.H.; Cho, Y.S.; Lee, K-H. Inhibition of aldehyde dehydrogenase 1 enhances the cytotoxic effect of retinaldehyde on A549 cancer cells. oncotarget,, 2017, 8(59), 99382-99393.
[http://dx.doi.org/10.18632/oncotarget.19544] [PMID: 29245909]
(b) Rodriguez-Torres, M.; Allan, A.L. Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors. Clin. Exp. Metastasis, 2016, 33(1), 97-113.
[http://dx.doi.org/10.1007/s10585-015-9755-9] [PMID: 26445849]
[84]
Tiezzi, D.G.; Clagnan, W.S.; Mandarano, L.R.M.; de Sousa, C.B.; Marana, H.R.C.; Tiezzi, M.G.; de Andrade, J.M. Expression of aldehyde dehydrogenase after neoadjuvant chemotherapy is associated with expression of hypoxia-inducible factors 1 and 2 alpha and predicts prognosis in locally advanced breast cancer. Clinics (São Paulo), 2013, 68(5), 592-598.
[http://dx.doi.org/10.6061/clinics/2013(05)03] [PMID: 23778413]
[85]
Croker, A.K.; Allan, A.L. Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44- human breast cancer cells. Breast Cancer Res. Treat., 2012, 133(1), 75-87.
[http://dx.doi.org/10.1007/s10549-011-1692-y] [PMID: 21818590]
[86]
Espinoza, I.; Miele, L. Notch inhibitors for cancer treatment. Pharmacol. Ther., 2013, 139(2), 95-110.
[http://dx.doi.org/10.1016/j.pharmthera.2013.02.003] [PMID: 23458608]
[87]
(a) Grudzien, P.; Lo, S.; Albain, K.S.; Robinson, P.; Rajan, P.; Strack, P.R.; Golde, T.E.; Miele, L.; Foreman, K.E. Inhibition of Notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation. anticancer res., 2010, 30(10), 3853-3867.
[PMID: 21036696]
(b) Schweisguth, F. Regulation of notch signaling activity. Curr. Biol., 2004, 14(3), R129-R138.
[http://dx.doi.org/10.1016/j.cub.2004.01.023] [PMID: 14986688]
[88]
(a)brzozowa, m.; wojnicz, r.; kowalczyk-ziomek, g.; helewski, k. the notch ligand delta-like 4 (dll4) as a target in angiogenesis- based cancer therapy? contemp. oncol. (pozn.) 2013, 17(3), 234-237.purow, b. notch inhibition as a promising new approach to cancer therapy. notch signaling in embryology and cancer; springer, 2012, pp. 305-319.,
[http://dx.doi.org/10.5114/wo.2013.35588] [PMID: 24596507] [http://dx.doi.org/10.1007/978-1-4614-0899-4_23]
[89]
(a) Hoey, T.; Yen, W-C.; Axelrod, F.; Basi, J.; Donigian, L.; Dylla, S.; Fitch-Bruhns, M.; Lazetic, S.; Park, I-K.; Sato, A.; Satyal, S.; Wang, X.; Clarke, M.F.; Lewicki, J.; Gurney, A. DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. cell stem cell,, 2009, 5(2), 168-177.
[http://dx.doi.org/10.1016/j.stem.2009.05.019] [PMID: 19664991]
(b) Yen, W-C.; Fischer, M.M.; Hynes, M.; Wu, J.; Kim, E.; Beviglia, L.; Yeung, V.P.; Song, X.; Kapoun, A.M.; Lewicki, J.; Gurney, A.; Simeone, D.M.; Hoey, T. Anti-DLL4 has broad spectrum activity in pancreatic cancer dependent on targeting DLL4-Notch signaling in both tumor and vasculature cells. Clin. Cancer Res., 2012, 18(19), 5374-5386.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0736] [PMID: 22952347]
[90]
Xu, Z.; Wang, Z.; Jia, X.; Wang, L.; Chen, Z.; Wang, S.; Wang, M.; Zhang, J.; Wu, M. MMGZ01, an anti-DLL4 monoclonal antibody, promotes nonfunctional vessels and inhibits breast tumor growth. Cancer Lett., 2016, 372(1), 118-127.
[http://dx.doi.org/10.1016/j.canlet.2015.12.025] [PMID: 26739060]
[91]
(a) Marotta, L.L.; Almendro, V.; Marusyk, A.; Shipitsin, M.; Schemme, J.; Walker, S.R.; Bloushtain-Qimron, N.; Kim, J.J.; Choudhury, S.A.; Maruyama, R.; Wu, Z.; Gönen, M.; Mulvey, L.A.; Bessarabova, M.O.; Huh, S.J.; Silver, S.J.; Kim, S.Y.; Park, S.Y.; Lee, H.E.; Anderson, K.S.; Richardson, A.L.; Nikolskaya, T.; Nikolsky, Y.; Liu, X.S.; Root, D.E.; Hahn, W.C.; Frank, D.A.; Polyak, K. the jak2/stat3 signaling pathway is required for growth of cd44-cd24- stem cell-like breast cancer cells in human tumors. j. clin. invest., 2011, 121(7), 2723-2735.
[http://dx.doi.org/10.1172/jci44745] [PMID: 21633165]
(b) Moreira, M.P.; da Conceição Braga, L.; Cassali, G.D.; Silva, L.M. STAT3 as a promising chemoresistance biomarker associated with the CD44+/high/CD24-/low/ALDH+ BCSCs-like subset of the triple-negative breast cancer (TNBC) cell line. Exp. Cell Res., 2018, 363(2), 283-290.
[http://dx.doi.org/10.1016/j.yexcr.2018.01.018] [PMID: 29352988]
[92]
(a) Yu, H.; Jove, R. the stats of cancer--new molecular targets come of age. nat. rev. cancer, 2004, 4(2), 97-105.
[http://dx.doi.org/10.1038/nrc1275 ] [PMID: 14964307]
(b) Geiger, J.L.; Grandis, J.R.; Bauman, J.E. The STAT3 pathway as a therapeutic target in head and neck cancer: Barriers and innovations. Oral Oncol., 2016, 56, 84-92.
[http://dx.doi.org/10.1016/j.oraloncology.2015.11.022] [PMID: 26733183]
[93]
Banerjee, K.; Resat, H. Constitutive activation of STAT3 in breast cancer cells: A review. Int. J. Cancer, 2016, 138(11), 2570-2578.
[http://dx.doi.org/10.1002/ijc.29923] [PMID: 26559373]
[94]
Li, B.; Huang, C. Regulation of EMT by STAT3 in gastrointestinal cancer. (Review) Int. J. Oncol., 2017, 50(3), 753-767.
[http://dx.doi.org/ 10.3892/ijo.2017.3846] [PMID: 28098855]
[95]
Kim, S-Y.; Kang, J.W.; Song, X.; Kim, B.K.; Yoo, Y.D.; Kwon, Y.T.; Lee, Y.J. Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells. Cell. Signal., 2013, 25(4), 961-969.
[http://dx.doi.org/10.1016/j.cellsig.2013.01.007] [PMID: 23333246]
[96]
Lu, L.; Dong, J.; Wang, L.; Xia, Q.; Zhang, D.; Kim, H.; Yin, T.; Fan, S.; Shen, Q. Activation of STAT3 and Bcl-2 and reduction of reactive oxygen species (ROS) promote radioresistance in breast cancer and overcome of radioresistance with niclosamide. Oncogene, 2018, 37(39), 5292-5304.
[http://dx.doi.org/10.1038/s41388-018-0340-y] [PMID: 29855616]
[97]
Martinou, J-C.; Youle, R.J. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell, 2011, 21(1), 92-101.
[http://dx.doi.org/10.1016/j.devcel.2011.06.017] [PMID: 21763611]
[98]
Wang, Y.H.; Scadden, D.T. Harnessing the apoptotic programs in cancer stem-like cells. EMBO Rep., 2015, 16(9), 1084-1098.
[http://dx.doi.org/10.15252/embr.201439675] [PMID: 26253117]
[99]
Lima, R.T.; Martins, L.M.; Guimarães, J.E.; Sambade, C.; Vasconcelos, M.H. Specific downregulation of bcl-2 and xIAP by RNAi enhances the effects of chemotherapeutic agents in MCF-7 human breast cancer cells. Cancer Gene Ther., 2004, 11(5), 309-316.
[http://dx.doi.org/10.1038/sj.cgt.7700706] [PMID: 15031723]
[100]
(a) Lai, Y.; Yu, X.; Lin, X.; He, S. Inhibition of mTOR sensitizes breast cancer stem cells to radiation-induced repression of self-renewal through the regulation of MnSOD and Akt. int. j. mol. med., 2016, 37(2), 369-377.
[http://dx.doi.org/10.3892/ijmm.2015.2441] [PMID: 26707081]
(b) Liang, D.H.; El-Zein, R.; Dave, B. Autophagy inhibition to increase radiosensitization in breast cancer. J. Nucl. Med. Radiat. Ther., 2015, 6(5), 254.
[http://dx.doi.org/10.4172/2155-9619.1000254] [PMID: 26613064]
[101]
Londoño-Joshi, A.I.; Oliver, P.G.; Li, Y.; Lee, C.H.; Forero-Torres, A.; LoBuglio, A.F.; Buchsbaum, D.J. Basal-like breast cancer stem cells are sensitive to anti-DR5 mediated cytotoxicity. Breast Cancer Res. Treat., 2012, 133(2), 437-445.
[http://dx.doi.org/10.1007/s10549-011-1763-0] [PMID: 21915634]
[102]
Kim, H.; Samuel, S.L.; Zhai, G.; Rana, S.; Taylor, M.; Umphrey, H.R.; Oelschlager, D.K.; Buchsbaum, D.J.; Zinn, K.R. Combination therapy with anti-DR5 antibody and tamoxifen for triple negative breast cancer. Cancer Biol. Ther., 2014, 15(8), 1053-1060.
[http://dx.doi.org/10.4161/cbt.29183] [PMID: 25084100]
[103]
(a) Antonioli, L.; Pacher, P.; Vizi, E.S.; Haskó, G. CD39 and CD73 in immunity and inflammation. trends mol. med , 2013, 19(6), 355-367.
[http://dx.doi.org/10.1016/j.molmed.2013.03.005] [PMID: 23601906]
(b) He, L.; Gu, J.; Lim, L.Y.; Yuan, Z.X.; Mo, J. Nanomedicine-mediated therapies to target breast cancer stem cells. Front. Pharmacol., 2016, 7, 313.
[http://dx.doi.org/10.3389/fphar.2016.00313] [PMID: 27679576]
[104]
(a) Xia, Y.; Jiang, L.; Zhong, T. the role of hif-1α in chemo-/radioresistant tumors. oncotargets ther. 2018, 11, 3003-3011.
[http://dx.doi.org/10.2147/ott.s158206] [PMID: 29872312]
(b) Lan, J.; Lu, H.; Samanta, D.; Salman, S.; Lu, Y.; Semenza, G.L. Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment. Proc. Natl. Acad. Sci. USA, 2018, 115(41), E9640-E9648.
[http://dx.doi.org/10.1073/pnas.1809695115] [PMID: 30242135]
[105]
McDonald, P.C.; Dedhar, S. Carbonic anhydrase IX (CAIX) as a mediator of hypoxia-induced stress response in cancer cells. Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications; Springer, 2014, pp. 255-269.
[http://dx.doi.org/10.1007/978-94-007-7359-2_13]
[106]
(a) Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. nat. rev. drug discov, 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
(b) Rabindran, S.K.; He, H.; Singh, M.; Brown, E.; Collins, K.I.; Annable, T.; Greenberger, L.M. reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin c. cancer res., 1998, 58(24), 5850-5858.
[PMID: 9865745]
(c) Robey, R.W.; Steadman, K.; Polgar, O.; Morisaki, K.; Blayney, M.; Mistry, P.; Bates, S.E. Pheophorbide a is a specific probe for ABCG2 function and inhibition. cancer res., 2004, 64(4), 1242-1246.
[http://dx.doi.org/10.1158/0008-5472.can-03-3298] [PMID: 14973080]
(d) Woehlecke, H.; Osada, H.; Herrmann, A.; Lage, H. Reversal of breast cancer resistance protein-mediated drug resistance by tryprostatin A. Int. J. Cancer, 2003, 107(5), 721-728.
[http://dx.doi.org/10.1002/ijc.11444] [PMID: 14566821]
[107]
Zheng, L.S.; Wang, F.; Li, Y.H.; Zhang, X.; Chen, L.M.; Liang, Y.J.; Dai, C.L.; Yan, Y.Y.; Tao, L.Y.; Mi, Y.J.; Yang, A.K.; To, K.K.; Fu, L.W. Vandetanib (Zactima, ZD6474) antagonizes ABCC1- and ABCG2-mediated multidrug resistance by inhibition of their transport function. PLoS One, 2009, 4(4), e5172.
[http://dx.doi.org/10.1371/journal.pone.0005172] [PMID: 19390592]
[108]
Schmolka, I. Poloxamers in the pharmaceutical industry; CRC Press: Boca Raton, FL, USA, 1991, pp. 189-214. (b) Batrakova, E.V.; Kabanov, A.V. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release, 2008, 130(2), 98-106.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.013] [PMID: 18534704]
[109]
Batrakova, E.V.; Li, S.; Brynskikh, A.M.; Sharma, A.K.; Li, Y.; Boska, M.; Gong, N.; Mosley, R.L.; Alakhov, V.Y.; Gendelman, H.E.; Kabanov, A.V. Effects of pluronic and doxorubicin on drug uptake, cellular metabolism, apoptosis and tumor inhibition in animal models of MDR cancers. J. Control. Release, 2010, 143(3), 290-301.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.004] [PMID: 20074598]
[110]
(a) Jia, H.; Truica, C.I.; Wang, B.; Wang, Y.; Ren, X.; Harvey, H.A.; Song, J.; Yang, J-M. immunotherapy for triple-negative breast cancer: existing challenges and exciting prospects. drug resist. updat. 2017, 32, 1-15.
[http://dx.doi.org/10.1016/j.drup.2017.07.002] [PMID: 29145974]
(b) Thakur, V.; Kutty, R.V. Recent advances in nanotheranostics for triple negative breast cancer treatment. J. Exp. Clin. Cancer Res., 2019, 38(1), 430.
[http://dx.doi.org/10.1186/s13046-019-1443-1] [PMID: 31661003]
[111]
Kalaydina, R-V.; Bajwa, K.; Qorri, B.; Decarlo, A.; Szewczuk, M.R. Recent advances in “smart” delivery systems for extended drug release in cancer therapy. Int. J. Nanomedicine, 2018, 13, 4727-4745.
[http://dx.doi.org/10.2147/IJN.S168053] [PMID: 30154657]
[112]
(a) Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: theory to practice. pharmacol. rev., 2001, 53(2), 283-318.
[PMID: 11356986]
(b) Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. nat. nanotechnol, 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
(c) Anselmo, A.C.; Mitragotri, S. Cell-mediated delivery of nanoparticles: Taking advantage of circulatory cells to target nanoparticles. J. Control. Release, 2014, 190, 531-541.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.050] [PMID: 24747161]
[113]
(a) Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. beilstein j. nanotechnol., 2018, 9(1), 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
(b) Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J., 2011, 19(3), 129-141.
[http://dx.doi.org/10.1016/j.jsps.2011.04.001] [PMID: 23960751]
[114]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotech., 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[115]
Muntimadugu, E.; Kumar, R.; Saladi, S.; Rafeeqi, T.A.; Khan, W. CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surf. B Biointerfaces, 2016, 143, 532-546.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.075] [PMID: 27045981]
[116]
Rao, W.; Wang, H.; Han, J.; Zhao, S.; Dumbleton, J.; Agarwal, P.; Zhang, W.; Zhao, G.; Yu, J.; Zynger, D.L.; Lu, X.; He, X. Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano, 2015, 9(6), 5725-5740.
[http://dx.doi.org/10.1021/nn506928p] [PMID: 26004286]
[117]
Aires, A.; Ocampo, S.M.; Simões, B.M.; Josefa Rodríguez, M.; Cadenas, J.F.; Couleaud, P.; Spence, K.; Latorre, A.; Miranda, R.; Somoza, Á.; Clarke, R.B.; Carrascosa, J.L.; Cortajarena, A.L. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. Nanotechnology, 2016, 27(6)065103
[http://dx.doi.org/10.1088/0957-4484/27/6/065103] [PMID: 26754042]
[118]
Yin, H.; Xiong, G.; Guo, S.; Xu, C.; Xu, R.; Guo, P.; Shu, D. Delivery of anti-miRNA for triple-negative breast cancer therapy using RNA nanoparticles targeting stem cell marker CD133. Mol. Ther., 2019, 27(7), 1252-1261.
[http://dx.doi.org/10.1016/j.ymthe.2019.04.018] [PMID: 31085078]
[119]
Li, S-Y.; Sun, R.; Wang, H-X.; Shen, S.; Liu, Y.; Du, X-J.; Zhu, Y-H.; Jun, W. Combination therapy with epigenetic-targeted and chemotherapeutic drugs delivered by nanoparticles to enhance the chemotherapy response and overcome resistance by breast cancer stem cells. J. Control. Release, 2015, 205, 7-14.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.011] [PMID: 25445694]
[120]
Mamaeva, V.; Niemi, R.; Beck, M.; Özliseli, E.; Desai, D.; Landor, S.; Gronroos, T.; Kronqvist, P.; Pettersen, I.K.; McCormack, E.; Rosenholm, J.M.; Linden, M.; Sahlgren, C. Inhibiting notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying γ-secretase inhibitors. Mol. Ther., 2016, 24(5), 926-936.
[http://dx.doi.org/10.1038/mt.2016.42] [PMID: 26916284]
[121]
Misra, S.K.; Jensen, T.W.; Pan, D. Enriched inhibition of cancer and stem-like cancer cells via STAT-3 modulating niclocelles. Nanoscale, 2015, 7(16), 7127-7132.
[http://dx.doi.org/10.1039/C5NR00403A] [PMID: 25785368]
[122]
Pindiprolu, S.K.S.S.; Chintamaneni, P.K.; Krishnamurthy, P.T.; Ratna Sree Ganapathineedi, K. Formulation-optimization of solid lipid nanocarrier system of STAT3 inhibitor to improve its activity in triple negative breast cancer cells. Drug Dev. Ind. Pharm., 2019, 45(2), 304-313.
[http://dx.doi.org/10.1080/03639045.2018.1539496] [PMID: 30348020]
[123]
Ding, B.; Wu, X.; Fan, W.; Wu, Z.; Gao, J.; Zhang, W.; Ma, L.; Xiang, W.; Zhu, Q.; Liu, J.; Ding, X.; Gao, S. Anti-DR5 monoclonal antibody-mediated DTIC-loaded nanoparticles combining chemotherapy and immunotherapy for malignant melanoma: target formulation development and in vitro anticancer activity. Int. J. Nanomedicine, 2011, 6, 1991-2005.
[PMID: 21976975]
[124]
Xu, Y.; Liu, D.; Hu, J.; Ding, P.; Chen, M. Hyaluronic acid-coated pH sensitive poly (β-amino ester) nanoparticles for co-delivery of embelin and TRAIL plasmid for triple negative breast cancer treatment. Int. J. Pharm., 2020.573118637
[http://dx.doi.org/10.1016/j.ijpharm.2019.118637] [PMID: 31550511]
[125]
Shen, S.; Du, X-J.; Liu, J.; Sun, R.; Zhu, Y-H.; Wang, J. Delivery of bortezomib with nanoparticles for basal-like triple-negative breast cancer therapy. J. Control. Release, 2015, 208, 14-24.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.043] [PMID: 25575864]
[126]
Wang, H.; Agarwal, P.; Zhao, S.; Xu, R.X.; Yu, J.; Lu, X.; He, X. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells. Biomaterials, 2015, 72, 74-89.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.048] [PMID: 26344365]
[127]
Pindiprolu, S.K.S.S.; Krishnamurthy, P.T.; Chintamaneni, P.K.; Karri, V.V.S.R. Nanocarrier based approaches for targeting breast cancer stem cells. Artif. Cells Nanomed. Biotechnol., 2018, 46(5), 885-898.
[http://dx.doi.org/10.1080/21691401.2017.1366337] [PMID: 28826237]
[128]
(a) Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. nanoparticle-based medicines: a review of fda-approved materials and clinical trials to date. pharm. res. 2016, 33(10), 2373-2387.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
(b) Liu, X.; Zhang, Y.; Li, J.; Wang, D.; Wu, Y.; Li, Y.; Lu, Z.; Yu, S.C.; Li, R.; Yang, X. Cognitive deficits and decreased locomotor activity induced by single-walled carbon nanotubes and neuroprotective effects of ascorbic acid. int. j. nanomedicine, 2014, 9, 823-839.
[PMID: 24596461]
(c) Bai, Y.; Zhang, Y.; Zhang, J.; Mu, Q.; Zhang, W.; Butch, E.R.; Snyder, S.E.; Yan, B. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat. Nanotechnol., 2010, 5(9), 683-689.
[http://dx.doi.org/10.1038/nnano.2010.153] [PMID: 20693989]
[129]
(a) Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M.L.; Stroeve, P.; Mahmoudi, M. Toxicity of nanomaterials. chem. soc. rev., 2012, 41(6), 2323-2343.
[http://dx.doi.org/10.1039/c1cs15188f] [PMID: 22170510]
(b) Kagan, V.E.; Konduru, N.V.; Feng, W.; Allen, B.L.; Conroy, J.; Volkov, Y.; Vlasova, I.I.; Belikova, N.A.; Yanamala, N.; Kapralov, A.; Tyurina, Y.Y.; Shi, J.; Kisin, E.R.; Murray, A.R.; Franks, J.; Stolz, D.; Gou, P.; Klein-Seetharaman, J.; Fadeel, B.; Star, A.; Shvedova, A.A. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. nat. nanotechnol., 2010, 5(5), 354-359.
[http://dx.doi.org/10.1038/nnano.2010.44] [PMID: 20364135]
(c) Klebanoff, S.J.; Kettle, A.J.; Rosen, H.; Winterbourn, C.C.; Nauseef, W.M. Myeloperoxidase: A front-line defender against phagocytosed microorganisms. J. Leukoc. Biol., 2013, 93(2), 185-198.
[http://dx.doi.org/10.1189/jlb.0712349] [PMID: 23066164]
[130]
Zhang, Q. Carbon nanotubes and their applications; CRC Press, 2012.
[http://dx.doi.org/10.1201/b11989]
(b) Niska, K.; Pyszka, K.; Tukaj, C.; Wozniak, M.; Radomski, M.W.; Inkielewicz-Stepniak, I. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells. Int. J. Nanomedicine, 2015, 10, 1095-1107.
[PMID: 25709434]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy