Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Identification of Candidate Genetic Markers and a Novel 4-genes Diagnostic Model in Osteoarthritis through Integrating Multiple Microarray Data

Author(s): Ai Jiang, Peng Xu, Zhenda Zhao, Qizhao Tan, Shang Sun, Chunli Song and Huijie Leng*

Volume 23, Issue 8, 2020

Page: [805 - 813] Pages: 9

DOI: 10.2174/1386207323666200428120310

Price: $65

Abstract

Background: Osteoarthritis (OA) is a joint disease that leads to a high disability rate and a low quality of life. With the development of modern molecular biology techniques, some key genes and diagnostic markers have been reported. However, the etiology and pathogenesis of OA are still unknown.

Objective: To develop a gene signature in OA.

Method: In this study, five microarray data sets were integrated to conduct a comprehensive network and pathway analysis of the biological functions of OA related genes, which can provide valuable information and further explore the etiology and pathogenesis of OA.

Results and Discussion: Differential expression analysis identified 180 genes with significantly expressed expression in OA. Functional enrichment analysis showed that the up-regulated genes were associated with rheumatoid arthritis (p < 0.01). Down-regulated genes regulate the biological processes of negative regulation of kinase activity and some signaling pathways such as MAPK signaling pathway (p < 0.001) and IL-17 signaling pathway (p < 0.001). In addition, the OA specific protein-protein interaction (PPI) network was constructed based on the differentially expressed genes. The analysis of network topological attributes showed that differentially upregulated VEGFA, MYC, ATF3 and JUN genes were hub genes of the network, which may influence the occurrence and development of OA through regulating cell cycle or apoptosis, and were potential biomarkers of OA. Finally, the support vector machine (SVM) method was used to establish the diagnosis model of OA, which not only had excellent predictive power in internal and external data sets (AUC > 0.9), but also had high predictive performance in different chip platforms (AUC > 0.9) and also had effective ability in blood samples (AUC > 0.8).

Conclusion: The 4-genes diagnostic model may be of great help to the early diagnosis and prediction of OA.

Keywords: Biomarker, SVM, osteoarthritis, bioinformatics, 4-genes signature, AUC.

[1]
Valdes, A.M.; Spector, T.D. Genetic epidemiology of hip and knee osteoarthritis. Nat. Rev. Rheumatol., 2011, 7(1), 23-32.
[http://dx.doi.org/10.1038/nrrheum.2010.191 ] [PMID: 21079645]
[2]
Ryd, L.; Brittberg, M.; Eriksson, K.; Jurvelin, J.S.; Lindahl, A.; Marlovits, S.; Möller, P.; Richardson, J.B.; Steinwachs, M.; Zenobi-Wong, M. Pre-osteoarthritis: definition and diagnosis of an elusive clinical entity. Cartilage, 2015, 6(3), 156-165.
[http://dx.doi.org/10.1177/1947603515586048 ] [PMID: 26175861]
[3]
Picavet, H.S.; Hazes, J.M. Prevalence of self reported musculoskeletal diseases is high. Ann. Rheum. Dis., 2003, 62(7), 644-650.
[http://dx.doi.org/10.1136/ard.62.7.644 ] [PMID: 12810427]
[4]
Prevalence and most common causes of disability among adults--United States, 2005. MMWR Morb. Mortal. Wkly. Rep., 2009, 58(16), 421-426.
[PMID: 19407734]
[5]
Woolf, A.D.; Pfleger, B. Burden of major musculoskeletal conditions. Bull. World Health Organ., 2003, 81(9), 646-656.
[PMID: 14710506]
[6]
Brandt, K.D.; Dieppe, P.; Radin, E. Etiopathogenesis of osteoarthritis. Med. Clin. North Am., 2009, 93(1), 1-24. ,xv.
[http://dx.doi.org/10.1016/j.mcna.2008.08.009] [PMID: 19059018]
[7]
Zhou, X.; Jiang, L.; Zhang, Y.; Zhang, J.; Zhou, D.; Wu, L.; Huang, Y.; Xu, N. Genetic variation of aggrecanase-2 (ADAMTS5) in susceptibility to osteoarthritis. Braz. J. Med. Biol. Res., 2019, 52(2)e8109
[http://dx.doi.org/10.1590/1414-431x20188109 ] [PMID: 30652828]
[8]
Beavers, D.P.; Beavers, K.M.; Loeser, R.F.; Walton, N.R.; Lyles, M.F.; Nicklas, B.J.; Shapses, S.A.; Newman, J.J.; Messier, S.P. The independent and combined effects of intensive weight loss and exercise training on bone mineral density in overweight and obese older adults with osteoarthritis. Osteoarthritis Cartilage, 2014, 22(6), 726-733.
[http://dx.doi.org/10.1016/j.joca.2014.04.002 ] [PMID: 24742955]
[9]
Chen, X.; Zhang, L.; Liang, D.; Li, J.; Liu, F.; Ma, H. Lipid transporter activity-related genetic polymorphisms are associated with steroid-induced osteonecrosis of the femoral head: an updated meta-analysis based on the GRADE guidelines. Front. Physiol., 2018, 9, 1684.
[http://dx.doi.org/10.3389/fphys.2018.01684 ] [PMID: 30559675]
[10]
Markides, H.; Newell, K.J.; Rudorf, H.; Ferreras, L.B.; Dixon, J.E.; Morris, R.H.; Graves, M.; Kaggie, J.; Henson, F.; El Haj, A.J. Ex vivo MRI cell tracking of autologous mesenchymal stromal cells in an ovine osteochondral defect model. Stem Cell Res. Ther., 2019, 10(1), 25.
[http://dx.doi.org/10.1186/s13287-018-1123-7 ] [PMID: 30635066]
[11]
Chu, C.R.; Millis, M.B.; Olson, S.A. Osteoarthritis: from palliation to prevention: AOA critical issues. J. Bone Joint Surg. Am., 2014, 96(15)e130
[http://dx.doi.org/10.2106/JBJS.M.01209 ] [PMID: 25100783]
[12]
Ma, C.H.; Lv, Q.; Cao, Y.; Wang, Q.; Zhou, X.K.; Ye, B.W.; Yi, C.Q. Genes relevant with osteoarthritis by comparison gene expression profiles of synovial membrane of osteoarthritis patients at different stages. Eur. Rev. Med. Pharmacol. Sci., 2014, 18(3), 431-439.
[PMID: 24563447]
[13]
Lambert, C.; Dubuc, J.E.; Montell, E.; Vergés, J.; Munaut, C.; Noël, A.; Henrotin, Y. Gene expression pattern of cells from inflamed and normal areas of osteoarthritis synovial membrane. Arthritis Rheumatol., 2014, 66(4), 960-968.
[http://dx.doi.org/10.1002/art.38315 ] [PMID: 24757147]
[14]
Hui, A.Y.; McCarty, W.J.; Masuda, K.; Firestein, G.S.; Sah, R.L. A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley Interdiscip. Rev. Syst. Biol. Med., 2012, 4(1), 15-37.
[http://dx.doi.org/10.1002/wsbm.157 ] [PMID: 21826801]
[15]
Yan, Y.; Lu, Y.; Mao, K.; Zhang, M.; Liu, H.; Zhou, Q.; Lin, J.; Zhang, J.; Wang, J.; Xiao, Z. Identification and validation of a prognostic four-genes signature for hepatocellular carcinoma: integrated ceRNA network analysis. Hepatol. Int., 2019, 13(5), 618-630.
[http://dx.doi.org/10.1007/s12072-019-09962-3 ] [PMID: 31321712]
[16]
Huber, R.; Hummert, C.; Gausmann, U.; Pohlers, D.; Koczan, D.; Guthke, R.; Kinne, R.W. Identification of intra-group, inter-individual, and gene-specific variances in mRNA expression profiles in the rheumatoid arthritis synovial membrane. Arthritis Res. Ther., 2008, 10(4), R98.
[http://dx.doi.org/10.1186/ar2485 ] [PMID: 18721452]
[17]
Woetzel, D.; Huber, R.; Kupfer, P.; Pohlers, D.; Pfaff, M.; Driesch, D.; Häupl, T.; Koczan, D.; Stiehl, P.; Guthke, R.; Kinne, R.W. Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based rule set generation. Arthritis Res. Ther., 2014, 16(2), R84.
[http://dx.doi.org/10.1186/ar4526 ] [PMID: 24690414]
[18]
Ramos, Y.F.; Bos, S.D.; Lakenberg, N.; Böhringer, S.; den Hollander, W.J.; Kloppenburg, M.; Slagboom, P.E.; Meulenbelt, I. Genes expressed in blood link osteoarthritis with apoptotic pathways. Ann. Rheum. Dis., 2014, 73(10), 1844-1853.
[http://dx.doi.org/10.1136/annrheumdis-2013-203405 ] [PMID: 23864235]
[19]
Chou, C.H.; Wu, C.C.; Song, I.W.; Chuang, H.P.; Lu, L.S.; Chang, J.H.; Kuo, S.Y.; Lee, C.H.; Wu, J.Y.; Chen, Y.T.; Kraus, V.B.; Lee, M.T. Genome-wide expression profiles of subchondral bone in osteoarthritis. Arthritis Res. Ther., 2013, 15(6), R190.
[http://dx.doi.org/10.1186/ar4380 ] [PMID: 24229462]
[20]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7)e47
[http://dx.doi.org/10.1093/nar/gkv007 ] [PMID: 25605792]
[21]
Kolde, R.; Laur, S.; Adler, P.; Vilo, J. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics, 2012, 28(4), 573-580.
[http://dx.doi.org/10.1093/bioinformatics/btr709 ] [PMID: 22247279]
[22]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118 ] [PMID: 22455463]
[23]
Walter, W.; Sánchez-Cabo, F.; Ricote, M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics, 2015, 31(17), 2912-2914.
[http://dx.doi.org/10.1093/bioinformatics/btv300 ] [PMID: 25964631]
[24]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(Database issue), D447-D452.
[http://dx.doi.org/10.1093/nar/gku1003 ] [PMID: 25352553]
[25]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303 ] [PMID: 14597658]
[26]
Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 2014, 8(Suppl. 4), S11.
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11 ] [PMID: 25521941]
[27]
Sanz, H.; Valim, C.; Vegas, E.; Oller, J.M.; Reverter, F. SVM-RFE: selection and visualization of the most relevant features through non-linear kernels. BMC Bioinformatics, 2018, 19(1), 432.
[http://dx.doi.org/10.1186/s12859-018-2451-4 ] [PMID: 30453885]
[28]
Leek, J.T.; Johnson, W.E.; Parker, H.S.; Jaffe, A.E.; Storey, J.D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics, 2012, 28(6), 882-883.
[http://dx.doi.org/10.1093/bioinformatics/bts034 ] [PMID: 22257669]
[29]
Subramanian, A.; Kuehn, H.; Gould, J.; Tamayo, P.; Mesirov, J.P. GSEA-P: a desktop application for gene set enrichment analysis. Bioinformatics, 2007, 23(23), 3251-3253.
[http://dx.doi.org/10.1093/bioinformatics/btm369 ] [PMID: 17644558]
[30]
Zelzer, E.; Mamluk, R.; Ferrara, N.; Johnson, R.S.; Schipani, E.; Olsen, B.R. VEGFA is necessary for chondrocyte survival during bone development. Development, 2004, 131(9), 2161-2171.
[http://dx.doi.org/10.1242/dev.01053 ] [PMID: 15073147]
[31]
Yatsugi, N.; Tsukazaki, T.; Osaki, M.; Koji, T.; Yamashita, S.; Shindo, H. Apoptosis of articular chondrocytes in rheumatoid arthritis and osteoarthritis: correlation of apoptosis with degree of cartilage destruction and expression of apoptosis-related proteins of p53 and c-myc. J. Orthop. Sci., 2000, 5(2), 150-156.
[http://dx.doi.org/10.1007/s007760050142 ] [PMID: 10982649]
[32]
Iezaki, T.; Ozaki, K.; Fukasawa, K.; Inoue, M.; Kitajima, S.; Muneta, T.; Takeda, S.; Fujita, H.; Onishi, Y.; Horie, T.; Yoneda, Y.; Takarada, T.; Hinoi, E. ATF3 deficiency in chondrocytes alleviates osteoarthritis development. J. Pathol., 2016, 239(4), 426-437.
[http://dx.doi.org/10.1002/path.4739 ] [PMID: 27159257]
[33]
Rhee, J.; Park, S.H.; Kim, S.K.; Kim, J.H.; Ha, C.W.; Chun, C.H.; Chun, J.S. Inhibition of BATF/JUN transcriptional activity protects against osteoarthritic cartilage destruction. Ann. Rheum. Dis., 2017, 76(2), 427-434.
[http://dx.doi.org/10.1136/annrheumdis-2015-208953 ] [PMID: 27147707]
[34]
Zhang, M.; Wang, J. Epigenetics and osteoarthritis. Genes Dis., 2015, 2(1), 69-75.
[http://dx.doi.org/10.1016/j.gendis.2014.12.005 ] [PMID: 25961070]
[35]
Haseeb, A.; Haqqi, T.M. Immunopathogenesis of osteoarthritis. Clin. Immunol., 2013, 146(3), 185-196.
[http://dx.doi.org/10.1016/j.clim.2012.12.011 ] [PMID: 23360836]
[36]
Wang, J.; He, Z.; Liu, Y.; Jin, H.; Bi, Y.; Zhang, X. Lactoferrin accelerates chondrocyte proliferation in osteoarthritis rats through the MAPK signaling pathway. Panminerva Med., 2020. E-pub ahead of print
[http://dx.doi.org/10.23736/S0031-0808.19.03800-X] [PMID: 31992029]
[37]
Xi, Y.; Huang, X.; Tan, G.; Chu, X.; Zhang, R.; Ma, X.; Ni, B.; You, H. Protective effects of Erdosteine on interleukin-1β-stimulated inflammation via inhibiting the activation of MAPK, NF-κB, and Wnt/β-catenin signaling pathways in rat osteoarthritis. Eur. J. Pharmacol., 2020, 873172925
[http://dx.doi.org/10.1016/j.ejphar.2020.172925 ] [PMID: 31958453]
[38]
Zhou, F.; Mei, J.; Han, X.; Li, H.; Yang, S.; Wang, M.; Chu, L.; Qiao, H.; Tang, T. Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-κB/MAPK signaling and protecting chondrocytes. Acta Pharm. Sin. B, 2019, 9(5), 973-985.
[http://dx.doi.org/10.1016/j.apsb.2019.01.015 ] [PMID: 31649847]
[39]
Liu, F.; Li, L.; Lu, W.; Ding, Z.; Huang, W.; Li, Y.T.; Cheng, C.; Shan, W.S.; Xu, J.; He, W. Zhanghui; Yin, Z. Scutellarin ameliorates cartilage degeneration in osteoarthritis by inhibiting the Wnt/β-catenin and MAPK signaling pathways. Int. Immunopharmacol., 2020, 78105954
[http://dx.doi.org/10.1016/j.intimp.2019.105954 ] [PMID: 31757676]
[40]
Fang, Y.; Shen, C.; Zhang, H.; Lv, C. Effect of MiR-126 on cartilage regeneration in osteoarthritis rabbits through MAPK signaling pathway. Minerva Med., 2019. E-pub ahead of print
[http://dx.doi.org/10.23736/S0026-4806.19.06213-X] [PMID: 31578839]
[41]
Patil, A.S.; Sable, R.B.; Kothari, R.M. Occurrence, biochemical profile of vascular endothelial growth factor (VEGF) isoforms and their functions in endochondral ossification. J. Cell. Physiol., 2012, 227(4), 1298-1308.
[http://dx.doi.org/10.1002/jcp.22846 ] [PMID: 21604271]
[42]
Carlevaro, M.F.; Cermelli, S.; Cancedda, R.; Descalzi Cancedda, F. Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. J. Cell Sci., 2000, 113(Pt 1), 59-69.
[PMID: 10591625]
[43]
Gerber, H.P.; Vu, T.H.; Ryan, A.M.; Kowalski, J.; Werb, Z.; Ferrara, N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med., 1999, 5(6), 623-628.
[http://dx.doi.org/10.1038/9467 ] [PMID: 10371499]
[44]
Zou, J.; Li, X.L.; Shi, Z.M.; Xue, J.F. Effects of C-myc gene silencing on interleukin-1β-induced rat chondrocyte cell proliferation, apoptosis and cytokine expression. J. Bone Miner. Metab., 2018, 36(3), 286-296.
[http://dx.doi.org/10.1007/s00774-017-0845-4 ] [PMID: 28616752]
[45]
Zhang, B.; Xie, Q.G.; Quan, Y.; Pan, X.M. Expression profiling based on graph-clustering approach to determine osteoarthritis related pathway. Eur. Rev. Med. Pharmacol. Sci., 2013, 17(15), 2097-2102.
[PMID: 23884832]
[46]
Lu, H.; Hou, G.; Zhang, Y.; Dai, Y.; Zhao, H. c-Jun transactivates Puma gene expression to promote osteoarthritis. Mol. Med. Rep., 2014, 9(5), 1606-1612.
[http://dx.doi.org/10.3892/mmr.2014.1981 ] [PMID: 24566851]
[47]
Ye, Z.; Chen, Y.; Zhang, R.; Dai, H.; Zeng, C.; Zeng, H.; Feng, H.; Du, G.; Fang, H.; Cai, D. c-Jun N-terminal kinase - c-Jun pathway transactivates Bim to promote osteoarthritis. Can. J. Physiol. Pharmacol., 2014, 92(2), 132-139.
[http://dx.doi.org/10.1139/cjpp-2013-0228 ] [PMID: 24502636]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy